Abstract

We report the optical phase-locking of two extended-cavity diode lasers with a frequency difference of 6.9 GHz by serrodyne modulation. The bandwidth of the phase-locking loop is extended up to 9.5 MHz. The residual phase noise of the two phase-locked lasers reaches 130dBrad2/Hz in the offset frequency range of 1.5 kHz to 9 kHz and below 120dBrad2/Hz in the range of 150 Hz to 350 kHz, respectively. It is expected that the sensitivity limit of atom interferometers will be enhanced when the phase-locked lasers are used.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-locked, low-noise, frequency agile titanium:sapphire lasers for simultaneous atom interferometers

Holger Müller, Sheng-wey Chiow, Quan Long, and Steven Chu
Opt. Lett. 31(2) 202-204 (2006)

Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control

Kana Iwakuni, Hajime Inaba, Yoshiaki Nakajima, Takumi Kobayashi, Kazumoto Hosaka, Atsushi Onae, and Feng-Lei Hong
Opt. Express 20(13) 13769-13776 (2012)

Wideband, Efficient Optical Serrodyne Frequency Shifting with a Phase Modulator and a Nonlinear Transmission Line

Rachel Houtz, Cheong Chan, and Holger Müller
Opt. Express 17(21) 19235-19240 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: From frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9, 1041–1058 (2003).
    [Crossref]
  2. R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
    [Crossref]
  3. A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79, 013104 (2008).
    [Crossref]
  4. M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
    [Crossref]
  5. R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark stats,” Appl. Phys. B 68, 1–25 (1999).
    [Crossref]
  6. M. Kasevich and S. Chu, “Atom interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
    [Crossref]
  7. D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of ħ/mCs based on photon recoil using laser-cooled atoms and atomic interferometry,” Appl. Phys. B 59, 217–256 (1994).
    [Crossref]
  8. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
    [Crossref]
  9. J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92, 133–144 (2008).
    [Crossref]
  10. H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
    [Crossref]
  11. S. Y. Lan, P. C. Kuan, B. Estey, P. Haslinger, and H. Müller, “Influence of the Coriolis force in atom interferometry,” Phys. Rev. Lett. 108, 090402 (2012).
    [Crossref]
  12. P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141–1148 (2008).
    [Crossref]
  13. G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9  GHz,” Opt. Commun. 104, 339–344 (1994).
    [Crossref]
  14. L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
    [Crossref]
  15. M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102, 11–18 (2011).
    [Crossref]
  16. W. Li, X. Pan, N. Song, X. Xu, and X. Lu, “A phase-locked laser system based on double direct modulation technique for atom interferometry,” Appl. Phys. B 123, 54 (2017).
    [Crossref]
  17. J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
    [Crossref]
  18. S. H. Yim, S.-B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115, 491–495 (2014).
    [Crossref]
  19. R. Houtz, C. Chan, and H. Müller, “Wideband, efficient optical serrodyne frequency shifting with a phase modulator and a nonlinear transmission line,” Opt. Express 17, 19235–19240 (2009).
    [Crossref]
  20. R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, “Robust laser frequency stabilization by serrodyne modulation,” Opt. Lett. 37, 1005–1007 (2012).
    [Crossref]
  21. H. R. Noh, S. E. Park, L. Z. Li, J.-D. Park, and C.-H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express 19, 23444 (2011).
    [Crossref]
  22. D. M. S. Johnson, J. M. Hogan, S.-W. Chiow, and M. A. Kasevich, “Broadband optical serrodyne frequency shifting,” Opt. Lett. 35, 745–747 (2010).
    [Crossref]

2017 (1)

W. Li, X. Pan, N. Song, X. Xu, and X. Lu, “A phase-locked laser system based on double direct modulation technique for atom interferometry,” Appl. Phys. B 123, 54 (2017).
[Crossref]

2016 (1)

R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
[Crossref]

2014 (2)

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

S. H. Yim, S.-B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115, 491–495 (2014).
[Crossref]

2012 (3)

R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, “Robust laser frequency stabilization by serrodyne modulation,” Opt. Lett. 37, 1005–1007 (2012).
[Crossref]

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
[Crossref]

S. Y. Lan, P. C. Kuan, B. Estey, P. Haslinger, and H. Müller, “Influence of the Coriolis force in atom interferometry,” Phys. Rev. Lett. 108, 090402 (2012).
[Crossref]

2011 (2)

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102, 11–18 (2011).
[Crossref]

H. R. Noh, S. E. Park, L. Z. Li, J.-D. Park, and C.-H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express 19, 23444 (2011).
[Crossref]

2010 (1)

2009 (2)

R. Houtz, C. Chan, and H. Müller, “Wideband, efficient optical serrodyne frequency shifting with a phase modulator and a nonlinear transmission line,” Opt. Express 17, 19235–19240 (2009).
[Crossref]

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

2008 (3)

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141–1148 (2008).
[Crossref]

J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92, 133–144 (2008).
[Crossref]

A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79, 013104 (2008).
[Crossref]

2005 (1)

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

2003 (1)

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: From frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9, 1041–1058 (2003).
[Crossref]

1999 (1)

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark stats,” Appl. Phys. B 68, 1–25 (1999).
[Crossref]

1994 (2)

D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of ħ/mCs based on photon recoil using laser-cooled atoms and atomic interferometry,” Appl. Phys. B 59, 217–256 (1994).
[Crossref]

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9  GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

1991 (2)

M. Kasevich and S. Chu, “Atom interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[Crossref]

Bernon, S.

Bertoldi, A.

Biedermann, G. W.

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
[Crossref]

Bourassin-Bouchet, C.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

Bouyer, P.

Cacciapuoti, L.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Canuel, B.

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141–1148 (2008).
[Crossref]

Chan, C.

Cheinet, P.

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141–1148 (2008).
[Crossref]

Chiow, S.-W.

Cho, C.-H.

Chu, S.

D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of ħ/mCs based on photon recoil using laser-cooled atoms and atomic interferometry,” Appl. Phys. B 59, 217–256 (1994).
[Crossref]

M. Kasevich and S. Chu, “Atom interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[Crossref]

Clairon, A.

J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92, 133–144 (2008).
[Crossref]

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9  GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

de Angelis, M.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Estey, B.

S. Y. Lan, P. C. Kuan, B. Estey, P. Haslinger, and H. Müller, “Influence of the Coriolis force in atom interferometry,” Phys. Rev. Lett. 108, 090402 (2012).
[Crossref]

Fattori, M.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Gauguet, A.

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141–1148 (2008).
[Crossref]

Giorgini, A.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102, 11–18 (2011).
[Crossref]

Haslinger, P.

S. Y. Lan, P. C. Kuan, B. Estey, P. Haslinger, and H. Müller, “Influence of the Coriolis force in atom interferometry,” Phys. Rev. Lett. 108, 090402 (2012).
[Crossref]

Hisatomi, R.

R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
[Crossref]

Hogan, J. M.

Hollberg, L. W.

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: From frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9, 1041–1058 (2003).
[Crossref]

Houtz, R.

Ishikawa, T.

R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
[Crossref]

Johnson, D. M. S.

Kasapi, S.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[Crossref]

Kasevich, M.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[Crossref]

M. Kasevich and S. Chu, “Atom interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

Kasevich, M. A.

Kim, J.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92, 133–144 (2008).
[Crossref]

Kohlhaas, R.

Kuan, P. C.

S. Y. Lan, P. C. Kuan, B. Estey, P. Haslinger, and H. Müller, “Influence of the Coriolis force in atom interferometry,” Phys. Rev. Lett. 108, 090402 (2012).
[Crossref]

Kwon, T. Y.

S. H. Yim, S.-B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115, 491–495 (2014).
[Crossref]

Lamporesi, G.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Lan, S. Y.

S. Y. Lan, P. C. Kuan, B. Estey, P. Haslinger, and H. Müller, “Influence of the Coriolis force in atom interferometry,” Phys. Rev. Lett. 108, 090402 (2012).
[Crossref]

Landragin, A.

R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, “Robust laser frequency stabilization by serrodyne modulation,” Opt. Lett. 37, 1005–1007 (2012).
[Crossref]

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141–1148 (2008).
[Crossref]

J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92, 133–144 (2008).
[Crossref]

Le Gouët, J.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92, 133–144 (2008).
[Crossref]

Lea, S. N.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9  GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

Lee, S.-B.

S. H. Yim, S.-B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115, 491–495 (2014).
[Crossref]

Li, L. Z.

Li, W.

W. Li, X. Pan, N. Song, X. Xu, and X. Lu, “A phase-locked laser system based on double direct modulation technique for atom interferometry,” Appl. Phys. B 123, 54 (2017).
[Crossref]

Lours, M.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

Lu, X.

W. Li, X. Pan, N. Song, X. Xu, and X. Lu, “A phase-locked laser system based on double direct modulation technique for atom interferometry,” Appl. Phys. B 123, 54 (2017).
[Crossref]

Marino, A. M.

A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79, 013104 (2008).
[Crossref]

McGuinness, H. J.

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
[Crossref]

Mehlstäubler, T. E.

J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92, 133–144 (2008).
[Crossref]

Merlet, S.

J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92, 133–144 (2008).
[Crossref]

Moler, K.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[Crossref]

Müller, H.

S. Y. Lan, P. C. Kuan, B. Estey, P. Haslinger, and H. Müller, “Influence of the Coriolis force in atom interferometry,” Phys. Rev. Lett. 108, 090402 (2012).
[Crossref]

R. Houtz, C. Chan, and H. Müller, “Wideband, efficient optical serrodyne frequency shifting with a phase modulator and a nonlinear transmission line,” Opt. Express 17, 19235–19240 (2009).
[Crossref]

Nagel, A.

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark stats,” Appl. Phys. B 68, 1–25 (1999).
[Crossref]

Nakamura, Y.

R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
[Crossref]

Noguchi, A.

R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
[Crossref]

Noh, H. R.

Osada, A.

R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
[Crossref]

Pan, X.

W. Li, X. Pan, N. Song, X. Xu, and X. Lu, “A phase-locked laser system based on double direct modulation technique for atom interferometry,” Appl. Phys. B 123, 54 (2017).
[Crossref]

Park, J.-D.

Park, S. E.

S. H. Yim, S.-B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115, 491–495 (2014).
[Crossref]

H. R. Noh, S. E. Park, L. Z. Li, J.-D. Park, and C.-H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express 19, 23444 (2011).
[Crossref]

Pereira Dos Santos, F.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141–1148 (2008).
[Crossref]

J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92, 133–144 (2008).
[Crossref]

Petelski, T.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Peters, A.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102, 11–18 (2011).
[Crossref]

Prevedelli, M.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102, 11–18 (2011).
[Crossref]

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Rakholia, A. V.

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
[Crossref]

Riis, E.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[Crossref]

Rosi, G.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

Santarelli, G.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9  GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

Schmidt, M.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102, 11–18 (2011).
[Crossref]

Schnatz, H.

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: From frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9, 1041–1058 (2003).
[Crossref]

Song, N.

W. Li, X. Pan, N. Song, X. Xu, and X. Lu, “A phase-locked laser system based on double direct modulation technique for atom interferometry,” Appl. Phys. B 123, 54 (2017).
[Crossref]

Sorrentino, F.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

Stroud, C. R.

A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79, 013104 (2008).
[Crossref]

Stuhler, J.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Tabuchi, Y.

R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
[Crossref]

Tino, G. M.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102, 11–18 (2011).
[Crossref]

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9  GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

Usami, K.

R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
[Crossref]

Vanderbruggen, T.

Weiss, D. S.

D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of ħ/mCs based on photon recoil using laser-cooled atoms and atomic interferometry,” Appl. Phys. B 59, 217–256 (1994).
[Crossref]

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[Crossref]

Wynands, R.

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark stats,” Appl. Phys. B 68, 1–25 (1999).
[Crossref]

Xu, X.

W. Li, X. Pan, N. Song, X. Xu, and X. Lu, “A phase-locked laser system based on double direct modulation technique for atom interferometry,” Appl. Phys. B 123, 54 (2017).
[Crossref]

Yamazaki, R.

R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
[Crossref]

Ye, J.

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: From frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9, 1041–1058 (2003).
[Crossref]

Yim, S. H.

S. H. Yim, S.-B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115, 491–495 (2014).
[Crossref]

Young, B. C.

D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of ħ/mCs based on photon recoil using laser-cooled atoms and atomic interferometry,” Appl. Phys. B 59, 217–256 (1994).
[Crossref]

Yver-Leduc, F.

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141–1148 (2008).
[Crossref]

Appl. Phys. B (6)

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark stats,” Appl. Phys. B 68, 1–25 (1999).
[Crossref]

D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of ħ/mCs based on photon recoil using laser-cooled atoms and atomic interferometry,” Appl. Phys. B 59, 217–256 (1994).
[Crossref]

J. Le Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. Pereira Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92, 133–144 (2008).
[Crossref]

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102, 11–18 (2011).
[Crossref]

W. Li, X. Pan, N. Song, X. Xu, and X. Lu, “A phase-locked laser system based on double direct modulation technique for atom interferometry,” Appl. Phys. B 123, 54 (2017).
[Crossref]

S. H. Yim, S.-B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115, 491–495 (2014).
[Crossref]

Appl. Phys. Lett. (1)

H. J. McGuinness, A. V. Rakholia, and G. W. Biedermann, “High data-rate atom interferometer for measuring acceleration,” Appl. Phys. Lett. 100, 011106 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: From frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9, 1041–1058 (2003).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57, 1141–1148 (2008).
[Crossref]

Nature (1)

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

Opt. Commun. (2)

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9  GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, “Bidirectional conversion between microwave and light via ferromagnetic magnons,” Phys. Rev. A 93, 174427 (2016).
[Crossref]

Phys. Rev. Lett. (3)

M. Kasevich and S. Chu, “Atom interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

S. Y. Lan, P. C. Kuan, B. Estey, P. Haslinger, and H. Müller, “Influence of the Coriolis force in atom interferometry,” Phys. Rev. Lett. 108, 090402 (2012).
[Crossref]

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[Crossref]

Rev. Sci. Instrum. (2)

A. M. Marino and C. R. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79, 013104 (2008).
[Crossref]

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Serrodyne modulation apparatus for the OPLL of two ECDLs. ML, master laser; SL, slave laser; MTS, modulation transfer spectroscopy; EOM, electro-optic modulator; FPD, fast photodiode; DC, directional coupler; APD, analog phase detector; FALF, fast active loop filter; VCO, voltage-controlled oscillator; NLTL, nonlinear transmission line; PNA, phase noise analyzer; SA, spectrum analyzer.
Fig. 2.
Fig. 2. Circuit diagram of the fast active loop filter. R1: 5 Ω, R2: 91 Ω, R3: 910 k Ω, R4: 1 k Ω, R5: 270 Ω, R6: 47 Ω, R7: 15 Ω, C1: 330 pF, C2: 24 pF, C3: 100 pF.
Fig. 3.
Fig. 3. Optical spectrum with and without serrodyne modulation normalized to the unmodulated carrier and measured by a confocal spectrum analyzer. The black line shows the optical spectrum with no modulation. The red line is the optical spectrum with a serrodyne modulation of 500 MHz. The small peaks in the red line that are not specified are higher-order optical sidebands.
Fig. 4.
Fig. 4. Microwave spectrum of the downconverted output from the beating signal between the two ECDLs. The resolution bandwidth is set to 1 kHz.
Fig. 5.
Fig. 5. Phase noise spectral density of the OPLL laser system measured by a phase noise analyzer.
Fig. 6.
Fig. 6. Sensitivity limits given by the OPLL laser system based on serrodyne modulation for different Raman pulse lengths τ . For calculation, the time interval T between two consecutive Raman pulses is set to 150 ms.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ g g = Δ ϕ k eff T 2 g ,

Metrics