Abstract

Defocusing microscopy (DM) is a bright-field optical microscopy technique often used to obtain structural parameters of objects with low difference in refractive index in relation to the surrounding medium (phase objects). We show a use of this technique to measure the refractive index (n) profile of waveguides produced by femtosecond laser micromachining inside the bulk of a sodalime glass. The results are used to analyze the influence of production parameters on n. The methodology requires only a bright-field optical microscope and has proved to be easily applied. Results provide important insights on the waveguide microfabrication process, since translation speed, rather than intensity, has shown to be more important for achieving greater variations in refractive indices. Index of refraction differences between the waveguide and the substrate of the order of 104 were measured for a series of straight waveguides fabricated with different parameters. Low sample scan speeds and pulse energies near 1.20 μJ used for fabrication showed the highest values of refractive index change for waveguides in sodalime glasses.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive Index Profile Measurements of Diffused Optical Waveguides

W. E. Martin
Appl. Opt. 13(9) 2112-2116 (1974)

Refractive-index profiling of planar gradient-index waveguides by phase-measuring microinterferometry

Matgorzata Sochacka, Elena Lopez Lago, and Zbigniew Jaroszewicz
Appl. Opt. 33(16) 3342-3347 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription