Abstract

We propose three general interference multimode interferometers (MMIs) based on hybrid plasmonic waveguides (HPWs). Among them, the general 2×2 and 4×4 MMIs are designed for a 90° optical hybrid, while the 3×3 MMI is for a 120° optical hybrid. First, by considering the mode interference characteristics inside the multimode HPWs, a compromise between the number of guided modes and the device length is obtained at a determined height of the SiO2 interlayer of the HPW. Also, by analyzing the characteristics of multimode propagation in the HPW-MMI, it is found that the optimal positions of self-images would shift from their theoretical ones. In addition, tapered HPW sections are implemented to improve the coupling efficiencies for lights coupled into/out of the multimode section. Therefore, by optimizing the width and length of the multimode section, and especially the position of the input and output single-mode waveguides, the appropriate structure parameters of three HPW-MMIs are obtained, where the footprints of the 2×2, 3×3, and 4×4 HPW-MMIs are only 1.96×5.4μm2, 2.18×12.0μm2, and 2.52×11.5μm2, respectively. The simulation results show that, at the wavelength of 1550 nm, the 2×2 HPW-MMI exhibits a transmission of 75.6%, a maximum transmissions imbalance of 0.55 dB, and a phase error of 3.68°; the 3×3 HPW-MMI exhibits a transmission of 69.2%, a maximum transmissions imbalance of 0.43 dB, and a phase error of 4.66°; and the 4×4 HPW-MMI exhibits a transmission of 68.5%, a maximum transmissions imbalance of 0.91 dB, and a phase error of 4.81°. All these performances meet the standard industry requirements.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact and low loss 90° optical hybrid on a silicon-on-insulator platform

Hang Guan, Yangjin Ma, Ruizhi Shi, Xiaoliang Zhu, Rick Younce, Yaojia Chen, Jose Roman, Noam Ophir, Yang Liu, Ran Ding, Thomas Baehr-Jones, Keren Bergman, and Michael Hochberg
Opt. Express 25(23) 28957-28968 (2017)

Ultra-compact optical 90° hybrid based on a wedge-shaped 2 × 4 MMI coupler and a 2 × 2 MMI coupler in silicon-on-insulator

Wei Yang, Mei Yin, Yanping Li, Xingjun Wang, and Ziyu Wang
Opt. Express 21(23) 28423-28431 (2013)

Wavelength independent multimode interference coupler

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben
Opt. Express 21(6) 7033-7040 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription