Abstract

The goal of this work was to experimentally quantify the uncertainty of three-dimensional (3D) and three-component (3C) velocity measurements using tomographic particle image velocimetry (tomo-PIV). Controlled measurements were designed using tracer particles embedded in a solid sample, and tomo-PIV measurements were performed on the sample while it was moved both translationally and rotationally to simulate various known displacement fields, so the 3D3C displacements measured by tomo-PIV can be directly compared to the known displacements created by the sample. The results illustrated that (1) the tomo-PIV technique was able to reconstruct the 3D3C velocity with an averaged error of 0.8–1.4 voxels in terms of magnitude and 1.7°–1.9° in terms of orientation for the velocity fields tested; (2) view registration (VR) plays a significant role in tomo-PIV, and by reducing VR error from 0.6° to 0.1°, the 3D3C measurement accuracy can be improved by at least 2.5 times in terms of both magnitude and orientation; and (3) the use of additional cameras in tomo-PIV can extend the 3D3C velocity measurement to a larger volume, while maintaining acceptable accuracy. These results obtained from controlled tests are expected to aid the error analysis and the design of tomo-PIV measurements.

© 2018 Optical Society of America

Full Article  |  PDF Article

Corrections

Ning Liu, Yue Wu, and Lin Ma, "Quantification of tomographic PIV uncertainty using controlled experimental measurements: erratum," Appl. Opt. 57, 8624-8624 (2018)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-57-29-8624

OSA Recommended Articles
3D SAPIV particle field reconstruction method based on adaptive threshold

Xiangju Qu, Yang Song, Ying Jin, Zhenhua Li, Xuezhen Wang, ZhenYan Guo, Yunjing Ji, and Anzhi He
Appl. Opt. 57(7) 1622-1633 (2018)

Multiple-plane particle image velocimetry using a light-field camera

Christoph Skupsch and Christoph Brücker
Opt. Express 21(2) 1726-1740 (2013)

Self-calibrated microscopic dual-view tomographic holography for 3D flow measurements

Jian Gao and Joseph Katz
Opt. Express 26(13) 16708-16725 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription