Abstract

Retrievals of particulate optical depths and extinction coefficients from the cloud-aerosol lidar with orthogonal polarization (CALIOP) instrument deployed on the CALIPSO satellite mainly rely on a single global mean extinction-to-backscatter ratio, also known as the lidar ratio. However, the lidar ratio depends on the microphysical properties of particulates. An alternative approach is adopted to infer single-layer semi-transparent cirrus optical depths (CODs) over the open ocean that does not rely on an assumed lidar ratio. Instead, the COD is inferred directly from backscatter measurements obtained from the CALIOP lidar in conjunction with collocated sea surface wind speed data obtained from AMSR-E. This method is based on a Gram–Charlier ocean surface reflectance model relating wind-driven wave slope variances to sea surface wind speeds. To properly apply this method, the impact of multiple scattering between the sea surface and ice clouds should be taken into account. We take advantage of the 532 nm cross-polarization feature of CALIOP and introduce an empirical method based on the depolarization change at the sea surface to correct for potential bias in sea surface backscatter caused by whitecaps, bubbles, foam, and multiple scattering. After the correction, the COD can be derived for individual CALIOP retrievals in a single cloud layer over the ocean with this method. The global mean COD was found to be roughly 14% higher than the current values determined by the Version 4 CALIOP extinction retrieval algorithm. This study is relevant to future improvements of CALIOP operational products and is expected to lead to more accurate COD retrievals.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aerosol optical depth under “clear” sky conditions derived from sea surface reflection of lidar signals

Min He, Yongxiang Hu, Jian Ping Huang, and Knut Stamnes
Opt. Express 24(26) A1618-A1634 (2016)

CALIPSO lidar ratio retrieval over the ocean

Damien Josset, Raymond Rogers, Jacques Pelon, Yongxiang Hu, Zhaoyan Liu, Ali Omar, and Peng-Wang Zhai
Opt. Express 19(19) 18696-18706 (2011)

Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements

Hyoun-Myoung Cho, Ping Yang, George W. Kattawar, Shaima L. Nasiri, Yongxiang Hu, Patrick Minnis, Charles Trepte, and David Winker
Opt. Express 16(6) 3931-3948 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription