Abstract

The axicon is the simplest and most effective optical element for generating the zero-order Bessel-like beam. The zero-order Bessel-like beam, which has the characteristics of small spot size, high brightness, good direction, and large collimation distance, can be applied to optical micromanipulation and power transmission. In this paper, we proposed and designed a structure for phase manipulation based on parallel-plate waveguides that can be used to realize the functionality of the axicon in the terahertz (THz) region. Meanwhile, we characterized the influence of the cone angle of the axicon and the waist radius of the incident Gaussian beam on the generated zero-order Bessel-like beam by simulation. The planar structure, consisting of a parallel stack of thin copper plates, can be easily fabricated to fulfill the phase requirement to realize the zero-order Bessel-like beam and also can be utilized in THz imaging systems, THz sensing systems, THz communication systems, etc.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range

Xuli Wei, Changming Liu, Liting Niu, Zhongqi Zhang, Kejia Wang, Zhengang Yang, and Jinsong Liu
Appl. Opt. 54(36) 10641-10649 (2015)

Generation of pseudo-Bessel beams at THz frequencies by use of binary axicons

Yanzhong Yu and Wenbin Dou
Opt. Express 17(2) 888-893 (2009)

Vectorial diffraction properties of THz vortex Bessel beams

Zhen Wu, Xinke Wang, Wenfeng Sun, Shengfei Feng, Peng Han, Jiasheng Ye, Yue Yu, and Yan Zhang
Opt. Express 26(2) 1506-1520 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription