Abstract

Registration of multi-spectral imagery is a critical pre-processing step for applications such as image fusion, but phenomenological differences between spectral bands can lead to significant estimation errors. To develop credible requirements for multi-spectral imaging systems, it is critical to characterize errors, both algorithmic and fundamental, associated with estimating registration parameters; however, attempting to quantify error using archival data sets poses a number of problems. In this paper, we demonstrate the use of commercially available graphics software and available optical property measurements to create fully synthetic, multi-spectral imagery with high-fidelity representations of emissive and reflective phenomenology. We discuss and demonstrate techniques needed to quantify error for both area- and feature-based algorithms. We further show that such synthetic data sets can be used to quantify both the Fisher information and sample errors associated with estimation of the shift between images acquired in different spectral bands and, by extension, estimation of registration model parameters. With the flexibility offered by synthetic data, such characterization can be obtained for robust domains of image brightness, sensor parameters, and differences in image phenomenology.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Retinal image registration via feature-guided Gaussian mixture model

Chengyin Liu, Jiayi Ma, Yong Ma, and Jun Huang
J. Opt. Soc. Am. A 33(7) 1267-1276 (2016)

Fundamental estimation bounds for polarimetric imagery

Daniel A. LeMaster
Opt. Express 16(16) 12018-12036 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription