Abstract

Polychromatic laser light can reduce speckle noise in many wavefront-sensing and imaging applications. To help quantify the achievable reduction in speckle noise, this study investigates the accuracy of three polychromatic wave-optics models under the specific conditions of an unresolved object. Because existing theory assumes a well-resolved object, laboratory experiments are used to evaluate model accuracy. The three models use Monte-Carlo averaging, depth slicing, and spectral slicing, respectively, to simulate the laser–object interaction. The experiments involve spoiling the temporal coherence of laser light via a fiber-based, electro-optic modulator. After the light scatters off of the rough object, speckle statistics are measured. The Monte-Carlo method is found to be highly inaccurate, while depth-slicing error peaks at 7.8% but is generally much lower in comparison. The spectral-slicing method is the most accurate, always producing results within the error bounds of the experiment.

Full Article  |  PDF Article
OSA Recommended Articles
Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects

Noah R. Van Zandt, Jack E. McCrae, Mark F. Spencer, Michael J. Steinbock, Milo W. Hyde, and Steven T. Fiorino
Appl. Opt. 57(15) 4090-4102 (2018)

Simple model for image-plane polychromatic speckle contrast

Jonathan M. Huntley
Appl. Opt. 38(11) 2212-2215 (1999)

Image-plane speckle from rotating, rough objects

Joseph Marron and G. Michael Morris
J. Opt. Soc. Am. A 2(9) 1395-1402 (1985)

References

  • View by:
  • |
  • |
  • |

  1. I. Markhvida, L. Tchvialeva, T. K. Lee, and H. Zeng, “Influence of geometry on polychromatic speckle contrast,” J. Opt. Soc. Am. A 24, 93–97 (2007).
    [Crossref]
  2. C. M. P. Rodrigues and J. L. Pinto, “Contrast of polychromatic speckle patterns and its dependence to surface heights distribution,” Opt. Eng. 42, 1699–1703 (2003).
    [Crossref]
  3. J. M. Huntley, “Simple model for image-plane polychromatic speckle contrast,” Appl. Opt. 38, 2212–2215 (1999).
    [Crossref]
  4. V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective–from the East to the West,” Opt. Eng. 56, 031220 (2016).
    [Crossref]
  5. P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
    [Crossref]
  6. S. Sahin, Z. Tong, and O. Korotkova, “Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams,” Opt. Commun. 283, 4512–4518 (2010).
    [Crossref]
  7. Y. Cai, O. Korotkova, H. T. Eyyuboglu, and Y. Baykal, “Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express 16, 15834–15846 (2008).
    [Crossref]
  8. R. D. Richmond and S. C. Cain, Direct-Detection LADAR Systems (SPIE, 2010).
  9. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20, 11288–11315 (2012).
    [Crossref]
  10. J. Riker, “Requirements on active (laser) tracking and imaging from a technology perspective,” Proc. SPIE 8052, 805202 (2011).
    [Crossref]
  11. N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
    [Crossref]
  12. D. Dayton, J. Allen, R. Nolasco, G. Fertig, and M. Myers, “Comparison of fast correlation algorithms for target tracking,” Proc. SPIE 8520, 85200G (2012).
    [Crossref]
  13. R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.
  14. R. K. Tyson, Introduction to Adaptive Optics (SPIE, 2000).
  15. M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
    [Crossref]
  16. N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
    [Crossref]
  17. M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
    [Crossref]
  18. T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” in Proceedings of the IEEE (IEEE, 1996), Vol. 84, pp. 765–781.
  19. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  20. J. W. Goodman, Statistical Optics (Wiley, 1985).
  21. J. C. Dainty and W. T. Welford, “Reduction of speckle in image plane hologram reconstruction by moving pupils,” Opt. Commun. 3, 289–294 (1971).
    [Crossref]
  22. J. Bures, C. Delisle, and A. Zardecki, “Détermination de la Surface de Cohérence à Partir d’une Expérience de Photocomptage,” Can. J. Phys. 50, 760–768 (1972).
    [Crossref]
  23. M. Elbaum, M. Greenbaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–174 (1972).
    [Crossref]
  24. R. A. Sprague, “Surface roughness measurement using white light speckle,” Appl. Opt. 11, 2811–2816 (1972).
    [Crossref]
  25. N. George and A. Jain, “Speckle reduction using multiple tones of illumination,” Appl. Opt. 12, 1202–1212 (1973).
    [Crossref]
  26. H. Pedersen, “On the contrast of polychromatic speckle patterns and its dependence on surface roughness,” Opt. Acta 22, 15–24 (1975).
    [Crossref]
  27. K. Nakagawa and T. Asakura, “Average contrast of white-light image speckle patterns,” Opt. Acta 26, 951–960 (1979).
    [Crossref]
  28. H. Pedersen, “Second-order statistics of light diffracted from Gaussian, rough surfaces with applications to the roughness dependence of speckles,” Opt. Acta 22, 523–535 (1975).
    [Crossref]
  29. G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 78–120.
  30. T. S. McKechnie, “Image-plane speckle in partially coherent illumination,” Opt. Quantum Electron. 8, 61–67 (1976).
    [Crossref]
  31. Y.-Q. Hu, “Dependence of polychromatic-speckle-pattern contrast on imaging and illumination directions,” Appl. Opt. 33, 2707–2714 (1994).
    [Crossref]
  32. L. Tchvialeva, T. K. Lee, I. Markhvida, D. I. McLean, H. Lui, and H. Zeng, “Using a zone model to incorporate the influence of geometry on polychromatic speckle contrast,” Opt. Eng. 47, 074201 (2008).
    [Crossref]
  33. L. Tchvialeva, I. Markhvida, and T. K. Lee, “Error analysis for polychromatic speckle contrast measurements,” Opt. Lasers Eng. 49, 1397–1401 (2011).
    [Crossref]
  34. N. R. Van Zandt, M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
    [Crossref]
  35. Y. Chen, F. Wang, J. Yu, L. Liu, and Y. Cai, “Vector Hermite-Gaussian correlated Schell-model beam,” Opt. Express 24, 15232–15250 (2016).
    [Crossref]
  36. X. Chen, C. Chang, Z. Chen, Z. Lin, and J. Pu, “Generation of stochastic electromagnetic beams with complete controllable coherence,” Opt. Express 24, 21587–21596 (2016).
    [Crossref]
  37. M. W. Hyde, S. Bose-Pillai, D. G. Voelz, and X. Xiao, “Generation of vector partially coherent optical sources using phase-only spatial light modulators,” Phys. Rev. Appl. 6, 064030 (2016).
    [Crossref]
  38. M. W. Hyde, S. Bose-Pillai, X. Xiao, and D. G. Voelz, “A fast and efficient method for producing partially coherent sources,” J. Opt. 19, 025601 (2017).
    [Crossref]
  39. Y. Cai, Y. Chen, J. Yu, X. Liu, and L. Liu, “Generation of partially coherent beams,” Prog. Opt. 62, 157–223 (2017).
    [Crossref]
  40. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20, 21196–21213 (2012).
    [Crossref]
  41. A. V. Harish and J. Nilsson, “Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering,” Opt. Express 23, 6988–6999 (2015).
    [Crossref]
  42. B. Anderson, A. Flores, R. Holten, and I. Dajani, “Comparison of phase modulation schemes for coherently combined fiber amplifiers,” Opt. Express 23, 27046–27060 (2015).
    [Crossref]
  43. N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
    [Crossref]
  44. N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).
  45. V. P. Lukin and B. V. Fortes, Adaptive Beaming and Imaging in the Turbulent Atmosphere (SPIE, 2002).
  46. G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).
  47. M. A. Vorontsov, V. V. Kolosov, and A. Kohnle, “Adaptive laser beam projection on an extended target: phase- and field-conjugate precompensation,” J. Opt. Soc. Am. A 24, 1975–1993 (2007).
    [Crossref]
  48. J. D. Barchers, D. L. Fried, and D. J. Link, “Evaluation of the performance of Hartmann sensors in strong scintillation,” Appl. Opt. 41, 1012–1021 (2002).
    [Crossref]
  49. G. Artzner, “Microlens arrays for Shack-Hartmann wavefront sensors,” Opt. Eng. 31, 1311–1322 (1992).
    [Crossref]
  50. A. Deninger and T. Renner, “12 orders of coherence control,” Toptica Appl-1010 (2010), http://www.toptica.com/fileadmin/Editors_English/12_literature/quantum_technologies/12_orders_of_coherence_control.pdf .
  51. Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6, 710–719 (1988).
    [Crossref]
  52. E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7, 171–174 (1989).
    [Crossref]

2018 (1)

2017 (3)

N. R. Van Zandt, M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

M. W. Hyde, S. Bose-Pillai, X. Xiao, and D. G. Voelz, “A fast and efficient method for producing partially coherent sources,” J. Opt. 19, 025601 (2017).
[Crossref]

Y. Cai, Y. Chen, J. Yu, X. Liu, and L. Liu, “Generation of partially coherent beams,” Prog. Opt. 62, 157–223 (2017).
[Crossref]

2016 (7)

Y. Chen, F. Wang, J. Yu, L. Liu, and Y. Cai, “Vector Hermite-Gaussian correlated Schell-model beam,” Opt. Express 24, 15232–15250 (2016).
[Crossref]

X. Chen, C. Chang, Z. Chen, Z. Lin, and J. Pu, “Generation of stochastic electromagnetic beams with complete controllable coherence,” Opt. Express 24, 21587–21596 (2016).
[Crossref]

M. W. Hyde, S. Bose-Pillai, D. G. Voelz, and X. Xiao, “Generation of vector partially coherent optical sources using phase-only spatial light modulators,” Phys. Rev. Appl. 6, 064030 (2016).
[Crossref]

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective–from the East to the West,” Opt. Eng. 56, 031220 (2016).
[Crossref]

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

2015 (2)

2012 (6)

C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20, 21196–21213 (2012).
[Crossref]

D. Dayton, J. Allen, R. Nolasco, G. Fertig, and M. Myers, “Comparison of fast correlation algorithms for target tracking,” Proc. SPIE 8520, 85200G (2012).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
[Crossref]

J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20, 11288–11315 (2012).
[Crossref]

2011 (2)

J. Riker, “Requirements on active (laser) tracking and imaging from a technology perspective,” Proc. SPIE 8052, 805202 (2011).
[Crossref]

L. Tchvialeva, I. Markhvida, and T. K. Lee, “Error analysis for polychromatic speckle contrast measurements,” Opt. Lasers Eng. 49, 1397–1401 (2011).
[Crossref]

2010 (1)

S. Sahin, Z. Tong, and O. Korotkova, “Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams,” Opt. Commun. 283, 4512–4518 (2010).
[Crossref]

2008 (2)

Y. Cai, O. Korotkova, H. T. Eyyuboglu, and Y. Baykal, “Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express 16, 15834–15846 (2008).
[Crossref]

L. Tchvialeva, T. K. Lee, I. Markhvida, D. I. McLean, H. Lui, and H. Zeng, “Using a zone model to incorporate the influence of geometry on polychromatic speckle contrast,” Opt. Eng. 47, 074201 (2008).
[Crossref]

2007 (2)

2003 (1)

C. M. P. Rodrigues and J. L. Pinto, “Contrast of polychromatic speckle patterns and its dependence to surface heights distribution,” Opt. Eng. 42, 1699–1703 (2003).
[Crossref]

2002 (1)

1999 (1)

1994 (1)

1992 (1)

G. Artzner, “Microlens arrays for Shack-Hartmann wavefront sensors,” Opt. Eng. 31, 1311–1322 (1992).
[Crossref]

1989 (1)

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7, 171–174 (1989).
[Crossref]

1988 (1)

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6, 710–719 (1988).
[Crossref]

1979 (1)

K. Nakagawa and T. Asakura, “Average contrast of white-light image speckle patterns,” Opt. Acta 26, 951–960 (1979).
[Crossref]

1976 (1)

T. S. McKechnie, “Image-plane speckle in partially coherent illumination,” Opt. Quantum Electron. 8, 61–67 (1976).
[Crossref]

1975 (2)

H. Pedersen, “Second-order statistics of light diffracted from Gaussian, rough surfaces with applications to the roughness dependence of speckles,” Opt. Acta 22, 523–535 (1975).
[Crossref]

H. Pedersen, “On the contrast of polychromatic speckle patterns and its dependence on surface roughness,” Opt. Acta 22, 15–24 (1975).
[Crossref]

1973 (1)

1972 (3)

J. Bures, C. Delisle, and A. Zardecki, “Détermination de la Surface de Cohérence à Partir d’une Expérience de Photocomptage,” Can. J. Phys. 50, 760–768 (1972).
[Crossref]

M. Elbaum, M. Greenbaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–174 (1972).
[Crossref]

R. A. Sprague, “Surface roughness measurement using white light speckle,” Appl. Opt. 11, 2811–2816 (1972).
[Crossref]

1971 (1)

J. C. Dainty and W. T. Welford, “Reduction of speckle in image plane hologram reconstruction by moving pupils,” Opt. Commun. 3, 289–294 (1971).
[Crossref]

Allen, J.

D. Dayton, J. Allen, R. Nolasco, G. Fertig, and M. Myers, “Comparison of fast correlation algorithms for target tracking,” Proc. SPIE 8520, 85200G (2012).
[Crossref]

Anderson, B.

Anderson, B. M.

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

Aoki, Y.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6, 710–719 (1988).
[Crossref]

Artzner, G.

G. Artzner, “Microlens arrays for Shack-Hartmann wavefront sensors,” Opt. Eng. 31, 1311–1322 (1992).
[Crossref]

Asakura, T.

K. Nakagawa and T. Asakura, “Average contrast of white-light image speckle patterns,” Opt. Acta 26, 951–960 (1979).
[Crossref]

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” in Proceedings of the IEEE (IEEE, 1996), Vol. 84, pp. 765–781.

Banet, M. T.

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

Barchers, J. D.

Bartell, R. J.

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

Basu, S.

N. R. Van Zandt, M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

Baykal, Y.

Berg, J.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Bose-Pillai, S.

M. W. Hyde, S. Bose-Pillai, X. Xiao, and D. G. Voelz, “A fast and efficient method for producing partially coherent sources,” J. Opt. 19, 025601 (2017).
[Crossref]

M. W. Hyde, S. Bose-Pillai, D. G. Voelz, and X. Xiao, “Generation of vector partially coherent optical sources using phase-only spatial light modulators,” Phys. Rev. Appl. 6, 064030 (2016).
[Crossref]

Bures, J.

J. Bures, C. Delisle, and A. Zardecki, “Détermination de la Surface de Cohérence à Partir d’une Expérience de Photocomptage,” Can. J. Phys. 50, 760–768 (1972).
[Crossref]

Cai, Y.

Cain, S. C.

R. D. Richmond and S. C. Cain, Direct-Detection LADAR Systems (SPIE, 2010).

Chang, C.

Chen, W.

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective–from the East to the West,” Opt. Eng. 56, 031220 (2016).
[Crossref]

Chen, X.

Chen, Y.

Y. Cai, Y. Chen, J. Yu, X. Liu, and L. Liu, “Generation of partially coherent beams,” Prog. Opt. 62, 157–223 (2017).
[Crossref]

Y. Chen, F. Wang, J. Yu, L. Liu, and Y. Cai, “Vector Hermite-Gaussian correlated Schell-model beam,” Opt. Express 24, 15232–15250 (2016).
[Crossref]

Chen, Z.

Christnacher, F.

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

Cusumano, S. J.

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).

Dainty, J. C.

J. C. Dainty and W. T. Welford, “Reduction of speckle in image plane hologram reconstruction by moving pupils,” Opt. Commun. 3, 289–294 (1971).
[Crossref]

Dajani, I.

Dayton, D.

D. Dayton, J. Allen, R. Nolasco, G. Fertig, and M. Myers, “Comparison of fast correlation algorithms for target tracking,” Proc. SPIE 8520, 85200G (2012).
[Crossref]

Delisle, C.

J. Bures, C. Delisle, and A. Zardecki, “Détermination de la Surface de Cohérence à Partir d’une Expérience de Photocomptage,” Can. J. Phys. 50, 760–768 (1972).
[Crossref]

Elbaum, M.

M. Elbaum, M. Greenbaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–174 (1972).
[Crossref]

Engler, T.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Eyyuboglu, H. T.

Fertig, G.

D. Dayton, J. Allen, R. Nolasco, G. Fertig, and M. Myers, “Comparison of fast correlation algorithms for target tracking,” Proc. SPIE 8520, 85200G (2012).
[Crossref]

Fiorino, S. T.

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).

N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).

Flores, A.

Fortes, B. V.

V. P. Lukin and B. V. Fortes, Adaptive Beaming and Imaging in the Turbulent Atmosphere (SPIE, 2002).

Fried, D. L.

Friesem, A. A.

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7, 171–174 (1989).
[Crossref]

George, N.

Goodman, J. W.

Greenbaum, M.

M. Elbaum, M. Greenbaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–174 (1972).
[Crossref]

Hall, D.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Harish, A. V.

Harpole, G.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Hengehold, R. L.

G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).

Hilyard, R.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Holleman, G.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Holten, R.

Hu, Y.-Q.

Huntley, J. M.

Hyde, M. W.

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).

M. W. Hyde, S. Bose-Pillai, X. Xiao, and D. G. Voelz, “A fast and efficient method for producing partially coherent sources,” J. Opt. 19, 025601 (2017).
[Crossref]

N. R. Van Zandt, M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

M. W. Hyde, S. Bose-Pillai, D. G. Voelz, and X. Xiao, “Generation of vector partially coherent optical sources using phase-only spatial light modulators,” Phys. Rev. Appl. 6, 064030 (2016).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

Injeyan, H.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Iwai, T.

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” in Proceedings of the IEEE (IEEE, 1996), Vol. 84, pp. 765–781.

Jain, A.

King, M.

M. Elbaum, M. Greenbaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–174 (1972).
[Crossref]

Kobayashi, T.

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective–from the East to the West,” Opt. Eng. 56, 031220 (2016).
[Crossref]

Kohnle, A.

Kolosov, V. V.

Korotkova, O.

S. Sahin, Z. Tong, and O. Korotkova, “Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams,” Opt. Commun. 283, 4512–4518 (2010).
[Crossref]

Y. Cai, O. Korotkova, H. T. Eyyuboglu, and Y. Baykal, “Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express 16, 15834–15846 (2008).
[Crossref]

Laurenzis, M.

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

Lee, T. K.

L. Tchvialeva, I. Markhvida, and T. K. Lee, “Error analysis for polychromatic speckle contrast measurements,” Opt. Lasers Eng. 49, 1397–1401 (2011).
[Crossref]

L. Tchvialeva, T. K. Lee, I. Markhvida, D. I. McLean, H. Lui, and H. Zeng, “Using a zone model to incorporate the influence of geometry on polychromatic speckle contrast,” Opt. Eng. 47, 074201 (2008).
[Crossref]

I. Markhvida, L. Tchvialeva, T. K. Lee, and H. Zeng, “Influence of geometry on polychromatic speckle contrast,” J. Opt. Soc. Am. A 24, 93–97 (2007).
[Crossref]

Lichtman, E.

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7, 171–174 (1989).
[Crossref]

Lin, Z.

Link, D. J.

Liu, L.

Y. Cai, Y. Chen, J. Yu, X. Liu, and L. Liu, “Generation of partially coherent beams,” Prog. Opt. 62, 157–223 (2017).
[Crossref]

Y. Chen, F. Wang, J. Yu, L. Liu, and Y. Cai, “Vector Hermite-Gaussian correlated Schell-model beam,” Opt. Express 24, 15232–15250 (2016).
[Crossref]

Liu, X.

Y. Cai, Y. Chen, J. Yu, X. Liu, and L. Liu, “Generation of partially coherent beams,” Prog. Opt. 62, 157–223 (2017).
[Crossref]

Lui, H.

L. Tchvialeva, T. K. Lee, I. Markhvida, D. I. McLean, H. Lui, and H. Zeng, “Using a zone model to incorporate the influence of geometry on polychromatic speckle contrast,” Opt. Eng. 47, 074201 (2008).
[Crossref]

Lukin, V. P.

V. P. Lukin and B. V. Fortes, Adaptive Beaming and Imaging in the Turbulent Atmosphere (SPIE, 2002).

Lutz, Y.

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

Machan, J.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Manni, J. G.

Marker, D. K.

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

Markhvida, I.

L. Tchvialeva, I. Markhvida, and T. K. Lee, “Error analysis for polychromatic speckle contrast measurements,” Opt. Lasers Eng. 49, 1397–1401 (2011).
[Crossref]

L. Tchvialeva, T. K. Lee, I. Markhvida, D. I. McLean, H. Lui, and H. Zeng, “Using a zone model to incorporate the influence of geometry on polychromatic speckle contrast,” Opt. Eng. 47, 074201 (2008).
[Crossref]

I. Markhvida, L. Tchvialeva, T. K. Lee, and H. Zeng, “Influence of geometry on polychromatic speckle contrast,” J. Opt. Soc. Am. A 24, 93–97 (2007).
[Crossref]

Matwyschuk, A.

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

McCrae, J. E.

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).

N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

McKechnie, T. S.

T. S. McKechnie, “Image-plane speckle in partially coherent illumination,” Opt. Quantum Electron. 8, 61–67 (1976).
[Crossref]

McLean, D. I.

L. Tchvialeva, T. K. Lee, I. Markhvida, D. I. McLean, H. Lui, and H. Zeng, “Using a zone model to incorporate the influence of geometry on polychromatic speckle contrast,” Opt. Eng. 47, 074201 (2008).
[Crossref]

McManamon, P.

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective–from the East to the West,” Opt. Eng. 56, 031220 (2016).
[Crossref]

McManamon, P. F.

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
[Crossref]

Mitchell, M.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Mito, I.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6, 710–719 (1988).
[Crossref]

Molebny, V.

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective–from the East to the West,” Opt. Eng. 56, 031220 (2016).
[Crossref]

Moore, G. T.

Myers, M.

D. Dayton, J. Allen, R. Nolasco, G. Fertig, and M. Myers, “Comparison of fast correlation algorithms for target tracking,” Proc. SPIE 8520, 85200G (2012).
[Crossref]

Naderi, S.

Nakagawa, K.

K. Nakagawa and T. Asakura, “Average contrast of white-light image speckle patterns,” Opt. Acta 26, 951–960 (1979).
[Crossref]

Nilsson, J.

Nolasco, R.

D. Dayton, J. Allen, R. Nolasco, G. Fertig, and M. Myers, “Comparison of fast correlation algorithms for target tracking,” Proc. SPIE 8520, 85200G (2012).
[Crossref]

Parry, G.

G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 78–120.

Pedersen, H.

H. Pedersen, “Second-order statistics of light diffracted from Gaussian, rough surfaces with applications to the roughness dependence of speckles,” Opt. Acta 22, 523–535 (1975).
[Crossref]

H. Pedersen, “On the contrast of polychromatic speckle patterns and its dependence on surface roughness,” Opt. Acta 22, 15–24 (1975).
[Crossref]

Perram, G. P.

G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).

Pierre, R. S.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Pinto, J. L.

C. M. P. Rodrigues and J. L. Pinto, “Contrast of polychromatic speckle patterns and its dependence to surface heights distribution,” Opt. Eng. 42, 1699–1703 (2003).
[Crossref]

Poyet, J.

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

Pu, J.

Raynor, R. A.

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

Richmond, R. D.

R. D. Richmond and S. C. Cain, Direct-Detection LADAR Systems (SPIE, 2010).

Riker, J.

J. Riker, “Requirements on active (laser) tracking and imaging from a technology perspective,” Proc. SPIE 8052, 805202 (2011).
[Crossref]

Robin, C.

Rodrigues, C. M. P.

C. M. P. Rodrigues and J. L. Pinto, “Contrast of polychromatic speckle patterns and its dependence to surface heights distribution,” Opt. Eng. 42, 1699–1703 (2003).
[Crossref]

Sahin, S.

S. Sahin, Z. Tong, and O. Korotkova, “Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams,” Opt. Commun. 283, 4512–4518 (2010).
[Crossref]

Spencer, M. F.

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

Sprague, R. A.

Steinbock, M. J.

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

Steinvall, O.

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective–from the East to the West,” Opt. Eng. 56, 031220 (2016).
[Crossref]

Tajima, K.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6, 710–719 (1988).
[Crossref]

Tchvialeva, L.

L. Tchvialeva, I. Markhvida, and T. K. Lee, “Error analysis for polychromatic speckle contrast measurements,” Opt. Lasers Eng. 49, 1397–1401 (2011).
[Crossref]

L. Tchvialeva, T. K. Lee, I. Markhvida, D. I. McLean, H. Lui, and H. Zeng, “Using a zone model to incorporate the influence of geometry on polychromatic speckle contrast,” Opt. Eng. 47, 074201 (2008).
[Crossref]

I. Markhvida, L. Tchvialeva, T. K. Lee, and H. Zeng, “Influence of geometry on polychromatic speckle contrast,” J. Opt. Soc. Am. A 24, 93–97 (2007).
[Crossref]

Tinti, R.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Tong, Z.

S. Sahin, Z. Tong, and O. Korotkova, “Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams,” Opt. Commun. 283, 4512–4518 (2010).
[Crossref]

Tyson, R. K.

R. K. Tyson, Introduction to Adaptive Optics (SPIE, 2000).

Valley, M.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Van Zandt, N. R.

N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde, and S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” Appl. Opt. 57, 4090–4102 (2018).

N. R. Van Zandt, M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

Voelz, D. G.

N. R. Van Zandt, M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

M. W. Hyde, S. Bose-Pillai, X. Xiao, and D. G. Voelz, “A fast and efficient method for producing partially coherent sources,” J. Opt. 19, 025601 (2017).
[Crossref]

M. W. Hyde, S. Bose-Pillai, D. G. Voelz, and X. Xiao, “Generation of vector partially coherent optical sources using phase-only spatial light modulators,” Phys. Rev. Appl. 6, 064030 (2016).
[Crossref]

Vorontsov, M. A.

Waarts, R. G.

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7, 171–174 (1989).
[Crossref]

Wang, F.

Weber, M.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Welford, W. T.

J. C. Dainty and W. T. Welford, “Reduction of speckle in image plane hologram reconstruction by moving pupils,” Opt. Commun. 3, 289–294 (1971).
[Crossref]

Xiao, X.

N. R. Van Zandt, M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

M. W. Hyde, S. Bose-Pillai, X. Xiao, and D. G. Voelz, “A fast and efficient method for producing partially coherent sources,” J. Opt. 19, 025601 (2017).
[Crossref]

M. W. Hyde, S. Bose-Pillai, D. G. Voelz, and X. Xiao, “Generation of vector partially coherent optical sources using phase-only spatial light modulators,” Phys. Rev. Appl. 6, 064030 (2016).
[Crossref]

Yu, J.

Y. Cai, Y. Chen, J. Yu, X. Liu, and L. Liu, “Generation of partially coherent beams,” Prog. Opt. 62, 157–223 (2017).
[Crossref]

Y. Chen, F. Wang, J. Yu, L. Liu, and Y. Cai, “Vector Hermite-Gaussian correlated Schell-model beam,” Opt. Express 24, 15232–15250 (2016).
[Crossref]

Zamel, J.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

Zardecki, A.

J. Bures, C. Delisle, and A. Zardecki, “Détermination de la Surface de Cohérence à Partir d’une Expérience de Photocomptage,” Can. J. Phys. 50, 760–768 (1972).
[Crossref]

Zeng, H.

L. Tchvialeva, T. K. Lee, I. Markhvida, D. I. McLean, H. Lui, and H. Zeng, “Using a zone model to incorporate the influence of geometry on polychromatic speckle contrast,” Opt. Eng. 47, 074201 (2008).
[Crossref]

I. Markhvida, L. Tchvialeva, T. K. Lee, and H. Zeng, “Influence of geometry on polychromatic speckle contrast,” J. Opt. Soc. Am. A 24, 93–97 (2007).
[Crossref]

Zeringue, C.

Appl. Opt. (6)

Can. J. Phys. (1)

J. Bures, C. Delisle, and A. Zardecki, “Détermination de la Surface de Cohérence à Partir d’une Expérience de Photocomptage,” Can. J. Phys. 50, 760–768 (1972).
[Crossref]

J. Lightwave Technol. (2)

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6, 710–719 (1988).
[Crossref]

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7, 171–174 (1989).
[Crossref]

J. Opt. (1)

M. W. Hyde, S. Bose-Pillai, X. Xiao, and D. G. Voelz, “A fast and efficient method for producing partially coherent sources,” J. Opt. 19, 025601 (2017).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Acta (3)

H. Pedersen, “On the contrast of polychromatic speckle patterns and its dependence on surface roughness,” Opt. Acta 22, 15–24 (1975).
[Crossref]

K. Nakagawa and T. Asakura, “Average contrast of white-light image speckle patterns,” Opt. Acta 26, 951–960 (1979).
[Crossref]

H. Pedersen, “Second-order statistics of light diffracted from Gaussian, rough surfaces with applications to the roughness dependence of speckles,” Opt. Acta 22, 523–535 (1975).
[Crossref]

Opt. Commun. (4)

M. Elbaum, M. Greenbaum, and M. King, “A wavelength diversity technique for reduction of speckle size,” Opt. Commun. 5, 171–174 (1972).
[Crossref]

J. C. Dainty and W. T. Welford, “Reduction of speckle in image plane hologram reconstruction by moving pupils,” Opt. Commun. 3, 289–294 (1971).
[Crossref]

N. R. Van Zandt, M. W. Hyde, S. Basu, D. G. Voelz, and X. Xiao, “Synthesizing time-evolving partially-coherent Schell-model sources,” Opt. Commun. 387, 377–384 (2017).
[Crossref]

S. Sahin, Z. Tong, and O. Korotkova, “Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams,” Opt. Commun. 283, 4512–4518 (2010).
[Crossref]

Opt. Eng. (9)

C. M. P. Rodrigues and J. L. Pinto, “Contrast of polychromatic speckle patterns and its dependence to surface heights distribution,” Opt. Eng. 42, 1699–1703 (2003).
[Crossref]

V. Molebny, P. McManamon, O. Steinvall, T. Kobayashi, and W. Chen, “Laser radar: historical prospective–from the East to the West,” Opt. Eng. 56, 031220 (2016).
[Crossref]

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
[Crossref]

N. R. Van Zandt, J. E. McCrae, and S. T. Fiorino, “Modeled and measured image-plane polychromatic speckle contrast,” Opt. Eng. 55, 024106 (2016).
[Crossref]

M. F. Spencer, R. A. Raynor, M. T. Banet, and D. K. Marker, “Deep-turbulence wavefront sensing using digital-holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56, 031213 (2016).
[Crossref]

N. R. Van Zandt, S. J. Cusumano, R. J. Bartell, S. Basu, J. E. McCrae, and S. T. Fiorino, “Comparison of coherent and incoherent laser beam combination for tactical engagements,” Opt. Eng. 51, 104301 (2012).
[Crossref]

M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk, and J. Poyet, “Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry,” Opt. Eng. 51, 061302 (2012).
[Crossref]

L. Tchvialeva, T. K. Lee, I. Markhvida, D. I. McLean, H. Lui, and H. Zeng, “Using a zone model to incorporate the influence of geometry on polychromatic speckle contrast,” Opt. Eng. 47, 074201 (2008).
[Crossref]

G. Artzner, “Microlens arrays for Shack-Hartmann wavefront sensors,” Opt. Eng. 31, 1311–1322 (1992).
[Crossref]

Opt. Express (7)

Opt. Lasers Eng. (1)

L. Tchvialeva, I. Markhvida, and T. K. Lee, “Error analysis for polychromatic speckle contrast measurements,” Opt. Lasers Eng. 49, 1397–1401 (2011).
[Crossref]

Opt. Quantum Electron. (1)

T. S. McKechnie, “Image-plane speckle in partially coherent illumination,” Opt. Quantum Electron. 8, 61–67 (1976).
[Crossref]

Phys. Rev. Appl. (1)

M. W. Hyde, S. Bose-Pillai, D. G. Voelz, and X. Xiao, “Generation of vector partially coherent optical sources using phase-only spatial light modulators,” Phys. Rev. Appl. 6, 064030 (2016).
[Crossref]

Proc. SPIE (3)

J. Riker, “Requirements on active (laser) tracking and imaging from a technology perspective,” Proc. SPIE 8052, 805202 (2011).
[Crossref]

D. Dayton, J. Allen, R. Nolasco, G. Fertig, and M. Myers, “Comparison of fast correlation algorithms for target tracking,” Proc. SPIE 8520, 85200G (2012).
[Crossref]

N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde, and S. T. Fiorino, “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016).
[Crossref]

Prog. Opt. (1)

Y. Cai, Y. Chen, J. Yu, X. Liu, and L. Liu, “Generation of partially coherent beams,” Prog. Opt. 62, 157–223 (2017).
[Crossref]

Other (10)

G. Parry, “Speckle patterns in partially coherent light,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 78–120.

R. S. Pierre, G. Holleman, M. Valley, H. Injeyan, J. Berg, G. Harpole, R. Hilyard, M. Mitchell, M. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, “Active tracker laser (ATLAS),” in Advanced Solid State Lasers, C. Pollock and W. Bosenberg, eds., OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), Vol. 10, paper HP4.

R. K. Tyson, Introduction to Adaptive Optics (SPIE, 2000).

T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,” in Proceedings of the IEEE (IEEE, 1996), Vol. 84, pp. 765–781.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

J. W. Goodman, Statistical Optics (Wiley, 1985).

R. D. Richmond and S. C. Cain, Direct-Detection LADAR Systems (SPIE, 2010).

A. Deninger and T. Renner, “12 orders of coherence control,” Toptica Appl-1010 (2010), http://www.toptica.com/fileadmin/Editors_English/12_literature/quantum_technologies/12_orders_of_coherence_control.pdf .

V. P. Lukin and B. V. Fortes, Adaptive Beaming and Imaging in the Turbulent Atmosphere (SPIE, 2002).

G. P. Perram, S. J. Cusumano, R. L. Hengehold, and S. T. Fiorino, Introduction to Laser Weapon Systems (Directed Energy Professional Society, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Polychromatic illumination of a planar object (a.k.a. target) at 45° slope. Image-plane speckle is mitigated due to the multiple coherence regions within a single resolution cell on target.
Fig. 2.
Fig. 2. Validation experiment layout. A highly coherent master oscillator (MO) laser provides light for illumination. Optionally, an electro-optic modulator broadens the linewidth to 29.5 GHz. The light then scatters off of the rough target, which we image through a 0.5 mm aperture such that the beam on target is unresolved. We then measure the speckle statistics for comparison with results from several different wave-optics models.
Fig. 3.
Fig. 3. Measured illuminator spectra. Plot (a) shows the spectrum immediately after the EOM, while (b) shows that after the fiber amplifier. The similarity between (a) and (b) indicates that the spectrum hardly changes during amplification. Also, the two curves in (b) show the spectrum 2 min after turn on and 10 min after turn on, respectively. They are almost identical, indicating that the spectrum is stable over time.
Fig. 4.
Fig. 4. Irradiance patterns on the target. Image (a) is the pattern used for the larger target Fresnel number, while (b) is used for the smaller one. Note that (a) is close to Gaussian, but (b) is quite different.
Fig. 5.
Fig. 5. Comparison of experimental and simulation results for the larger beam size. Results from all three polychromatic wave-optics methods are shown. The marker size on those curves indicates the 95% confidence intervals (CIs) due to the finite number of simulation realizations. The bars about the experimental results also represent 95% CIs, which are now dominated by the number of independent speckle measurements. The Monte Carlo method appears to be inaccurate, while both spectral-slicing and depth-slicing results are accurate.
Fig. 6.
Fig. 6. Comparison of experimental and simulation results for the smaller beam size. The format matches that of Fig. 5. Again, the spectral-slicing method is accurate, while the Monte Carlo method is not. Unlike before, one depth-slicing result now falls outside of the experiment confidence intervals, indicating that the depth-slicing method may be slightly inaccurate when the target’s depth is small.

Tables (1)

Tables Icon

Table 1. Comparison of a Nominal System with the Experiment

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N F = D T λ R ,
l c = c | γ ( τ ) | 2 d τ .
γ ( τ ) = G ( ν ) exp ( j 2 π ν τ ) d ν ,
C = σ I I ¯ ,
N = 1 C 2 ,
N VibFree = N poly N coh ,

Metrics