Abstract

Microfabrication based on photopolymerization is typically achieved by scanning a focal spot within the material point by point, which significantly limits fabrication speed. In this paper, we explore a method for rapid fabrication of high-aspect-ratio microstructures based on photopolymerization using a femtosecond laser beam that is converted into a Bessel beam by an axicon. With stationary exposure, a polymer fiber measured at 200 μm in length and 400 nm in width (500∶1 aspect ratio) was fabricated within 50 ms of exposure time. The exposure conditions can be adjusted to produce fibers with variable widths. A phenomenological polymerization-threshold model is adapted for Bessel-beam exposure. The revised model is applied to analyze the structure width and estimate the order of multi-photon absorption. Examination of the cross section of the fibers shows that they are nearly monolithic, suggesting that active species diffuse during photopolymerization. By scanning the Bessel beam in the plane transverse to the direction of beam propagation, mesh structures are fabricated with a single-pass scan, showing the potential of this method for rapid fabrication of large-scale high-aspect-ratio microstructures for applications in photonics, micro-machines, and tissue engineering.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells

Liang Yang, Shengyun Ji, Kenan Xie, Wenqiang Du, Bingjie Liu, Yanlei Hu, Jiawen Li, Gang Zhao, Dong Wu, Wenhao Huang, Suling Liu, Hongyuan Jiang, and Jiaru Chu
Opt. Express 25(7) 8144-8157 (2017)

High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley
Opt. Express 18(2) 566-574 (2010)

Single-photon three-dimensional microfabrication through a multimode optical fiber

Paul Delrot, Damien Loterie, Demetri Psaltis, and Christophe Moser
Opt. Express 26(2) 1766-1778 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Visualization 1       Fast fabrication of a long fiber in a cell showing long depth focus of Bessel beam.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription