Abstract

High-accuracy spot target detection based on a complementary metal-oxide semiconductor (CMOS) image sensor, such as astronomy magnitude, medicine, and astronomy photometrics, needs accurate pixel response. Because pixels have different silicon structures and read outputting, each pixel has non-uniformity response with specific illumination. The flat-field correction of a CMOS image sensor is crucial before image processing. In this work, a flat-field model and correction method based on spot scale areas of CMOS image sensor pixel response are proposed. Compared with traditional full-plane calibration, this method aims at spot areas to fit most selected normal pixels’ mean response curve with different light intensities and exposure times, which can guarantee spot imaging areas with higher accurate pixel response. Finally, the accuracy of this flat-field correction method is evaluated by the influence on spot target extraction accuracy. The experimental results indicate that using this flat-field correction method can decrease the non-uniform variance from 7.34 (LSB/10 bit) to 1.91 (LSB/10 bit) (improved by 74.1%) and reduce the noise effect on spot extraction accuracy, which improves it from 0.3453 pixel to 0.0116 pixel (1σ). The proposed approach solves the problem of non-uniform pixel response and improves imaging SNR for high-accuracy spot target localization.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fixed-pattern noise correction method based on improved moment matching for a TDI CMOS image sensor

Jiangtao Xu, Huafeng Nie, Kaiming Nie, and Weimin Jin
J. Opt. Soc. Am. A 34(9) 1500-1510 (2017)

Quadrant response model and error analysis of four-quadrant detectors related to the non-uniform spot and blind area

Jun Zhang, Weixian Qian, Guohua Gu, Kan Ren, Qian Chen, Chen Mao, Guixia Cai, Zewei Liu, and Liwei Xu
Appl. Opt. 57(24) 6898-6905 (2018)

Star spot location estimation using Kalman filter for star tracker

Hai-bo Liu, Jian-kun Yang, Jiong-qi Wang, Ji-chun Tan, and Xiu-jian Li
Appl. Opt. 50(12) 1735-1744 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Mora and A. Vosteen, “Gaia in-orbit realignment: overview and data analysis,” Proc. SPIE 8442, 84421Q (2012).
    [Crossref]
  2. P. Kask, K. Palo, C. Hinnah, and T. Pommerencke, “Flat field correction for high-throughput imaging of fluorescent samples,” J. Microsc. 263, 328–340 (2016).
    [Crossref]
  3. N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
    [Crossref]
  4. J. Li, A. Mahmoodi, and D. Joseph, “Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors,” Sensors 15, 26331–26352 (2015).
    [Crossref]
  5. M. S. Wei, F. Xing, and Z. You, “A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images,” Light Sci. Appl. 7, 18006 (2018).
    [Crossref]
  6. S. Zhang, F. Xing, T. Sun, Z. You, and M. S. Wei, “Novel approach to improve the attitude update rate of a star tracker,” Opt. Express 26, 5164–5181 (2018).
    [Crossref]
  7. S. E. Park, J. G. Kim, M. A. A. Hegazy, M. H. Cho, and S. Y. Lee, “A flat-field correction method for photon-counting-detector-based micro-CT,” Proc. SPIE 9033, 90335N (2014).
    [Crossref]
  8. S. Uwe, “Intelligent error correction method applied on active pixel sensor based star tracker,” Proc. SPIE 5964, 154–161 (2005).
    [Crossref]
  9. M. Fiuzy, M. Hashemi, and S. K. M. Mashhadi, “A novel fixed pattern noise reduction algorithm in CMOS detector for LEO satellite application,” in 4th International Conference on Control, Instrumentation, and Automation (ICCIA) (2016), pp. 419–424.
  10. E. S. Pereira, “Determining the fixed pattern noise of a CMOS sensor: improving the sensibility of autonomous star trackers,” J. Aerosp. Technol. Manage. 5, 217–222 (2013).
    [Crossref]
  11. M. Schoberl, C. Senel, S. Fossel, H. Bloss, and A. Kaup, “Non-linear dark current fixed pattern noise compensation for variable frame rate moving picture cameras,” in 17th European Signal Processing Conference (2009), pp. 268–272.
  12. A. El Gamal, B. Fowler, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
    [Crossref]
  13. S. H. Lim and A. E. Gamal, “Gain fixed pattern noise correction via optical flow,” IEEE Trans. Circuit Syst. 51, 779–786 (2004).
    [Crossref]
  14. H. Tian, B. Fowler, and A. El Gamal, “Analysis of temporal noise in CMOS APS,” Proc. SPIE 3649, 177–185 (1999).
    [Crossref]
  15. N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
    [Crossref]
  16. J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Inf. Forensics Security 1, 205–214 (2006).
    [Crossref]
  17. B. Fowler, A. El Gamal, D. Yang, and H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” Proc. SPIE 3301, 178–185 (1998).
    [Crossref]
  18. M. Schoberl, S. Fossel, and A. Kaup, “Fixed pattern noise column drift compensation (CDC) for digital moving picture cameras,” in IEEE International Conference on Image Processing (2010), pp. 573–576.
  19. M. Asadnezhad, A. Eslamimajd, and H. Hajghassem, “Optical system design of star sensor and stray light analysis,” J. Eur. Opt. Soc. 14, 9 (2018).
    [Crossref]
  20. S. Chang, “Aberrations of a slightly inclined Gaussian beam in a symmetric optical system,” Optik 123, 1190–1195 (2012).
    [Crossref]
  21. T. Sun, F. Xing, Z. You, and M. S. Wei, “Motion-blurred star acquisition method of the star tracker under high dynamic conditions,” Opt. Express 21, 20096–20110 (2013).
    [Crossref]
  22. J. Y. Yan, J. Jiang, and G. J. Zhang, “Dynamic imaging model and parameter optimization for a star tracker,” Opt. Express 24, 5961–5983 (2016).
    [Crossref]
  23. X. G. Wei, J. Xu, J. Li, J. Y. Yan, and G. J. Zhang, “S-curve centroiding error correction for star sensor,” Acta Astronaut. 99, 231–241 (2014).
    [Crossref]

2018 (3)

M. Asadnezhad, A. Eslamimajd, and H. Hajghassem, “Optical system design of star sensor and stray light analysis,” J. Eur. Opt. Soc. 14, 9 (2018).
[Crossref]

M. S. Wei, F. Xing, and Z. You, “A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images,” Light Sci. Appl. 7, 18006 (2018).
[Crossref]

S. Zhang, F. Xing, T. Sun, Z. You, and M. S. Wei, “Novel approach to improve the attitude update rate of a star tracker,” Opt. Express 26, 5164–5181 (2018).
[Crossref]

2016 (2)

J. Y. Yan, J. Jiang, and G. J. Zhang, “Dynamic imaging model and parameter optimization for a star tracker,” Opt. Express 24, 5961–5983 (2016).
[Crossref]

P. Kask, K. Palo, C. Hinnah, and T. Pommerencke, “Flat field correction for high-throughput imaging of fluorescent samples,” J. Microsc. 263, 328–340 (2016).
[Crossref]

2015 (1)

J. Li, A. Mahmoodi, and D. Joseph, “Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors,” Sensors 15, 26331–26352 (2015).
[Crossref]

2014 (2)

X. G. Wei, J. Xu, J. Li, J. Y. Yan, and G. J. Zhang, “S-curve centroiding error correction for star sensor,” Acta Astronaut. 99, 231–241 (2014).
[Crossref]

S. E. Park, J. G. Kim, M. A. A. Hegazy, M. H. Cho, and S. Y. Lee, “A flat-field correction method for photon-counting-detector-based micro-CT,” Proc. SPIE 9033, 90335N (2014).
[Crossref]

2013 (2)

E. S. Pereira, “Determining the fixed pattern noise of a CMOS sensor: improving the sensibility of autonomous star trackers,” J. Aerosp. Technol. Manage. 5, 217–222 (2013).
[Crossref]

T. Sun, F. Xing, Z. You, and M. S. Wei, “Motion-blurred star acquisition method of the star tracker under high dynamic conditions,” Opt. Express 21, 20096–20110 (2013).
[Crossref]

2012 (2)

S. Chang, “Aberrations of a slightly inclined Gaussian beam in a symmetric optical system,” Optik 123, 1190–1195 (2012).
[Crossref]

A. Mora and A. Vosteen, “Gaia in-orbit realignment: overview and data analysis,” Proc. SPIE 8442, 84421Q (2012).
[Crossref]

2008 (1)

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

2006 (1)

J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Inf. Forensics Security 1, 205–214 (2006).
[Crossref]

2005 (1)

S. Uwe, “Intelligent error correction method applied on active pixel sensor based star tracker,” Proc. SPIE 5964, 154–161 (2005).
[Crossref]

2004 (1)

S. H. Lim and A. E. Gamal, “Gain fixed pattern noise correction via optical flow,” IEEE Trans. Circuit Syst. 51, 779–786 (2004).
[Crossref]

2003 (1)

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
[Crossref]

1999 (1)

H. Tian, B. Fowler, and A. El Gamal, “Analysis of temporal noise in CMOS APS,” Proc. SPIE 3649, 177–185 (1999).
[Crossref]

1998 (2)

B. Fowler, A. El Gamal, D. Yang, and H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” Proc. SPIE 3301, 178–185 (1998).
[Crossref]

A. El Gamal, B. Fowler, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

Asadnezhad, M.

M. Asadnezhad, A. Eslamimajd, and H. Hajghassem, “Optical system design of star sensor and stray light analysis,” J. Eur. Opt. Soc. 14, 9 (2018).
[Crossref]

Barentine, J. C.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Blanton, M. R.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Bloss, H.

M. Schoberl, C. Senel, S. Fossel, H. Bloss, and A. Kaup, “Non-linear dark current fixed pattern noise compensation for variable frame rate moving picture cameras,” in 17th European Signal Processing Conference (2009), pp. 268–272.

Brewington, H. J.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Chang, S.

S. Chang, “Aberrations of a slightly inclined Gaussian beam in a symmetric optical system,” Optik 123, 1190–1195 (2012).
[Crossref]

Cho, M. H.

S. E. Park, J. G. Kim, M. A. A. Hegazy, M. H. Cho, and S. Y. Lee, “A flat-field correction method for photon-counting-detector-based micro-CT,” Proc. SPIE 9033, 90335N (2014).
[Crossref]

El Gamal, A.

H. Tian, B. Fowler, and A. El Gamal, “Analysis of temporal noise in CMOS APS,” Proc. SPIE 3649, 177–185 (1999).
[Crossref]

A. El Gamal, B. Fowler, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

B. Fowler, A. El Gamal, D. Yang, and H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” Proc. SPIE 3301, 178–185 (1998).
[Crossref]

Eslamimajd, A.

M. Asadnezhad, A. Eslamimajd, and H. Hajghassem, “Optical system design of star sensor and stray light analysis,” J. Eur. Opt. Soc. 14, 9 (2018).
[Crossref]

Finkbeiner, D. P.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Fiuzy, M.

M. Fiuzy, M. Hashemi, and S. K. M. Mashhadi, “A novel fixed pattern noise reduction algorithm in CMOS detector for LEO satellite application,” in 4th International Conference on Control, Instrumentation, and Automation (ICCIA) (2016), pp. 419–424.

Folkerts, H. O.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
[Crossref]

Fossel, S.

M. Schoberl, S. Fossel, and A. Kaup, “Fixed pattern noise column drift compensation (CDC) for digital moving picture cameras,” in IEEE International Conference on Image Processing (2010), pp. 573–576.

M. Schoberl, C. Senel, S. Fossel, H. Bloss, and A. Kaup, “Non-linear dark current fixed pattern noise compensation for variable frame rate moving picture cameras,” in 17th European Signal Processing Conference (2009), pp. 268–272.

Fowler, B.

H. Tian, B. Fowler, and A. El Gamal, “Analysis of temporal noise in CMOS APS,” Proc. SPIE 3649, 177–185 (1999).
[Crossref]

A. El Gamal, B. Fowler, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

B. Fowler, A. El Gamal, D. Yang, and H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” Proc. SPIE 3301, 178–185 (1998).
[Crossref]

Fridrich, J.

J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Inf. Forensics Security 1, 205–214 (2006).
[Crossref]

Gamal, A. E.

S. H. Lim and A. E. Gamal, “Gain fixed pattern noise correction via optical flow,” IEEE Trans. Circuit Syst. 51, 779–786 (2004).
[Crossref]

Goljan, M.

J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Inf. Forensics Security 1, 205–214 (2006).
[Crossref]

Gunn, J. E.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Hajghassem, H.

M. Asadnezhad, A. Eslamimajd, and H. Hajghassem, “Optical system design of star sensor and stray light analysis,” J. Eur. Opt. Soc. 14, 9 (2018).
[Crossref]

Harvanek, M.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Hashemi, M.

M. Fiuzy, M. Hashemi, and S. K. M. Mashhadi, “A novel fixed pattern noise reduction algorithm in CMOS detector for LEO satellite application,” in 4th International Conference on Control, Instrumentation, and Automation (ICCIA) (2016), pp. 419–424.

Hegazy, M. A. A.

S. E. Park, J. G. Kim, M. A. A. Hegazy, M. H. Cho, and S. Y. Lee, “A flat-field correction method for photon-counting-detector-based micro-CT,” Proc. SPIE 9033, 90335N (2014).
[Crossref]

Hinnah, C.

P. Kask, K. Palo, C. Hinnah, and T. Pommerencke, “Flat field correction for high-throughput imaging of fluorescent samples,” J. Microsc. 263, 328–340 (2016).
[Crossref]

Hoekstra, W.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
[Crossref]

Hogg, D. W.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Ivezic, Z.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Jiang, J.

Johnston, D.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Joseph, D.

J. Li, A. Mahmoodi, and D. Joseph, “Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors,” Sensors 15, 26331–26352 (2015).
[Crossref]

Kask, P.

P. Kask, K. Palo, C. Hinnah, and T. Pommerencke, “Flat field correction for high-throughput imaging of fluorescent samples,” J. Microsc. 263, 328–340 (2016).
[Crossref]

Kaup, A.

M. Schoberl, S. Fossel, and A. Kaup, “Fixed pattern noise column drift compensation (CDC) for digital moving picture cameras,” in IEEE International Conference on Image Processing (2010), pp. 573–576.

M. Schoberl, C. Senel, S. Fossel, H. Bloss, and A. Kaup, “Non-linear dark current fixed pattern noise compensation for variable frame rate moving picture cameras,” in 17th European Signal Processing Conference (2009), pp. 268–272.

Kent, S. M.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Kim, J. G.

S. E. Park, J. G. Kim, M. A. A. Hegazy, M. H. Cho, and S. Y. Lee, “A flat-field correction method for photon-counting-detector-based micro-CT,” Proc. SPIE 9033, 90335N (2014).
[Crossref]

Kleinman, S. J.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Knapp, G. R.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Krzesinski, J.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Lee, S. Y.

S. E. Park, J. G. Kim, M. A. A. Hegazy, M. H. Cho, and S. Y. Lee, “A flat-field correction method for photon-counting-detector-based micro-CT,” Proc. SPIE 9033, 90335N (2014).
[Crossref]

Li, J.

J. Li, A. Mahmoodi, and D. Joseph, “Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors,” Sensors 15, 26331–26352 (2015).
[Crossref]

X. G. Wei, J. Xu, J. Li, J. Y. Yan, and G. J. Zhang, “S-curve centroiding error correction for star sensor,” Acta Astronaut. 99, 231–241 (2014).
[Crossref]

Lim, S. H.

S. H. Lim and A. E. Gamal, “Gain fixed pattern noise correction via optical flow,” IEEE Trans. Circuit Syst. 51, 779–786 (2004).
[Crossref]

Liu, X. Q.

A. El Gamal, B. Fowler, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

Long, D.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Loomis, C.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Loukianova, N. V.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
[Crossref]

Lukas, J.

J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Inf. Forensics Security 1, 205–214 (2006).
[Crossref]

Lupton, R. H.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Maas, J. P. V.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
[Crossref]

Mahmoodi, A.

J. Li, A. Mahmoodi, and D. Joseph, “Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors,” Sensors 15, 26331–26352 (2015).
[Crossref]

Mashhadi, S. K. M.

M. Fiuzy, M. Hashemi, and S. K. M. Mashhadi, “A novel fixed pattern noise reduction algorithm in CMOS detector for LEO satellite application,” in 4th International Conference on Control, Instrumentation, and Automation (ICCIA) (2016), pp. 419–424.

Mierop, A. J.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
[Crossref]

Min, H.

A. El Gamal, B. Fowler, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

Mora, A.

A. Mora and A. Vosteen, “Gaia in-orbit realignment: overview and data analysis,” Proc. SPIE 8442, 84421Q (2012).
[Crossref]

Neilsen, E. H.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Nitta, A.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Padmanabhan, N.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Palo, K.

P. Kask, K. Palo, C. Hinnah, and T. Pommerencke, “Flat field correction for high-throughput imaging of fluorescent samples,” J. Microsc. 263, 328–340 (2016).
[Crossref]

Park, S. E.

S. E. Park, J. G. Kim, M. A. A. Hegazy, M. H. Cho, and S. Y. Lee, “A flat-field correction method for photon-counting-detector-based micro-CT,” Proc. SPIE 9033, 90335N (2014).
[Crossref]

Pereira, E. S.

E. S. Pereira, “Determining the fixed pattern noise of a CMOS sensor: improving the sensibility of autonomous star trackers,” J. Aerosp. Technol. Manage. 5, 217–222 (2013).
[Crossref]

Pommerencke, T.

P. Kask, K. Palo, C. Hinnah, and T. Pommerencke, “Flat field correction for high-throughput imaging of fluorescent samples,” J. Microsc. 263, 328–340 (2016).
[Crossref]

Roks, E.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
[Crossref]

Roweis, S.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Schlegel, D. J.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Schoberl, M.

M. Schoberl, C. Senel, S. Fossel, H. Bloss, and A. Kaup, “Non-linear dark current fixed pattern noise compensation for variable frame rate moving picture cameras,” in 17th European Signal Processing Conference (2009), pp. 268–272.

M. Schoberl, S. Fossel, and A. Kaup, “Fixed pattern noise column drift compensation (CDC) for digital moving picture cameras,” in IEEE International Conference on Image Processing (2010), pp. 573–576.

Senel, C.

M. Schoberl, C. Senel, S. Fossel, H. Bloss, and A. Kaup, “Non-linear dark current fixed pattern noise compensation for variable frame rate moving picture cameras,” in 17th European Signal Processing Conference (2009), pp. 268–272.

Snedden, S. A.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Strauss, M. A.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Sun, T.

Theuwissen, A. J. P.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
[Crossref]

Tian, H.

H. Tian, B. Fowler, and A. El Gamal, “Analysis of temporal noise in CMOS APS,” Proc. SPIE 3649, 177–185 (1999).
[Crossref]

B. Fowler, A. El Gamal, D. Yang, and H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” Proc. SPIE 3301, 178–185 (1998).
[Crossref]

Tucker, D. L.

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

Uwe, S.

S. Uwe, “Intelligent error correction method applied on active pixel sensor based star tracker,” Proc. SPIE 5964, 154–161 (2005).
[Crossref]

Verbugt, D. W. E.

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
[Crossref]

Vosteen, A.

A. Mora and A. Vosteen, “Gaia in-orbit realignment: overview and data analysis,” Proc. SPIE 8442, 84421Q (2012).
[Crossref]

Wei, M. S.

Wei, X. G.

X. G. Wei, J. Xu, J. Li, J. Y. Yan, and G. J. Zhang, “S-curve centroiding error correction for star sensor,” Acta Astronaut. 99, 231–241 (2014).
[Crossref]

Xing, F.

Xu, J.

X. G. Wei, J. Xu, J. Li, J. Y. Yan, and G. J. Zhang, “S-curve centroiding error correction for star sensor,” Acta Astronaut. 99, 231–241 (2014).
[Crossref]

Yan, J. Y.

J. Y. Yan, J. Jiang, and G. J. Zhang, “Dynamic imaging model and parameter optimization for a star tracker,” Opt. Express 24, 5961–5983 (2016).
[Crossref]

X. G. Wei, J. Xu, J. Li, J. Y. Yan, and G. J. Zhang, “S-curve centroiding error correction for star sensor,” Acta Astronaut. 99, 231–241 (2014).
[Crossref]

Yang, D.

B. Fowler, A. El Gamal, D. Yang, and H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” Proc. SPIE 3301, 178–185 (1998).
[Crossref]

You, Z.

Zhang, G. J.

J. Y. Yan, J. Jiang, and G. J. Zhang, “Dynamic imaging model and parameter optimization for a star tracker,” Opt. Express 24, 5961–5983 (2016).
[Crossref]

X. G. Wei, J. Xu, J. Li, J. Y. Yan, and G. J. Zhang, “S-curve centroiding error correction for star sensor,” Acta Astronaut. 99, 231–241 (2014).
[Crossref]

Zhang, S.

Acta Astronaut. (1)

X. G. Wei, J. Xu, J. Li, J. Y. Yan, and G. J. Zhang, “S-curve centroiding error correction for star sensor,” Acta Astronaut. 99, 231–241 (2014).
[Crossref]

Astrophys. J. (1)

N. Padmanabhan, D. J. Schlegel, D. P. Finkbeiner, J. C. Barentine, M. R. Blanton, H. J. Brewington, J. E. Gunn, M. Harvanek, D. W. Hogg, Z. Ivezic, D. Johnston, S. M. Kent, S. J. Kleinman, G. R. Knapp, J. Krzesinski, D. Long, E. H. Neilsen, A. Nitta, C. Loomis, R. H. Lupton, S. Roweis, S. A. Snedden, M. A. Strauss, and D. L. Tucker, “An improved photometric calibration of the Sloan digital sky survey imaging data,” Astrophys. J. 674, 1217–1233 (2008).
[Crossref]

IEEE Trans. Circuit Syst. (1)

S. H. Lim and A. E. Gamal, “Gain fixed pattern noise correction via optical flow,” IEEE Trans. Circuit Syst. 51, 779–786 (2004).
[Crossref]

IEEE Trans. Electron Devices (1)

N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A. J. P. Theuwissen, “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,” IEEE Trans. Electron Devices 50, 77–83 (2003).
[Crossref]

IEEE Trans. Inf. Forensics Security (1)

J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Inf. Forensics Security 1, 205–214 (2006).
[Crossref]

J. Aerosp. Technol. Manage. (1)

E. S. Pereira, “Determining the fixed pattern noise of a CMOS sensor: improving the sensibility of autonomous star trackers,” J. Aerosp. Technol. Manage. 5, 217–222 (2013).
[Crossref]

J. Eur. Opt. Soc. (1)

M. Asadnezhad, A. Eslamimajd, and H. Hajghassem, “Optical system design of star sensor and stray light analysis,” J. Eur. Opt. Soc. 14, 9 (2018).
[Crossref]

J. Microsc. (1)

P. Kask, K. Palo, C. Hinnah, and T. Pommerencke, “Flat field correction for high-throughput imaging of fluorescent samples,” J. Microsc. 263, 328–340 (2016).
[Crossref]

Light Sci. Appl. (1)

M. S. Wei, F. Xing, and Z. You, “A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images,” Light Sci. Appl. 7, 18006 (2018).
[Crossref]

Opt. Express (3)

Optik (1)

S. Chang, “Aberrations of a slightly inclined Gaussian beam in a symmetric optical system,” Optik 123, 1190–1195 (2012).
[Crossref]

Proc. SPIE (6)

A. El Gamal, B. Fowler, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image sensors,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

S. E. Park, J. G. Kim, M. A. A. Hegazy, M. H. Cho, and S. Y. Lee, “A flat-field correction method for photon-counting-detector-based micro-CT,” Proc. SPIE 9033, 90335N (2014).
[Crossref]

S. Uwe, “Intelligent error correction method applied on active pixel sensor based star tracker,” Proc. SPIE 5964, 154–161 (2005).
[Crossref]

