Abstract

We present a theoretical model for the thermal effect of the fiber coating on a high-power cladding light stripper, which is fabricated by chemical etching. For the input and output of the fiber coating, a novel segmented corrosion method and increasing attenuation method are proposed for heat suppression, respectively. The relationship between the attenuation and temperature rise of the fiber coating at the output is experimentally demonstrated. The temperature distribution of the fiber coating at the input as well as the return light power caused by scattering are measured for the etched fiber with different surface roughness values. The results suggest that the rise in temperature is primarily caused by the scattering light propagating into the coating. Finally, an attenuation of 27 dB is achieved. At a room temperature of 23°C and input pump power of 438 W, the highest temperature of the input fiber coating decreases from 39.5°C to 27.9°C by segmented corrosion, and the temperature rise of the output fiber coating is close to 0.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High power cladding light stripper using segmented corrosion method: theoretical and experimental studies

Lu Yin, Mingjian Yan, Zhigang Han, Hailin Wang, Hua Shen, and Rihong Zhu
Opt. Express 25(8) 8760-8776 (2017)

Kilowatt-level cladding light stripper for high-power fiber laser

Ping Yan, Junyi Sun, Yusheng Huang, Dan Li, Xuejiao Wang, Qirong Xiao, and Mali Gong
Appl. Opt. 56(7) 1935-1939 (2017)

Combined method for the fabrication of high-power cladding light stripper using a buffered oxide etchant

Elif Yapar Yıldırım, Ali Karatutlu, Ekin Teslime Balk, Yakup Midilli, and Bülend Ortaç
Appl. Opt. 58(25) 6926-6933 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription