Abstract

In order to exchange data in a space-division multiplexing (SDM) system, a novel vortex-beam-based data interconnection concept, which is achieved by adjusting the ellipticity of a ring-core fiber, is proposed. A new ring-core fiber is also designed and fabricated for exchanging and propagating the data carried by first- or second-order vortex (orbital angular momentum) beams. The proposed scheme is not only analyzed and simulated in principle, but is also verified through experiments. The numerical results demonstrate that the vortex beams can be exchanged by appropriately adjusting the phase difference (with respect to the ellipticity of a ring-core fiber) between the even and odd vector modes. A new experimental platform is designed and established for the sake of investigating the feasibility of the proposed scheme. The experimental results are consistent with the results of the simulation, and demonstrate that the data carried by the first- or second-order vortex beams can be successfully switched with acceptable bit error rates (BERs) between the first-order vortex beams (L=1 or 1) or between the second-order vortex beams (L=2 or 2, left or right circular polarization), respectively. The measured BERs and constellation diagrams of 16-QAM are employed to evaluate the data exchange performance with respect to different cases (i.e., data exchange once or twice, and data exchange with or without crosstalk). The measured BERs and constellation diagrams also demonstrate that the performance degrades with increase in topological charge or crosstalk. The proposed scheme is flexible, simple, and reliable for data exchange in a SDM system.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Encoding and decoding by the states of vector modes for vortex beams propagating in air-core fiber

Xiaohui Wang and Yingxiong Song
Opt. Express 25(23) 29342-29355 (2017)

Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining

Junwei Zhang, Guoxuan Zhu, Jie Liu, Xiong Wu, Jiangbo Zhu, Cheng Du, Wenyong Luo, Yujie Chen, and Siyuan Yu
Opt. Express 26(4) 4243-4257 (2018)

Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes

Guoxuan Zhu, Ziyang Hu, Xiong Wu, Cheng Du, Wenyong Luo, Yujie Chen, Xinlun Cai, Jie Liu, Jiangbo Zhu, and Siyuan Yu
Opt. Express 26(2) 594-604 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription