Abstract

In this work, we present a 3D-printed waveguide that provides effective electromagnetic guidance in the THz regime. The waveguide is printed using low-cost polycarbonate and a conventional fused deposition modeling printer. Light guidance in the hollow core is achieved through antiresonance, and it improves the energy effectively transported to the receiver compared to free space propagation. Our demonstration adds to the field of 3D-printed terahertz components, providing a low-cost way of guiding terahertz radiation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz pulse propagation in 3D-printed waveguide with metal wires component

Nurfina Yudasari, Jessienta Anthony, and Rainer Leonhardt
Opt. Express 22(21) 26042-26054 (2014)

Terahertz plasmonic waveguides created via 3D printing

Shashank Pandey, Barun Gupta, and Ajay Nahata
Opt. Express 21(21) 24422-24430 (2013)

Metallic and 3D-printed dielectric helical terahertz waveguides

Dominik Walter Vogt, Jessienta Anthony, and Rainer Leonhardt
Opt. Express 23(26) 33359-33369 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
    [Crossref]
  2. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
    [Crossref]
  3. W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared, Millimeter, Terahertz Waves 35, 610–637 (2014).
    [Crossref]
  4. B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807–3814 (2002).
    [Crossref]
  5. D. W. Vogt and R. Leonhardt, “3D-printed broadband dielectric tube terahertz waveguide with anti-reflection structure,” J. Infrared, Millimeter, Terahertz Waves 37, 1086–1095 (2016).
    [Crossref]
  6. B. You and J.-Y. Lu, “Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide,” Opt. Express 24, 18013–18023 (2016).
    [Crossref]
  7. N. Laman, S. S. Harsha, and D. Grischkowsky, “Narrow-line waveguide terahertz time-domain spectroscopy of aspirin and aspirin precursors,” Appl. Spectrosc. 62, 319–326 (2008).
    [Crossref]
  8. G. Trichopoulos and K. Sertel, “Polarimetric Terahertz Probe for Endoscopic Assessment of Malignancies,” in IEEE International Symposium Antennas and Propagation & USNC/URSI National Radio Science Meeting (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2015-October, pp. 730–731.
  9. D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
    [Crossref]
  10. G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
    [Crossref]
  11. S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
    [Crossref]
  12. A. Argyros, “Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 785162 (2013).
    [Crossref]
  13. S. Atakaramians, S. A. Vahid, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photon. 5, 169–215 (2013).
    [Crossref]
  14. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [Crossref]
  15. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
    [Crossref]
  16. E. Canessa, C. Fonda, and M. Zennaro, Low-cost 3D printing for Science, Education and Sustainable Development, 1st ed. (ICTP—The Abdus Salam International Centre for Theoretical Physics, 2013).
  17. A. I. Hernandez-Serrano and E. Castro-Camus, “Quasi-Wollaston-prism for terahertz frequencies fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 567–573 (2017).
    [Crossref]
  18. A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 938–944 (2017).
    [Crossref]
  19. J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Opt. Express 24, 22454–22460 (2016).
    [Crossref]
  20. A. Cruz, V. Serrão, C. Barbosa, M. Franco, C. Cordeiro, A. Argyros, and X. Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves, Optoelectron. Electromagn. Appl. 14, SI45–SI53 (2015).
  21. L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
    [Crossref]
  22. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
    [Crossref]
  23. F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Mo.2. LeCervin.2.
  24. Laserquantum, “Laser quantum, tera-sed,” 2017, http://www.laserquantum.com .
  25. Menlosystems, “Terahertz antennas and components,” 2017, http://www.menlosystems.com/ .
  26. L. van Putten, J. Gorecki, E. Fokoua, V. Apostolopoulos, and F. Poletti, Data for ‘3D Printed Polymer Antiresonant Waveguides for Short Range Terahertz Applications’ (2018).
  27. Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Nature 6, 35844 (2016).
    [Crossref]
  28. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1959).

2017 (4)

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
[Crossref]

A. I. Hernandez-Serrano and E. Castro-Camus, “Quasi-Wollaston-prism for terahertz frequencies fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 567–573 (2017).
[Crossref]

A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 938–944 (2017).
[Crossref]

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

2016 (4)

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Nature 6, 35844 (2016).
[Crossref]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Opt. Express 24, 22454–22460 (2016).
[Crossref]

D. W. Vogt and R. Leonhardt, “3D-printed broadband dielectric tube terahertz waveguide with anti-reflection structure,” J. Infrared, Millimeter, Terahertz Waves 37, 1086–1095 (2016).
[Crossref]

B. You and J.-Y. Lu, “Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide,” Opt. Express 24, 18013–18023 (2016).
[Crossref]

2015 (1)

A. Cruz, V. Serrão, C. Barbosa, M. Franco, C. Cordeiro, A. Argyros, and X. Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves, Optoelectron. Electromagn. Appl. 14, SI45–SI53 (2015).

2014 (3)

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared, Millimeter, Terahertz Waves 35, 610–637 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
[Crossref]

2013 (2)

A. Argyros, “Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 785162 (2013).
[Crossref]

S. Atakaramians, S. A. Vahid, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photon. 5, 169–215 (2013).
[Crossref]

2008 (1)

2007 (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
[Crossref]

2006 (1)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

2003 (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

2002 (2)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807–3814 (2002).
[Crossref]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[Crossref]

1984 (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

Abbott, D.

Allan, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Apostolopoulos, V.

L. van Putten, J. Gorecki, E. Fokoua, V. Apostolopoulos, and F. Poletti, Data for ‘3D Printed Polymer Antiresonant Waveguides for Short Range Terahertz Applications’ (2018).

Argyros, A.

A. Cruz, V. Serrão, C. Barbosa, M. Franco, C. Cordeiro, A. Argyros, and X. Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves, Optoelectron. Electromagn. Appl. 14, SI45–SI53 (2015).

A. Argyros, “Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 785162 (2013).
[Crossref]

Atakaramians, S.

Auston, D. H.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

Badding, J. V.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

Balzer, J. C.

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
[Crossref]

Barbosa, C.

A. Cruz, V. Serrão, C. Barbosa, M. Franco, C. Cordeiro, A. Argyros, and X. Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves, Optoelectron. Electromagn. Appl. 14, SI45–SI53 (2015).

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[Crossref]

Becker, L.

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
[Crossref]

Belardi, W.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

Beltrán-Mejía, F.

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1959).

Borrelli, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Busch, S.

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

Busch, S. F.

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
[Crossref]

Canessa, E.

E. Canessa, C. Fonda, and M. Zennaro, Low-cost 3D printing for Science, Education and Sustainable Development, 1st ed. (ICTP—The Abdus Salam International Centre for Theoretical Physics, 2013).

Castro-Camus, E.

A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 938–944 (2017).
[Crossref]

A. I. Hernandez-Serrano and E. Castro-Camus, “Quasi-Wollaston-prism for terahertz frequencies fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 567–573 (2017).
[Crossref]

Chaudhuri, S.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

Chen, P.

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

Cordeiro, C.

A. Cruz, V. Serrão, C. Barbosa, M. Franco, C. Cordeiro, A. Argyros, and X. Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves, Optoelectron. Electromagn. Appl. 14, SI45–SI53 (2015).

Cruz, A.

A. Cruz, V. Serrão, C. Barbosa, M. Franco, C. Cordeiro, A. Argyros, and X. Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves, Optoelectron. Electromagn. Appl. 14, SI45–SI53 (2015).

Fey, M.

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

Fischer, B. M.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807–3814 (2002).
[Crossref]

Fokoua, E.

L. van Putten, J. Gorecki, E. Fokoua, V. Apostolopoulos, and F. Poletti, Data for ‘3D Printed Polymer Antiresonant Waveguides for Short Range Terahertz Applications’ (2018).

Fokoua, E. N.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

Fonda, C.

E. Canessa, C. Fonda, and M. Zennaro, Low-cost 3D printing for Science, Education and Sustainable Development, 1st ed. (ICTP—The Abdus Salam International Centre for Theoretical Physics, 2013).

Franco, M.

A. Cruz, V. Serrão, C. Barbosa, M. Franco, C. Cordeiro, A. Argyros, and X. Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves, Optoelectron. Electromagn. Appl. 14, SI45–SI53 (2015).

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Gong, C.

Gorecki, J.

L. van Putten, J. Gorecki, E. Fokoua, V. Apostolopoulos, and F. Poletti, Data for ‘3D Printed Polymer Antiresonant Waveguides for Short Range Terahertz Applications’ (2018).

Grischkowsky, D.

Harsha, S. S.

Hayes, J. R.

F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Mo.2. LeCervin.2.

Hernandez-Serrano, A. I.

A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 938–944 (2017).
[Crossref]

A. I. Hernandez-Serrano and E. Castro-Camus, “Quasi-Wollaston-prism for terahertz frequencies fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 567–573 (2017).
[Crossref]

Hu, X.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Nature 6, 35844 (2016).
[Crossref]

Jahn, D.

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
[Crossref]

Jepsen, P. U.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807–3814 (2002).
[Crossref]

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Koch, M.

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
[Crossref]

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

Laman, N.

Lehr, J.

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
[Crossref]

Leonhardt, R.

D. W. Vogt and R. Leonhardt, “3D-printed broadband dielectric tube terahertz waveguide with anti-reflection structure,” J. Infrared, Millimeter, Terahertz Waves 37, 1086–1095 (2016).
[Crossref]

Li, G.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Nature 6, 35844 (2016).
[Crossref]

Lin, L.

Liu, W.

Lopez-Mago, D.

A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 938–944 (2017).
[Crossref]

Lu, J.-Y.

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
[Crossref]

Mo, Q.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Nature 6, 35844 (2016).
[Crossref]

Monro, T. M.

Mousavi, S. M. A.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

Mueller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Naftaly, M.

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared, Millimeter, Terahertz Waves 35, 610–637 (2014).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
[Crossref]

Poletti, F.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
[Crossref]

F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Mo.2. LeCervin.2.

L. van Putten, J. Gorecki, E. Fokoua, V. Apostolopoulos, and F. Poletti, Data for ‘3D Printed Polymer Antiresonant Waveguides for Short Range Terahertz Applications’ (2018).

Probst, T.

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

Richardson, D.

F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Mo.2. LeCervin.2.

Schäfer, F.

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[Crossref]

Serrão, V.

A. Cruz, V. Serrão, C. Barbosa, M. Franco, C. Cordeiro, A. Argyros, and X. Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves, Optoelectron. Electromagn. Appl. 14, SI45–SI53 (2015).

Sertel, K.

G. Trichopoulos and K. Sertel, “Polarimetric Terahertz Probe for Endoscopic Assessment of Malignancies,” in IEEE International Symposium Antennas and Propagation & USNC/URSI National Radio Science Meeting (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2015-October, pp. 730–731.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Smith, P. R.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

Sun, L.

Tang, X.

A. Cruz, V. Serrão, C. Barbosa, M. Franco, C. Cordeiro, A. Argyros, and X. Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves, Optoelectron. Electromagn. Appl. 14, SI45–SI53 (2015).

Tian, H.

Trichopoulos, G.

G. Trichopoulos and K. Sertel, “Polarimetric Terahertz Probe for Endoscopic Assessment of Malignancies,” in IEEE International Symposium Antennas and Propagation & USNC/URSI National Radio Science Meeting (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2015-October, pp. 730–731.

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[Crossref]

Vahid, S. A.

van Putten, L.

L. van Putten, J. Gorecki, E. Fokoua, V. Apostolopoulos, and F. Poletti, Data for ‘3D Printed Polymer Antiresonant Waveguides for Short Range Terahertz Applications’ (2018).

van Putten, L. D.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Vogt, D. W.

D. W. Vogt and R. Leonhardt, “3D-printed broadband dielectric tube terahertz waveguide with anti-reflection structure,” J. Infrared, Millimeter, Terahertz Waves 37, 1086–1095 (2016).
[Crossref]

Walther, M.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807–3814 (2002).
[Crossref]

Wang, Z.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Nature 6, 35844 (2016).
[Crossref]

Weidenbach, M.

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
[Crossref]

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

West, J.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Williams, G. P.

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

Withayachumnankul, W.

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared, Millimeter, Terahertz Waves 35, 610–637 (2014).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1959).

Wu, H.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Nature 6, 35844 (2016).
[Crossref]

Yang, J.

You, B.

Zennaro, M.

E. Canessa, C. Fonda, and M. Zennaro, Low-cost 3D printing for Science, Education and Sustainable Development, 1st ed. (ICTP—The Abdus Salam International Centre for Theoretical Physics, 2013).

Zhao, J.

Zhao, N.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Nature 6, 35844 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

Appl. Spectrosc. (1)

IEEE Photon. Technol. Lett. (1)

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

ISRN Opt. (1)

A. Argyros, “Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 785162 (2013).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (6)

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared, Millimeter, Terahertz Waves 35, 610–637 (2014).
[Crossref]

D. W. Vogt and R. Leonhardt, “3D-printed broadband dielectric tube terahertz waveguide with anti-reflection structure,” J. Infrared, Millimeter, Terahertz Waves 37, 1086–1095 (2016).
[Crossref]

D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltrán-Mejía, S. F. Busch, J. C. Balzer, and M. Koch, “3D printed terahertz focusing grating couplers,” J. Infrared, Millimeter, Terahertz Waves 38, 708–716 (2017).
[Crossref]

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

A. I. Hernandez-Serrano and E. Castro-Camus, “Quasi-Wollaston-prism for terahertz frequencies fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 567–573 (2017).
[Crossref]

A. I. Hernandez-Serrano, E. Castro-Camus, and D. Lopez-Mago, “q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing,” J. Infrared, Millimeter, Terahertz Waves 38, 938–944 (2017).
[Crossref]

J. Microwaves, Optoelectron. Electromagn. Appl. (1)

A. Cruz, V. Serrão, C. Barbosa, M. Franco, C. Cordeiro, A. Argyros, and X. Tang, “3D printed hollow core fiber with negative curvature for terahertz applications,” J. Microwaves, Optoelectron. Electromagn. Appl. 14, SI45–SI53 (2015).

J. Phys. Chem. B (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[Crossref]

Nature (2)

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Nature 6, 35844 (2016).
[Crossref]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Mueller, J. West, N. Borrelli, D. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Opt. Express (3)

Phys. Med. Biol. (1)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807–3814 (2002).
[Crossref]

Proc. IEEE (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
[Crossref]

Rep. Prog. Phys. (1)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

Other (7)

G. Trichopoulos and K. Sertel, “Polarimetric Terahertz Probe for Endoscopic Assessment of Malignancies,” in IEEE International Symposium Antennas and Propagation & USNC/URSI National Radio Science Meeting (Institute of Electrical and Electronics Engineers Inc., 2015), Vol. 2015-October, pp. 730–731.

F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Mo.2. LeCervin.2.

Laserquantum, “Laser quantum, tera-sed,” 2017, http://www.laserquantum.com .

Menlosystems, “Terahertz antennas and components,” 2017, http://www.menlosystems.com/ .

L. van Putten, J. Gorecki, E. Fokoua, V. Apostolopoulos, and F. Poletti, Data for ‘3D Printed Polymer Antiresonant Waveguides for Short Range Terahertz Applications’ (2018).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1959).

E. Canessa, C. Fonda, and M. Zennaro, Low-cost 3D printing for Science, Education and Sustainable Development, 1st ed. (ICTP—The Abdus Salam International Centre for Theoretical Physics, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Mode profile at (top) resonance, 0.3 THz, and (bottom) antiresonance, 0.2 THz.
Fig. 2.
Fig. 2. Simulation results for transmission loss for all three waveguides compared to the bulk loss of polycarbonate.
Fig. 3.
Fig. 3. (a) Systematic overview of THz-TDS spectroscopy setup. Detector (D) from [25] and emitter (E) from [24], both photoconductive antennas and mounted with silicon lenses. (b) Metal disks shown with waveguides to aid alignment. (c) All three designs shown on scale.
Fig. 4.
Fig. 4. Transmission measured for each waveguide (blue A, red B, green C) and for the reference scan (black)—displayed in frequency domain.
Fig. 5.
Fig. 5. (top) Transmission measured for each waveguide. The transmission is normalized using a reference scan without a waveguide in the setup. Red vertical lines indicate expected resonances (high loss, transmission dips) for all three waveguides; green lines indicate additional expected resonances for waveguide C. (bottom) Calculated loss and measured loss for waveguide B and bulk loss for polycarbonate compared.
Fig. 6.
Fig. 6. (a) Calculated THz mode profile at different positions in the far field. (b) Mode profile propagating in free space at 0.32 THz. (c) Measured beam shape at 0.32 THz compared to calculated beam shape at 0.32 THz 6 mm behind the waveguide.

Tables (1)

Tables Icon

Table 1. Parameters for Designed Waveguides as Shown in Fig. 3

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

fmres=c*(2tmn21)1,

Metrics