A. Mora and A. Vosteen, “Gaia in-orbit realignment: overview and data analysis,” Proc. SPIE 8442, 84421Q (2012).
[Crossref]

H. Tian, B. Fowler, and A. El Gamal, “Analysis of temporal noise in CMOS APS,” Proc. SPIE 3649, 177–185 (1999).
[Crossref]

B. Fowler, A. El Gamal, D. Yang, and H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” Proc. SPIE 3301, 178–185 (1998).
[Crossref]

Sensors (1)

J. Li, A. Mahmoodi, and D. Joseph, “Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors,” Sensors 15, 26331–26352 (2015).
[Crossref]

Other (3)

M. Fiuzy, M. Hashemi, and S. K. M. Mashhadi, “A novel fixed pattern noise reduction algorithm in CMOS detector for LEO satellite application,” in 4th International Conference on Control, Instrumentation, and Automation (ICCIA) (2016), pp. 419–424.

M. Schoberl, S. Fossel, and A. Kaup, “Fixed pattern noise column drift compensation (CDC) for digital moving picture cameras,” in IEEE International Conference on Image Processing (2010), pp. 573–576.

M. Schoberl, C. Senel, S. Fossel, H. Bloss, and A. Kaup, “Non-linear dark current fixed pattern noise compensation for variable frame rate moving picture cameras,” in 17th European Signal Processing Conference (2009), pp. 268–272.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. FPN noise appearance on star spot imaging area and correction method principle.
Fig. 2.
Fig. 2. Dynamic straining star spot area ( v x = 2 ° / s , exposure time t ins = 100 ms ).
Fig. 3.
Fig. 3. FPN noise pixel moves into spot localization area.
Fig. 4.
Fig. 4. Simulation of noise pixel’s impact for spot centroid localization.
Fig. 5.
Fig. 5. Number of pixels that need to be corrected.
Fig. 6.
Fig. 6. Pixel response non-uniformity correction experiment.
Fig. 7.
Fig. 7. (a) Pixel non-uniformity of response measurement curve, (b) correction curve with proposed method, and (c) calibration curve under different exposure times.
Fig. 8.
Fig. 8. Non-uniform response (exposure time t ins = 20 ms ).
Fig. 9.
Fig. 9. Comparison of residual curves after correction.
Fig. 10.
Fig. 10. Correction method for star spot localization experiment.
Fig. 11.
Fig. 11. Impact of the star spot centroid extraction accuracy.

Tables (4)

Tables Icon

Table 1. Parameters of Simulation Materials

Tables Icon

Table 2. Parameters of Experiment Materials

Tables Icon

Table 3. Residual of Different Exposure Times

Tables Icon

Table 4. Residual of Different Polynomial Fitting Degrees

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I 0 = H s .
I = I 0 + N fixed + N dynamic .
N fixed = N offset + N dark + N prnu .
N T = 4 K T B / R ,
N offset ( x , y ) = constant ( temperature T is fixed ) .
I dark ( x , y , t ins ) = G r ( x , y ) A t ins q e ( E G E T ) / k T .
N dark ( x , y , t ins ) k dark ( x , y ) × t ins + m dark ( x , y ) .
N prnu = m + k 1 s + k 2 s 2 + k 3 s 3 + ... + k n s n .
N prnu ( x , y , t ins ) k prnu ( x , y ) × t ins + m prnu ( x , y ) .
N fixed ( x , y , t ins ) = N offset ( x , y ) + N dark ( x , y , t ins ) + N prnu ( x , y , t ins ) = k fixed ( x , y ) t ins + m fixed ( x , y ) .
I m = I 0 + N fixed = G × t ins + k fixed ( x , y ) × t ins + m fixed ( x , y ) = ( G + k fixed ( x , y ) ) × t ins + m fixed ( x , y ) = ( 1 + G k fixed ( x , y ) ) × I 0 + m fixed ( x , y ) .
Δ x = f × tan ( v x × t ins ) m pixel = 25 mm × tan ( 2 ° / s × 100 ms ) 5.3 μm / pixel = 15.9 pixel .
σ pixel_response = 1 M 1 i = 1 M ( I m i I m ¯ ) 2 .

Metrics