Abstract

The stringent requirements for energy reference measurement represent a challenging task for integrated path differential absorption lidars to measure greenhouse gas columns from satellite or aircraft. The coherence of the lidar transmitter gives rise to speckle effects that have to be considered for accurate monitoring of the energy ratio of outgoing on- and off-line pulses. Detailed investigations have been performed on various measurement concepts potentially suited for deployment within future satellite missions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of energy monitoring for a double-pulsed CO2 integrated path differential absorption lidar at 1.57  μm

Wenyi Hu, Jiqiao Liu, Yadan Zhu, Junfa Dong, Xiuhua Ma, Shiguang Li, Junxuan Zhang, Xiaopeng Zhu, and Weibiao Chen
Appl. Opt. 58(3) 616-625 (2019)

Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6  μm

Gerd A. Wagner and David F. Plusquellic
Appl. Opt. 55(23) 6292-6310 (2016)

CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions

Axel Amediek, Gerhard Ehret, Andreas Fix, Martin Wirth, Christian Büdenbender, Mathieu Quatrevalet, Christoph Kiemle, and Christoph Gerbig
Appl. Opt. 56(18) 5182-5197 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
    [Crossref]
  2. WMO World Data Centre for Greenhouse Gases, “WDCGG data summary No. 41,” 2017.
  3. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57  μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
    [Crossref]
  4. D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, and H. Matsueda, “Ground-based demonstration of a CO2 remote sensor using a 1.57  μm differential laser absorption spectrometer with direct detection,” J. Appl. Remote Sens. 4, 043548 (2010).
    [Crossref]
  5. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
    [Crossref]
  6. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50, 2098–2111 (2011).
    [Crossref]
  7. H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51, 8296–8305 (2012).
    [Crossref]
  8. D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino, “An airborne amplitude-modulated 1.57  μm differential laser absorption spectrometer: simultaneous measurement of partial column- averaged dry air mixing ratio of CO2 and target range,” Atmos. Meas. Tech. 6, 387–396 (2013).
    [Crossref]
  9. J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57-μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
    [Crossref]
  10. J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
    [Crossref]
  11. R. T. Menzies, G. D. Spiers, and J. C. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31, 404–421 (2014).
    [Crossref]
  12. F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
    [Crossref]
  13. J. Yu, M. Petros, U. Singh, T. Refaat, K. Reithmaier, R. Remus, and W. Johnson, “An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements,” J. Atmos. Ocean. Technol. 34, 385–400 (2017).
    [Crossref]
  14. J. Du, Y. Sun, D. Chen, Y. Mu, M. Huang, Z. Yang, J. Liu, D. Bi, X. Hou, and W. Chen, “Frequency-stabilized laser system at 1572  nm for space-borne CO2 detection LIDAR,” Chin. Opt. Lett. 15, 031401 (2017).
  15. A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017).
    [Crossref]
  16. ESA, “A-SCOPE—Advanced space carbon and climate observation of planet earth,” (ESA-ESTEC, 2008).
  17. NASA, “ASCENDS mission science definition and planning workshop report,” 2008, https://cce.nasa.gov/ascends .
  18. G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
    [Crossref]
  19. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
    [Crossref]
  20. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009).
    [Crossref]
  21. W. J. Riley, Handbook of Frequency Stability Analysis, NIST Special Publication 1065 (National Institute of Standards and Technology, 2008).
  22. S. R. Gunn, “Calorimetric measurements of laser energy and power,” J. Phys. E 6, 105–114 (1973).
    [Crossref]
  23. S. B. Lang, “Pyroelectricity: from ancient curiosity to modern imaging tool,” Phys. Today 58(8), 31–36 (2005).
    [Crossref]
  24. D. J. Livigni, High-Accuracy Laser Power and Energy Meter Calibration Service, NIST Special Publication 250-62 (National Institute of Standards and Technology, 2003).
  25. I. Vayshenker, H. Haars, X. Li, J. H. Lehman, and D. J. Livigni, “Comparison of optical-power meters between the NIST and the PTB,” Metrologia 37, 349–350 (2000).
    [Crossref]
  26. D. Fukuda, S. Kimura, and M. Endo, “Absolute energy reference calorimeter with bismuth telluride thermocouples for laser energy standard,” Rev. Sci. Instrum. 76, 113107 (2005).
    [Crossref]
  27. M. G. White, R. Leonhardt, D. Livigni, and J. H. Lehman, “A CW calibrated laser pulse energy meter for the range 1 pJ to 100 mJ,” Metrologia 51, 225–234 (2014).
    [Crossref]
  28. E. R. Murray, J. E. van der Laan, and J. G. Hawley, “Remote measurement of HCI, CH4, and N2O using a single-ended chemical-laser lidar system,” Appl. Opt. 15, 3140–3148 (1976).
    [Crossref]
  29. E. R. Murray and J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
    [Crossref]
  30. A. P. Force, D. K. Killinger, W. E. DeFeo, and N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
    [Crossref]
  31. R. A. Baumgartner and R. L. Byer, “Continuously tunable IR lidar with applications to remote measurements of SO2 and CH4,” Appl. Opt. 17, 3555–3561 (1978).
    [Crossref]
  32. M. Queißer, M. Burton, and L. Fiorani, “Differential absorption lidar for volcanic CO2 sensing tested in an unstable atmosphere,” Opt. Express 23, 6634–6644 (2015).
    [Crossref]
  33. T. Refaat, U. Singh, M. Petros, R. Remus, and J. Yu, “Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application,” Appl. Opt. 54, 7240–7251 (2015).
    [Crossref]
  34. K. Numata, S. Wu, and H. Riris, “Fast-switching methane lidar transmitter based on a seeded optical parametric oscillator,” Appl. Phys. B 116, 959–966 (2014).
    [Crossref]
  35. M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
    [Crossref]
  36. K. Carr, “Integrating sphere theory and applications. Part I: Integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
    [Crossref]
  37. C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
    [Crossref]
  38. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1992).
    [Crossref]
  39. G. D. Boreman, A. B. Centore, and Y. Sun, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
    [Crossref]
  40. J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics XIV, E. Wolf, ed. (North Holland, 1976).
  41. D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: Integrating spheres,” Appl. Phys. B 100, 303–312 (2010).
    [Crossref]
  42. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  43. S. C. McClain, C. L. Bartlett, J. L. Pezzaniti, and R. A. Chipman, “Depolarization measurements of an integrating sphere,” Appl. Opt. 34, 152–154 (1995).
    [Crossref]
  44. A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
    [Crossref]
  45. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., 2nd ed. (Springer-Verlag, 1984).
  46. G. Parry, “Some effects of surface roughness on the appearance of speckle in polychromatic light,” Opt. Commun. 12, 75–78 (1974).
    [Crossref]
  47. Labsphere Technical Guide, “A guide to reflectance coatings and materials,” https://www.labsphere.com .
  48. B. Daino, G. De Marchis, and S. Piazzolla, “Speckle and modal noise in optical fibres: theory and experiment,” J. Mod. Opt. 27, 1151–1159 (1980).
    [Crossref]
  49. W.-S. Ha, S.-J. Lee, K.-H. Oh, Y.-M. Jung, and J.-K. Kim, “Speckle reduction in near-field image of multimode fiber with a piezoelectric transducer,” J. Opt. Soc. Korea 12, 126–130 (2008).
    [Crossref]
  50. S. Lowenthal and D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. A 61, 847–851 (1971).
    [Crossref]
  51. M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49, 024202 (2010).
    [Crossref]
  52. S. Potvin and J. Genest, “Reducing the effect of integrating sphere speckle when characterizing the instrument line shape of a Fourier-transform hyperspectral imager,” Appl. Opt. 48, 5849–5852 (2009).
    [Crossref]
  53. C. Graetzel, M. Suter, and M. Aschwanden, “Reducing laser speckle with electroactive polymer actuators,” Proc. SPIE 9430, 943004 (2015).
    [Crossref]
  54. Y. Beers, The Theory of the Optical Wedge Beam Splitter, NBS Monograph 146 (National Bureau of Standards, 1974).
  55. E. P. MacKerrow, M. J. Schmitt, and D. C. Thompson, “Effect of speckle on lidar pulse-pair ratio statistics,” Appl. Opt. 36, 8650–8669 (1997).
    [Crossref]
  56. E. P. MacKerrow and M. J. Schmitt, “Measurement of integrated speckle statistics for CO2 lidar returns from a moving, nonuniform, hard target,” Appl. Opt. 36, 6921–6937 (1997).
    [Crossref]
  57. G. A. Wagner and D. F. Plusquellic, “Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 μm,” Appl. Opt. 55, 6292–6310 (2016).
    [Crossref]
  58. D. Stadler, M. Suter, M. Ventura, and D. Niederer, “Speckle reduction with reluctance force-based oscillating diffusors,” in 4th Laser Display and Lighting Conference (LDC) (2015).

2017 (5)

J. Yu, M. Petros, U. Singh, T. Refaat, K. Reithmaier, R. Remus, and W. Johnson, “An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements,” J. Atmos. Ocean. Technol. 34, 385–400 (2017).
[Crossref]

J. Du, Y. Sun, D. Chen, Y. Mu, M. Huang, Z. Yang, J. Liu, D. Bi, X. Hou, and W. Chen, “Frequency-stabilized laser system at 1572  nm for space-borne CO2 detection LIDAR,” Chin. Opt. Lett. 15, 031401 (2017).

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017).
[Crossref]

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (5)

K. Numata, S. Wu, and H. Riris, “Fast-switching methane lidar transmitter based on a seeded optical parametric oscillator,” Appl. Phys. B 116, 959–966 (2014).
[Crossref]

M. G. White, R. Leonhardt, D. Livigni, and J. H. Lehman, “A CW calibrated laser pulse energy meter for the range 1 pJ to 100 mJ,” Metrologia 51, 225–234 (2014).
[Crossref]

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
[Crossref]

R. T. Menzies, G. D. Spiers, and J. C. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31, 404–421 (2014).
[Crossref]

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

2013 (2)

D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino, “An airborne amplitude-modulated 1.57  μm differential laser absorption spectrometer: simultaneous measurement of partial column- averaged dry air mixing ratio of CO2 and target range,” Atmos. Meas. Tech. 6, 387–396 (2013).
[Crossref]

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57-μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[Crossref]

2012 (1)

2011 (2)

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50, 2098–2111 (2011).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

2010 (4)

M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49, 024202 (2010).
[Crossref]

D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, and H. Matsueda, “Ground-based demonstration of a CO2 remote sensor using a 1.57  μm differential laser absorption spectrometer with direct detection,” J. Appl. Remote Sens. 4, 043548 (2010).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: Integrating spheres,” Appl. Phys. B 100, 303–312 (2010).
[Crossref]

2009 (2)

2008 (3)

W.-S. Ha, S.-J. Lee, K.-H. Oh, Y.-M. Jung, and J.-K. Kim, “Speckle reduction in near-field image of multimode fiber with a piezoelectric transducer,” J. Opt. Soc. Korea 12, 126–130 (2008).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[Crossref]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57  μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[Crossref]

2005 (2)

S. B. Lang, “Pyroelectricity: from ancient curiosity to modern imaging tool,” Phys. Today 58(8), 31–36 (2005).
[Crossref]

D. Fukuda, S. Kimura, and M. Endo, “Absolute energy reference calorimeter with bismuth telluride thermocouples for laser energy standard,” Rev. Sci. Instrum. 76, 113107 (2005).
[Crossref]

2003 (1)

2000 (1)

I. Vayshenker, H. Haars, X. Li, J. H. Lehman, and D. J. Livigni, “Comparison of optical-power meters between the NIST and the PTB,” Metrologia 37, 349–350 (2000).
[Crossref]

1997 (3)

1995 (1)

1993 (1)

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[Crossref]

1992 (1)

1990 (1)

G. D. Boreman, A. B. Centore, and Y. Sun, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
[Crossref]

1985 (1)

1980 (1)

B. Daino, G. De Marchis, and S. Piazzolla, “Speckle and modal noise in optical fibres: theory and experiment,” J. Mod. Opt. 27, 1151–1159 (1980).
[Crossref]

1978 (2)

1976 (1)

1974 (1)

G. Parry, “Some effects of surface roughness on the appearance of speckle in polychromatic light,” Opt. Commun. 12, 75–78 (1974).
[Crossref]

1973 (1)

S. R. Gunn, “Calorimetric measurements of laser energy and power,” J. Phys. E 6, 105–114 (1973).
[Crossref]

1971 (1)

S. Lowenthal and D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. A 61, 847–851 (1971).
[Crossref]

Abshire, J. B.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
[Crossref]

H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51, 8296–8305 (2012).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

Adamiec, P.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

Agusti-Panareda, A.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Ai, X.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

Allan, G. R.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

Alpers, M.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Amediek, A.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[Crossref]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57  μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[Crossref]

Aschwanden, M.

C. Graetzel, M. Suter, and M. Aschwanden, “Reducing laser speckle with electroactive polymer actuators,” Proc. SPIE 9430, 943004 (2015).
[Crossref]

Barbero, J.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

Bartlett, C. L.

Baumgartner, R. A.

Beers, Y.

Y. Beers, The Theory of the Optical Wedge Beam Splitter, NBS Monograph 146 (National Bureau of Standards, 1974).

Bi, D.

Biraud, S.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

Boreman, G. D.

G. D. Boreman, A. B. Centore, and Y. Sun, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
[Crossref]

Bousquet, P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Bovensmann, H.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Browell, E.

Browell, E. V.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
[Crossref]

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50, 2098–2111 (2011).
[Crossref]

Bruegge, C. J.

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[Crossref]

Büdenbender, C.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

Burrows, J. P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Burton, M.

Byer, R. L.

Caron, J.

Carr, K.

K. Carr, “Integrating sphere theory and applications. Part I: Integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
[Crossref]

Cenac, C.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

Centore, A. B.

G. D. Boreman, A. B. Centore, and Y. Sun, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
[Crossref]

Chen, D.

Chen, W.

Chevallier, F.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Chipman, R. A.

Choi, Y.

Christensen, L. E.

Ciais, P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Crevoisier, C.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Daino, B.

B. Daino, G. De Marchis, and S. Piazzolla, “Speckle and modal noise in optical fibres: theory and experiment,” J. Mod. Opt. 27, 1151–1159 (1980).
[Crossref]

Dainty, J. C.

J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics XIV, E. Wolf, ed. (North Holland, 1976).

Dawsey, M.

De Marchis, G.

B. Daino, G. De Marchis, and S. Piazzolla, “Speckle and modal noise in optical fibres: theory and experiment,” J. Mod. Opt. 27, 1151–1159 (1980).
[Crossref]

DeFeo, W. E.

Dobler, J.

Du, J.

Durand, Y.

Edouart, D.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

Ehret, G.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57  μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[Crossref]

Endo, M.

D. Fukuda, S. Kimura, and M. Endo, “Absolute energy reference calorimeter with bismuth telluride thermocouples for laser energy standard,” Rev. Sci. Instrum. 76, 113107 (2005).
[Crossref]

Esquivias, I.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

Fiorani, L.

Fix, A.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017).
[Crossref]

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[Crossref]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57  μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[Crossref]

Flamant, P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Force, A. P.

Frankenberg, C.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Fukuda, D.

D. Fukuda, S. Kimura, and M. Endo, “Absolute energy reference calorimeter with bismuth telluride thermocouples for laser energy standard,” Rev. Sci. Instrum. 76, 113107 (2005).
[Crossref]

Genest, J.

Gerbig, C.

Gibert, F.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., 2nd ed. (Springer-Verlag, 1984).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Graetzel, C.

C. Graetzel, M. Suter, and M. Aschwanden, “Reducing laser speckle with electroactive polymer actuators,” Proc. SPIE 9430, 943004 (2015).
[Crossref]

Gunn, S. R.

S. R. Gunn, “Calorimetric measurements of laser energy and power,” J. Phys. E 6, 105–114 (1973).
[Crossref]

Ha, W.-S.

Haars, H.

I. Vayshenker, H. Haars, X. Li, J. H. Lehman, and D. J. Livigni, “Comparison of optical-power meters between the NIST and the PTB,” Metrologia 37, 349–350 (2000).
[Crossref]

Harrison, F.

Hasselbrack, W. E.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

Hawley, J. G.

Heim, B.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Heimann, M.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Hodgkinson, J.

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: Integrating spheres,” Appl. Phys. B 100, 303–312 (2010).
[Crossref]

Hou, X.

Houweling, S.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[Crossref]

Huang, M.

Hubberten, H. W.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Ismail, S.

Jacob, J.

Jacob, J. C.

R. T. Menzies, G. D. Spiers, and J. C. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31, 404–421 (2014).
[Crossref]

Jöckel, P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Johnson, W.

J. Yu, M. Petros, U. Singh, T. Refaat, K. Reithmaier, R. Remus, and W. Johnson, “An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements,” J. Atmos. Ocean. Technol. 34, 385–400 (2017).
[Crossref]

Joyeux, D.

S. Lowenthal and D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. A 61, 847–851 (1971).
[Crossref]

Jung, Y.-M.

Kawa, R.

Kawa, S. R.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

Kawakami, S.

D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino, “An airborne amplitude-modulated 1.57  μm differential laser absorption spectrometer: simultaneous measurement of partial column- averaged dry air mixing ratio of CO2 and target range,” Atmos. Meas. Tech. 6, 387–396 (2013).
[Crossref]

D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, and H. Matsueda, “Ground-based demonstration of a CO2 remote sensor using a 1.57  μm differential laser absorption spectrometer with direct detection,” J. Appl. Remote Sens. 4, 043548 (2010).
[Crossref]

Kiemle, C.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[Crossref]

Killinger, D. K.

Kim, J.-K.

Kimura, S.

D. Fukuda, S. Kimura, and M. Endo, “Absolute energy reference calorimeter with bismuth telluride thermocouples for laser energy standard,” Rev. Sci. Instrum. 76, 113107 (2005).
[Crossref]

Kooi, S.

Lang, S. B.

S. B. Lang, “Pyroelectricity: from ancient curiosity to modern imaging tool,” Phys. Today 58(8), 31–36 (2005).
[Crossref]

Law, K.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Le Mounier, F.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

Lee, S.-J.

Lehman, J. H.

M. G. White, R. Leonhardt, D. Livigni, and J. H. Lehman, “A CW calibrated laser pulse energy meter for the range 1 pJ to 100 mJ,” Metrologia 51, 225–234 (2014).
[Crossref]

I. Vayshenker, H. Haars, X. Li, J. H. Lehman, and D. J. Livigni, “Comparison of optical-power meters between the NIST and the PTB,” Metrologia 37, 349–350 (2000).
[Crossref]

Leonhardt, R.

M. G. White, R. Leonhardt, D. Livigni, and J. H. Lehman, “A CW calibrated laser pulse energy meter for the range 1 pJ to 100 mJ,” Metrologia 51, 225–234 (2014).
[Crossref]

Li, S.

Li, X.

I. Vayshenker, H. Haars, X. Li, J. H. Lehman, and D. J. Livigni, “Comparison of optical-power meters between the NIST and the PTB,” Metrologia 37, 349–350 (2000).
[Crossref]

Lin, B.

Liu, J.

Livigni, D.

M. G. White, R. Leonhardt, D. Livigni, and J. H. Lehman, “A CW calibrated laser pulse energy meter for the range 1 pJ to 100 mJ,” Metrologia 51, 225–234 (2014).
[Crossref]

Livigni, D. J.

I. Vayshenker, H. Haars, X. Li, J. H. Lehman, and D. J. Livigni, “Comparison of optical-power meters between the NIST and the PTB,” Metrologia 37, 349–350 (2000).
[Crossref]

D. J. Livigni, High-Accuracy Laser Power and Energy Meter Calibration Service, NIST Special Publication 250-62 (National Institute of Standards and Technology, 2003).

Löw, A.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Lowenthal, S.

S. Lowenthal and D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. A 61, 847–851 (1971).
[Crossref]

Lu, Z.

M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49, 024202 (2010).
[Crossref]

MacKerrow, E. P.

Mao, J.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
[Crossref]

H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51, 8296–8305 (2012).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

Marshall, J.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Masiyano, D.

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: Integrating spheres,” Appl. Phys. B 100, 303–312 (2010).
[Crossref]

Matsueda, H.

D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, and H. Matsueda, “Ground-based demonstration of a CO2 remote sensor using a 1.57  μm differential laser absorption spectrometer with direct detection,” J. Appl. Remote Sens. 4, 043548 (2010).
[Crossref]

McClain, S. C.

McGregor, D.

Menyuk, N.

Menzies, R. T.

Millet, B.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Moes, C. J. M.

Morino, I.

D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino, “An airborne amplitude-modulated 1.57  μm differential laser absorption spectrometer: simultaneous measurement of partial column- averaged dry air mixing ratio of CO2 and target range,” Atmos. Meas. Tech. 6, 387–396 (2013).
[Crossref]

Mu, Y.

Murray, E. R.

Nakajima, M.

D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino, “An airborne amplitude-modulated 1.57  μm differential laser absorption spectrometer: simultaneous measurement of partial column- averaged dry air mixing ratio of CO2 and target range,” Atmos. Meas. Tech. 6, 387–396 (2013).
[Crossref]

D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, and H. Matsueda, “Ground-based demonstration of a CO2 remote sensor using a 1.57  μm differential laser absorption spectrometer with direct detection,” J. Appl. Remote Sens. 4, 043548 (2010).
[Crossref]

Niederer, D.

D. Stadler, M. Suter, M. Ventura, and D. Niederer, “Speckle reduction with reluctance force-based oscillating diffusors,” in 4th Laser Display and Lighting Conference (LDC) (2015).

Numata, K.

Oh, K.-H.

Parry, G.

G. Parry, “Some effects of surface roughness on the appearance of speckle in polychromatic light,” Opt. Commun. 12, 75–78 (1974).
[Crossref]

Payan, S.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Pérez-Serrano, A.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

Petros, M.

J. Yu, M. Petros, U. Singh, T. Refaat, K. Reithmaier, R. Remus, and W. Johnson, “An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements,” J. Atmos. Ocean. Technol. 34, 385–400 (2017).
[Crossref]

T. Refaat, U. Singh, M. Petros, R. Remus, and J. Yu, “Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application,” Appl. Opt. 54, 7240–7251 (2015).
[Crossref]

Pezzaniti, J. L.

Phillips, M. W.

Piazzolla, S.

B. Daino, G. De Marchis, and S. Piazzolla, “Speckle and modal noise in optical fibres: theory and experiment,” J. Mod. Opt. 27, 1151–1159 (1980).
[Crossref]

Pickering, J. W.

Pierangelo, C.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Plusquellic, D. F.

Potvin, S.

Prahl, S. A.

Prigent, C.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Quatrevalet, M.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

Queißer, M.

Rainen, R. A.

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[Crossref]

Rairoux, P.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Ramanathan, A.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
[Crossref]

H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51, 8296–8305 (2012).
[Crossref]

Rarity, J. G.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

Refaat, T.

J. Yu, M. Petros, U. Singh, T. Refaat, K. Reithmaier, R. Remus, and W. Johnson, “An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements,” J. Atmos. Ocean. Technol. 34, 385–400 (2017).
[Crossref]

T. Refaat, U. Singh, M. Petros, R. Remus, and J. Yu, “Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application,” Appl. Opt. 54, 7240–7251 (2015).
[Crossref]

Reithmaier, K.

J. Yu, M. Petros, U. Singh, T. Refaat, K. Reithmaier, R. Remus, and W. Johnson, “An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements,” J. Atmos. Ocean. Technol. 34, 385–400 (2017).
[Crossref]

Remus, R.

J. Yu, M. Petros, U. Singh, T. Refaat, K. Reithmaier, R. Remus, and W. Johnson, “An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements,” J. Atmos. Ocean. Technol. 34, 385–400 (2017).
[Crossref]

T. Refaat, U. Singh, M. Petros, R. Remus, and J. Yu, “Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application,” Appl. Opt. 54, 7240–7251 (2015).
[Crossref]

Riley, W. J.

W. J. Riley, Handbook of Frequency Stability Analysis, NIST Special Publication 1065 (National Institute of Standards and Technology, 2008).

Riris, H.

K. Numata, S. Wu, and H. Riris, “Fast-switching methane lidar transmitter based on a seeded optical parametric oscillator,” Appl. Phys. B 116, 959–966 (2014).
[Crossref]

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
[Crossref]

H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51, 8296–8305 (2012).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

Sachs, T.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Sakaizawa, D.

D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino, “An airborne amplitude-modulated 1.57  μm differential laser absorption spectrometer: simultaneous measurement of partial column- averaged dry air mixing ratio of CO2 and target range,” Atmos. Meas. Tech. 6, 387–396 (2013).
[Crossref]

D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, and H. Matsueda, “Ground-based demonstration of a CO2 remote sensor using a 1.57  μm differential laser absorption spectrometer with direct detection,” J. Appl. Remote Sens. 4, 043548 (2010).
[Crossref]

Sawa, Y.

D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, and H. Matsueda, “Ground-based demonstration of a CO2 remote sensor using a 1.57  μm differential laser absorption spectrometer with direct detection,” J. Appl. Remote Sens. 4, 043548 (2010).
[Crossref]

Schmitt, M. J.

Scholze, M.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

Singh, U.

J. Yu, M. Petros, U. Singh, T. Refaat, K. Reithmaier, R. Remus, and W. Johnson, “An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements,” J. Atmos. Ocean. Technol. 34, 385–400 (2017).
[Crossref]

T. Refaat, U. Singh, M. Petros, R. Remus, and J. Yu, “Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application,” Appl. Opt. 54, 7240–7251 (2015).
[Crossref]

Spiers, G. D.

R. T. Menzies, G. D. Spiers, and J. C. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31, 404–421 (2014).
[Crossref]

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50, 2098–2111 (2011).
[Crossref]

Springsteen, A. W.

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[Crossref]

Stadler, D.

D. Stadler, M. Suter, M. Ventura, and D. Niederer, “Speckle reduction with reluctance force-based oscillating diffusors,” in 4th Laser Display and Lighting Conference (LDC) (2015).

Sterenborg, H. J. C. M.

Stiegman, A. E.

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[Crossref]

Sun, M.

M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49, 024202 (2010).
[Crossref]

Sun, X.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

Sun, Y.

Suter, M.

C. Graetzel, M. Suter, and M. Aschwanden, “Reducing laser speckle with electroactive polymer actuators,” Proc. SPIE 9430, 943004 (2015).
[Crossref]

D. Stadler, M. Suter, M. Ventura, and D. Niederer, “Speckle reduction with reluctance force-based oscillating diffusors,” in 4th Laser Display and Lighting Conference (LDC) (2015).

Tanaka, T.

D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino, “An airborne amplitude-modulated 1.57  μm differential laser absorption spectrometer: simultaneous measurement of partial column- averaged dry air mixing ratio of CO2 and target range,” Atmos. Meas. Tech. 6, 387–396 (2013).
[Crossref]

Tatam, R. P.

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: Integrating spheres,” Appl. Phys. B 100, 303–312 (2010).
[Crossref]

Thompson, D. C.

Tijero, J. M. G.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

Tratt, D. M.

Uchino, O.

D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino, “An airborne amplitude-modulated 1.57  μm differential laser absorption spectrometer: simultaneous measurement of partial column- averaged dry air mixing ratio of CO2 and target range,” Atmos. Meas. Tech. 6, 387–396 (2013).
[Crossref]

van der Laan, J. E.

van Gemert, M. J. C.

Vayshenker, I.

I. Vayshenker, H. Haars, X. Li, J. H. Lehman, and D. J. Livigni, “Comparison of optical-power meters between the NIST and the PTB,” Metrologia 37, 349–350 (2000).
[Crossref]

Ventura, M.

D. Stadler, M. Suter, M. Ventura, and D. Niederer, “Speckle reduction with reluctance force-based oscillating diffusors,” in 4th Laser Display and Lighting Conference (LDC) (2015).

Wagner, G. A.

Weaver, C. J.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
[Crossref]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

White, M. G.

M. G. White, R. Leonhardt, D. Livigni, and J. H. Lehman, “A CW calibrated laser pulse energy meter for the range 1 pJ to 100 mJ,” Metrologia 51, 225–234 (2014).
[Crossref]

Wirth, M.

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57  μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[Crossref]

Wu, S.

Yang, Z.

Yu, J.

J. Yu, M. Petros, U. Singh, T. Refaat, K. Reithmaier, R. Remus, and W. Johnson, “An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements,” J. Atmos. Ocean. Technol. 34, 385–400 (2017).
[Crossref]

T. Refaat, U. Singh, M. Petros, R. Remus, and J. Yu, “Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application,” Appl. Opt. 54, 7240–7251 (2015).
[Crossref]

Appl. Opt. (16)

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50, 2098–2111 (2011).
[Crossref]

H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51, 8296–8305 (2012).
[Crossref]

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57-μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[Crossref]

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56, 5182–5197 (2017).
[Crossref]

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[Crossref]

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Appl. Opt. 48, 5413–5422 (2009).
[Crossref]

E. R. Murray, J. E. van der Laan, and J. G. Hawley, “Remote measurement of HCI, CH4, and N2O using a single-ended chemical-laser lidar system,” Appl. Opt. 15, 3140–3148 (1976).
[Crossref]

E. R. Murray and J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[Crossref]

A. P. Force, D. K. Killinger, W. E. DeFeo, and N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO2 lidar system,” Appl. Opt. 24, 2837–2841 (1985).
[Crossref]

R. A. Baumgartner and R. L. Byer, “Continuously tunable IR lidar with applications to remote measurements of SO2 and CH4,” Appl. Opt. 17, 3555–3561 (1978).
[Crossref]

T. Refaat, U. Singh, M. Petros, R. Remus, and J. Yu, “Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application,” Appl. Opt. 54, 7240–7251 (2015).
[Crossref]

S. C. McClain, C. L. Bartlett, J. L. Pezzaniti, and R. A. Chipman, “Depolarization measurements of an integrating sphere,” Appl. Opt. 34, 152–154 (1995).
[Crossref]

S. Potvin and J. Genest, “Reducing the effect of integrating sphere speckle when characterizing the instrument line shape of a Fourier-transform hyperspectral imager,” Appl. Opt. 48, 5849–5852 (2009).
[Crossref]

E. P. MacKerrow, M. J. Schmitt, and D. C. Thompson, “Effect of speckle on lidar pulse-pair ratio statistics,” Appl. Opt. 36, 8650–8669 (1997).
[Crossref]

E. P. MacKerrow and M. J. Schmitt, “Measurement of integrated speckle statistics for CO2 lidar returns from a moving, nonuniform, hard target,” Appl. Opt. 36, 6921–6937 (1997).
[Crossref]

G. A. Wagner and D. F. Plusquellic, “Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 μm,” Appl. Opt. 55, 6292–6310 (2016).
[Crossref]

Appl. Phys. B (5)

D. Masiyano, J. Hodgkinson, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: Integrating spheres,” Appl. Phys. B 100, 303–312 (2010).
[Crossref]

K. Numata, S. Wu, and H. Riris, “Fast-switching methane lidar transmitter based on a seeded optical parametric oscillator,” Appl. Phys. B 116, 959–966 (2014).
[Crossref]

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[Crossref]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57  μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[Crossref]

Atmos. Meas. Tech. (1)

D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino, “An airborne amplitude-modulated 1.57  μm differential laser absorption spectrometer: simultaneous measurement of partial column- averaged dry air mixing ratio of CO2 and target range,” Atmos. Meas. Tech. 6, 387–396 (2013).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23, 157–167 (2017).
[Crossref]

J. Appl. Remote Sens. (1)

D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, and H. Matsueda, “Ground-based demonstration of a CO2 remote sensor using a 1.57  μm differential laser absorption spectrometer with direct detection,” J. Appl. Remote Sens. 4, 043548 (2010).
[Crossref]

J. Atmos. Ocean. Technol. (2)

R. T. Menzies, G. D. Spiers, and J. C. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31, 404–421 (2014).
[Crossref]

J. Yu, M. Petros, U. Singh, T. Refaat, K. Reithmaier, R. Remus, and W. Johnson, “An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements,” J. Atmos. Ocean. Technol. 34, 385–400 (2017).
[Crossref]

J. Mod. Opt. (1)

B. Daino, G. De Marchis, and S. Piazzolla, “Speckle and modal noise in optical fibres: theory and experiment,” J. Mod. Opt. 27, 1151–1159 (1980).
[Crossref]

J. Opt. Soc. Am. A (2)

S. Lowenthal and D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. A 61, 847–851 (1971).
[Crossref]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1992).
[Crossref]

J. Opt. Soc. Korea (1)

J. Phys. E (1)

S. R. Gunn, “Calorimetric measurements of laser energy and power,” J. Phys. E 6, 105–114 (1973).
[Crossref]

Metrologia (2)

I. Vayshenker, H. Haars, X. Li, J. H. Lehman, and D. J. Livigni, “Comparison of optical-power meters between the NIST and the PTB,” Metrologia 37, 349–350 (2000).
[Crossref]

M. G. White, R. Leonhardt, D. Livigni, and J. H. Lehman, “A CW calibrated laser pulse energy meter for the range 1 pJ to 100 mJ,” Metrologia 51, 225–234 (2014).
[Crossref]

Opt. Commun. (1)

G. Parry, “Some effects of surface roughness on the appearance of speckle in polychromatic light,” Opt. Commun. 12, 75–78 (1974).
[Crossref]

Opt. Eng. (3)

M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49, 024202 (2010).
[Crossref]

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[Crossref]

G. D. Boreman, A. B. Centore, and Y. Sun, “Generation of laser speckle with an integrating sphere,” Opt. Eng. 29, 339–342 (1990).
[Crossref]

Opt. Express (1)

Phys. Today (1)

S. B. Lang, “Pyroelectricity: from ancient curiosity to modern imaging tool,” Phys. Today 58(8), 31–36 (2005).
[Crossref]

Proc. SPIE (2)

C. Graetzel, M. Suter, and M. Aschwanden, “Reducing laser speckle with electroactive polymer actuators,” Proc. SPIE 9430, 943004 (2015).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

Remote Sens. (2)

G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, C. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jöckel, K. Law, A. Löw, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: a French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052 (2017).
[Crossref]

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct detection IPDA lidar,” Remote Sens. 6, 443–469 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

D. Fukuda, S. Kimura, and M. Endo, “Absolute energy reference calorimeter with bismuth telluride thermocouples for laser energy standard,” Rev. Sci. Instrum. 76, 113107 (2005).
[Crossref]

Surf. Coat. Int. (1)

K. Carr, “Integrating sphere theory and applications. Part I: Integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
[Crossref]

Tellus (1)

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010).
[Crossref]

Other (11)

WMO World Data Centre for Greenhouse Gases, “WDCGG data summary No. 41,” 2017.

W. J. Riley, Handbook of Frequency Stability Analysis, NIST Special Publication 1065 (National Institute of Standards and Technology, 2008).

ESA, “A-SCOPE—Advanced space carbon and climate observation of planet earth,” (ESA-ESTEC, 2008).

NASA, “ASCENDS mission science definition and planning workshop report,” 2008, https://cce.nasa.gov/ascends .

J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics XIV, E. Wolf, ed. (North Holland, 1976).

D. J. Livigni, High-Accuracy Laser Power and Energy Meter Calibration Service, NIST Special Publication 250-62 (National Institute of Standards and Technology, 2003).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., 2nd ed. (Springer-Verlag, 1984).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Labsphere Technical Guide, “A guide to reflectance coatings and materials,” https://www.labsphere.com .

Y. Beers, The Theory of the Optical Wedge Beam Splitter, NBS Monograph 146 (National Bureau of Standards, 1974).

D. Stadler, M. Suter, M. Ventura, and D. Niederer, “Speckle reduction with reluctance force-based oscillating diffusors,” in 4th Laser Display and Lighting Conference (LDC) (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Schematic setup of a space-based integral path differential absorption lidar.
Fig. 2.
Fig. 2. Template expressing the A-SCOPE ( XCO 2 ) and MERLIN ( XCH 4 ) random and systematic error requirements in terms of Allan deviation.
Fig. 3.
Fig. 3. Template expressing the requirements for the energy ratio measurement in terms of the Allan variation for A-SCOPE ( XCO 2 ) at a wavelength of 1.57 μm and MERLIN ( XCH 4 ) at 1.64 μm, respectively.
Fig. 4.
Fig. 4. Schematic setup of a double sphere consisting of two spheres with different diameters separated by a diffusor with aperture ϕ D and transmission T D .
Fig. 5.
Fig. 5. Illustration of the formation of speckle at the exit of an integrating sphere and a pick-up fiber, respectively. D , area subtended; Z , distance to observation plane AB; CD, plane of the imaged fiber end. Note that each speckle pattern is different.
Fig. 6.
Fig. 6. Setup of the optical parametric oscillator.
Fig. 7.
Fig. 7. Schematic of the method to stabilize the OPO cavity to the on-line laser and the off-line to the OPO. The OPO cavity modes are first matched to the on-line seed wavelength. Subsequently, the off-line seed is controlled to be coincident with a stabilized OPO cavity mode separated by an integral multiple of its FSR.
Fig. 8.
Fig. 8. Time series of the individual detector signals (top) and the respective DR [according to Eq. (16), bottom] over 2 h of operation ( = 720.000 individual pulses). The InGaAs photodiodes were fiber coupled using multimode fibers with a core diameter of 105 μm.
Fig. 9.
Fig. 9. Allan deviations of the DR of two subsequent pulses at 1.57 μm recorded with two fiber-coupled PIN detectors with a fiber diameter of 105 μm (squares) and 200 μm (triangles), respectively. The nominal on-line/off-line double-pulse sequence is given in red. Green symbols designate the double-pulse mode but no switching of wavelengths, whereas the result for a single-pulse (100 Hz) sequence is given in black. In order to gauge these results, the shaded area depicts the range that has to be met for the A-SCOPE threshold requirements.
Fig. 10.
Fig. 10. Allan deviations of the DR of two subsequent pulses at 1.57 μm recorded with two pyroelectric detectors (diameter 10.5 mm). The nominal on-line/off-line double-pulse sequence is given in red and meets the A-SCOPE threshold (shaded area) and even target requirements. Green symbols designate the double-pulse mode but no switching of wavelengths, whereas the result for a single-pulse (100 Hz) sequence is given in black.
Fig. 11.
Fig. 11. Allan deviations of the DR of two subsequent pulses recorded with two fiber-coupled PIN detectors. The fiber core diameters were 105 μm. The measurements were repeated for integrating spheres with different materials (Spectralon, aluminum, stainless steel, and invar) having coefficients of thermal expansion that extend over two orders of magnitude.
Fig. 12.
Fig. 12. Time series of the individual detector signals (top) and the respective DR (bottom), analogous to Fig. 8, over 1.2 h of operation. The InGaAs photodiodes were fiber coupled using multimode fibers with a core diameter of 200 μm and mechanically vibrated.
Fig. 13.
Fig. 13. Allan deviations of the DR of two subsequent pulses in double-pulse operation of the OPO at 1.57 μm recorded with two fiber-coupled PIN detectors with a fiber diameter of 200 μm. The black symbols show the result with no speckle reduction measures applied, and the red and green symbols show the result with the vibrating fibers in single- and dual-wavelength operation, respectively. The shaded area depicts the range for the A-SCOPE threshold requirements.
Fig. 14.
Fig. 14. Schematic setup of the energy-monitoring sub-module. Part of the incoming beam is diffracted into the first sphere using a diffractive optical element. Between the first and second spheres, the electroactive diffusor serves to reduce the speckle-related noise. By means of changing the size of the hole between the two spheres, the overall attenuation can be adapted. The attenuated signals are picked up using two fibers attached to the port of sphere #2. Two such modules are synchronously used for the CO 2 and CH 4 channels of CHARM-F, respectively. For simplicity, the ports are schematically depicted in two dimensions. In reality, they are oriented in three dimensions with respect to the incoming beam.
Fig. 15.
Fig. 15. Schematic of CHARM-F’s detector setup. The beams from the pick-up (for energy calibration) and from the ground return are overlapped using a partial reflector. A lens system images the fiber end onto the detector. The general layout is the same for all four detector units.
Fig. 16.
Fig. 16. Allan deviations of the energy ratio recorded during three different flights on 5, 11, and 13 May 2015. The OPOs were nominally operated in 2 λ , double-pulse operation at the CO 2 and CH 4 wavelengths at 1572    nm and 1645 nm, respectively. The on–off energy ratios were independently measured using the two different receiving channels. The shaded areas depict the range of the threshold requirements defined for this project ( CH 4 , light gray; CO 2 , dark gray).

Tables (3)

Tables Icon

Table 1. Calculated Speckle Noise According to Eq. (13) for a Wavelength of 1572  nm for Some of the MM Fibers Used Within this Study

Tables Icon

Table 2. List of Detectors

Tables Icon

Table 3. Coefficient of Thermal Expansion (CTE) α ( 20 ° C ) of the Bulk Material Used for the Integrating Spheres

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

XGHG = 1 2 · ln ( P off · E on P on · E off ) p = 0 p SFC WF GHG ( p ) · d p = DAOD IWF .
δ XGHG XGHG = 1 DAOD 2 i ( DAOD ν i δ ν i ) 2 + 1 IWF 2 i ( IWF ν i δ ν i ) 2 .
σ y 2 ( m · τ 0 ) = 1 2 · m 2 ( M 2 m + 1 ) j = 1 M 2 m + 1 { i = j j + m 1 [ y i + m y i ] } 2 ,
η d = 1 π · A s · ρ 1 ρ · ( 1 f ) · A d · Ω ,
η f = 1 π · A s · ρ 1 ρ · ( 1 f ) · A f · ( 1 r f ) · π · ( NA ) 2 .
η d 2 η d 1 = A d 2 A d 1 · A S 1 A S 2 · V 1 V 2 · ( ϕ D · T D A S 1 · V 1 ) .
V 1 , 2 = 1 [ ρ · f 1 , 2 + ( 1 T D ) · ϕ D A 1 , 2 + r 1 , 2 · δ 1 , 2 A 1 , 2 ] .
ϵ o 1.22 · λ · z D .
P ( I ) = 1 I · e I I .
P ( I ) = 4 I I 2 · e 2 I I .
Δ I I 1.22 2 · λ z D · d .
ϵ 0 1.22 · λ 1 tan ( sin 1 NA ) 1.22 · λ NA .
Δ I I λ a · 1 NA ,
ϵ s 1.22 · λ ( 1 + M ) f / # ,
R n = E 1 , n / E 2 , n .
DR i = R 2 n 1 / R 2 n = ( E 1 , 2 n 1 E 2 , 2 n 1 ) · ( E 2 , 2 n E 1 , 2 n ) , i = n / 2 .
Δ σ h c 2 · Δ ν

Metrics