Abstract

We engineer a tunable multilayered aluminum-doped zinc oxide metamaterial with low-loss and high-carrier concentration using the pulsed laser deposition. The results of the scanning probe microscopy study show excellent surface quality with a root mean square roughness value of 1.88±0.07nm. The transmission electron microscopy measurements indicate a clear layer-by-layer structure of the multilayered samples. The optical permittivity results, obtained using the ellipsometry approach, show that the hyperbolic dispersion of the dielectric constant [Re(ε)>0, Re(ε)<0] is achieved in the near-IR spectral range. The low imaginary part of the optical permittivity Im (ε)=0.003 and Im (ε)=0.011 is achieved for the optimized sample at the epsilon-near-zero spectral point [Re (ε)=0 at 1885 nm]. The results of the ellipsometry analysis show that the systematic variation of different fabrication conditions, such as the AZO/ZnO ratio, the thickness of an individual layer, the film’s total thickness, and the deposition temperatures, allows for tuning the plasma frequency ωp and damping frequency γp of the investigated samples, which is a promising approach for the future precise engineering of linear and nonlinear optical properties of multilayered aluminum-doped zinc oxide metamaterial.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide tuning of the optical and structural properties of alternative plasmonic materials

Yu Wang, Antonio Capretti, and Luca Dal Negro
Opt. Mater. Express 5(11) 2415-2430 (2015)

Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials

E. Shkondin, O. Takayama, M. E. Aryaee Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko
Opt. Mater. Express 7(5) 1606-1627 (2017)

References

  • View by:
  • |
  • |
  • |

  1. U. Betz, M. Olsson, J. Marthy, M. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: large area flat panel displays application,” Surf. Coat. Technol. 200, 5751–5759 (2006).
    [Crossref]
  2. T. Minami, “Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitues,” Thin Solid Films 516, 5822–5828 (2008).
    [Crossref]
  3. T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. 30, 021202 (2012).
    [Crossref]
  4. G. Luka, L. Wachnicki, B. S. Witowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176, 237–241 (2011).
    [Crossref]
  5. P. Banerjee, W. Lee, K. Bae, S. Lee, and G. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
    [Crossref]
  6. W. Kim, W. Maeng, M. Kim, and H. Kim, “Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes,” J. Electrochem. Soc. 158, E8 (2011).
    [Crossref]
  7. I. Volintiru, M. Creatore, B. J. Kniknie, C. Spee, and M. Van de Sanden, “Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition,” J. Appl. Phys. 102, 043709 (2007).
    [Crossref]
  8. J. F. Chang and M. H. Hon, “The effect of deposition temperature on the properties of Al-doped zinc oxide thin films,” Thin Solid Films 386, 79–86 (2001).
    [Crossref]
  9. D. Horwat and A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO:Al films prepared by reactive co-sputtering,” Thin Solid Films 515, 5444–5448 (2007).
    [Crossref]
  10. K. Yim and C. Lee, “Optical properties of Al-doped ZnO thin films deposited by two different sputtering methods,” Cryst. Res. Technol. 41, 1198–1202 (2006).
    [Crossref]
  11. J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed layer deposition,” Mater. Sci. Eng. B 103, 9–15 (2003).
    [Crossref]
  12. X. Chen, W. Guan, G. Fang, and X. Zhao, “Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by pulsed laser deposition,” Appl. Surf. Sci. 252, 1561–1567(2005).
    [Crossref]
  13. Y. Liu, L. Zhao, and J. Lian, “Al-doped ZnO films by pulsed laser deposition at room temperature,” Vacuum 81, 18–21 (2006).
    [Crossref]
  14. H. Kim, M. Osofsky, S. Prokes, O. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phy. Lett. 102, 171103 (2013).
    [Crossref]
  15. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
    [Crossref]
  16. E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
    [Crossref]
  17. Y. Liu and J. Lian, “Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition,” Appl. Surf. Sci. 253, 3727–3730 (2007).
    [Crossref]
  18. A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [Crossref]
  19. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
    [Crossref]
  20. P. Kelly, M. Liu, and L. Kuznetsova, “Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique,” Appl. Opt. 55, 2993–2997 (2016).
    [Crossref]
  21. G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltesseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
    [Crossref]
  22. C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
    [Crossref]
  23. M. Noginov, H. Li, Y. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. Bonner, M. Mayy, Z. Jacob, and E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
    [Crossref]
  24. H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. Menon, “Topological transmissions in metamaterials,” Science 336, 205–209 (2012).
    [Crossref]
  25. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6, 450–454 (2012).
    [Crossref]
  26. C. Bacco, P. Kelly, and L. Kuznetsova, “Optical mode confinement in the Al/SiO2 disk nanocavities with hyperbolic dispersion in the infrared spectral region,” J. Nanophoton. 10, 046003 (2016).
    [Crossref]
  27. L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
    [Crossref]
  28. M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
    [Crossref]
  29. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
    [Crossref]
  30. A. S. Rogov and E. E. Narimanov, "Pulse shaping for super-resolution imaging," in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh1G.4.
    [Crossref]
  31. A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
    [Crossref]
  32. G. Naik, V. Shaleav, and A. Boltesseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref]
  33. S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
    [Crossref]
  34. D. Krajnovich, J. Vazquez, and R. Savoy, “Impurity-driven cone formation during laser sputtering of graphite,” Science 259, 1590–1592 (1993).
    [Crossref]
  35. S. Park, T. Ikegami, and K. Ebihara, “Growth of transparent conductive Al-doped ZnO thin films and device applications,” Jpn. J. Appl. Phys. 45, 8453–8456 (2006).
    [Crossref]
  36. B. Sharma, N. Khare, and D. Haranath, “Photoluminescence lifetime of Al-doped ZnO films in visible region,” Solid State Commun. 150, 2341–2345 (2010).
    [Crossref]
  37. M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures (Springer, 2004).
  38. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  39. J. Esler, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
    [Crossref]
  40. H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36, 6237–6243 (1997).
    [Crossref]
  41. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11, 341–359 (1997).
    [Crossref]
  42. S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution—an updated survey,” Swarm and Evolutionary Computation 27, 1–30 (2016).
    [Crossref]
  43. G. Liang, P. Fan, X.-M. Cal, D.-P. Zhang, and Z.-H. Zheng, “The influence of film thickness on the transparency and conductivity of Al-doped ZnO thin films fabricated by ion-beam sputtering,” J. Electron. Mater. 40, 267–273 (2011).
    [Crossref]
  44. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090 (2011).
    [Crossref]
  45. F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, and L. Zhuge, “Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films,” Vacuum 89, 127–131(2013).
    [Crossref]
  46. M. Bodea, G. Sbarcea, G. Naik, A. Boltesseva, T. Klar, and J. D. Pedarnig, “Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition,” Appl. Phys. A 110, 929–934 (2013).
    [Crossref]
  47. R. L. Weiher, “Optical properties of free electrons in ZnO,” Phys. Rev. 152, 736–739 (1966).
    [Crossref]
  48. D. J. Griffiths, Introduction to Electrodynamics (Cambridge University, 2017).
  49. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
    [Crossref]
  50. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
    [Crossref]
  51. P. Kelly and L. Kuznetsova, “Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial,” Appl. Phys. B 124, 60 (2018).
    [Crossref]
  52. P. Kelly and L. Kuznetsova, “Finite-difference time-domain numerical study of ultrashort pulse propagation across sub-micron scale distances in Al:ZnO/ZnO at the epsilon near-zero spectral point,” Proc. SPIE 10719, 1071923 (2018).
    [Crossref]
  53. E. Shkondin, O. Takayama, M. E. Aryaee Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7, 1606–1627 (2017).
    [Crossref]
  54. E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, V. M. Shalaev, D. Faccio, A. Boltasseva, and M. Ferrera, “Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides,” Opt. Mater. Express 8, 3392–3400 (2018).
    [Crossref]

2018 (3)

P. Kelly and L. Kuznetsova, “Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial,” Appl. Phys. B 124, 60 (2018).
[Crossref]

P. Kelly and L. Kuznetsova, “Finite-difference time-domain numerical study of ultrashort pulse propagation across sub-micron scale distances in Al:ZnO/ZnO at the epsilon near-zero spectral point,” Proc. SPIE 10719, 1071923 (2018).
[Crossref]

E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, V. M. Shalaev, D. Faccio, A. Boltasseva, and M. Ferrera, “Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides,” Opt. Mater. Express 8, 3392–3400 (2018).
[Crossref]

2017 (3)

E. Shkondin, O. Takayama, M. E. Aryaee Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7, 1606–1627 (2017).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

2016 (5)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution—an updated survey,” Swarm and Evolutionary Computation 27, 1–30 (2016).
[Crossref]

C. Bacco, P. Kelly, and L. Kuznetsova, “Optical mode confinement in the Al/SiO2 disk nanocavities with hyperbolic dispersion in the infrared spectral region,” J. Nanophoton. 10, 046003 (2016).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

P. Kelly, M. Liu, and L. Kuznetsova, “Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique,” Appl. Opt. 55, 2993–2997 (2016).
[Crossref]

2015 (1)

2014 (2)

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

2013 (4)

G. Naik, V. Shaleav, and A. Boltesseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, and L. Zhuge, “Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films,” Vacuum 89, 127–131(2013).
[Crossref]

M. Bodea, G. Sbarcea, G. Naik, A. Boltesseva, T. Klar, and J. D. Pedarnig, “Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition,” Appl. Phys. A 110, 929–934 (2013).
[Crossref]

H. Kim, M. Osofsky, S. Prokes, O. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phy. Lett. 102, 171103 (2013).
[Crossref]

2012 (4)

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. 30, 021202 (2012).
[Crossref]

H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. Menon, “Topological transmissions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6, 450–454 (2012).
[Crossref]

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltesseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

2011 (6)

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090 (2011).
[Crossref]

G. Liang, P. Fan, X.-M. Cal, D.-P. Zhang, and Z.-H. Zheng, “The influence of film thickness on the transparency and conductivity of Al-doped ZnO thin films fabricated by ion-beam sputtering,” J. Electron. Mater. 40, 267–273 (2011).
[Crossref]

G. Luka, L. Wachnicki, B. S. Witowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176, 237–241 (2011).
[Crossref]

W. Kim, W. Maeng, M. Kim, and H. Kim, “Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes,” J. Electrochem. Soc. 158, E8 (2011).
[Crossref]

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

2010 (3)

P. Banerjee, W. Lee, K. Bae, S. Lee, and G. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

B. Sharma, N. Khare, and D. Haranath, “Photoluminescence lifetime of Al-doped ZnO films in visible region,” Solid State Commun. 150, 2341–2345 (2010).
[Crossref]

M. Noginov, H. Li, Y. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. Bonner, M. Mayy, Z. Jacob, and E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

2008 (2)

T. Minami, “Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitues,” Thin Solid Films 516, 5822–5828 (2008).
[Crossref]

E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
[Crossref]

2007 (4)

Y. Liu and J. Lian, “Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition,” Appl. Surf. Sci. 253, 3727–3730 (2007).
[Crossref]

I. Volintiru, M. Creatore, B. J. Kniknie, C. Spee, and M. Van de Sanden, “Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition,” J. Appl. Phys. 102, 043709 (2007).
[Crossref]

D. Horwat and A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO:Al films prepared by reactive co-sputtering,” Thin Solid Films 515, 5444–5448 (2007).
[Crossref]

J. Esler, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

2006 (4)

K. Yim and C. Lee, “Optical properties of Al-doped ZnO thin films deposited by two different sputtering methods,” Cryst. Res. Technol. 41, 1198–1202 (2006).
[Crossref]

U. Betz, M. Olsson, J. Marthy, M. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: large area flat panel displays application,” Surf. Coat. Technol. 200, 5751–5759 (2006).
[Crossref]

Y. Liu, L. Zhao, and J. Lian, “Al-doped ZnO films by pulsed laser deposition at room temperature,” Vacuum 81, 18–21 (2006).
[Crossref]

S. Park, T. Ikegami, and K. Ebihara, “Growth of transparent conductive Al-doped ZnO thin films and device applications,” Jpn. J. Appl. Phys. 45, 8453–8456 (2006).
[Crossref]

2005 (1)

X. Chen, W. Guan, G. Fang, and X. Zhao, “Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by pulsed laser deposition,” Appl. Surf. Sci. 252, 1561–1567(2005).
[Crossref]

2003 (2)

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed layer deposition,” Mater. Sci. Eng. B 103, 9–15 (2003).
[Crossref]

2001 (1)

J. F. Chang and M. H. Hon, “The effect of deposition temperature on the properties of Al-doped zinc oxide thin films,” Thin Solid Films 386, 79–86 (2001).
[Crossref]

1997 (2)

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36, 6237–6243 (1997).
[Crossref]

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11, 341–359 (1997).
[Crossref]

1993 (1)

D. Krajnovich, J. Vazquez, and R. Savoy, “Impurity-driven cone formation during laser sputtering of graphite,” Science 259, 1590–1592 (1993).
[Crossref]

1966 (1)

R. L. Weiher, “Optical properties of free electrons in ZnO,” Phys. Rev. 152, 736–739 (1966).
[Crossref]

Adachi, S.

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36, 6237–6243 (1997).
[Crossref]

Agura, H.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Androulidaki, M.

E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
[Crossref]

Aoki, T.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

Aperathitis, E.

E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
[Crossref]

Aryaee Panah, M. E.

Atamny, F.

U. Betz, M. Olsson, J. Marthy, M. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: large area flat panel displays application,” Surf. Coat. Technol. 200, 5751–5759 (2006).
[Crossref]

Atwater, H.

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

Avrutsky, I.

J. Esler, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Bacco, C.

C. Bacco, P. Kelly, and L. Kuznetsova, “Optical mode confinement in the Al/SiO2 disk nanocavities with hyperbolic dispersion in the infrared spectral region,” J. Nanophoton. 10, 046003 (2016).
[Crossref]

Bae, K.

P. Banerjee, W. Lee, K. Bae, S. Lee, and G. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

Bahoura, M.

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Banerjee, P.

P. Banerjee, W. Lee, K. Bae, S. Lee, and G. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

Barnakov, Y.

Barnakov, Y. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Basov, D.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Betz, U.

U. Betz, M. Olsson, J. Marthy, M. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: large area flat panel displays application,” Surf. Coat. Technol. 200, 5751–5759 (2006).
[Crossref]

Bhattacharya, P.

J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed layer deposition,” Mater. Sci. Eng. B 103, 9–15 (2003).
[Crossref]

Billard, A.

D. Horwat and A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO:Al films prepared by reactive co-sputtering,” Thin Solid Films 515, 5444–5448 (2007).
[Crossref]

Bodea, M.

M. Bodea, G. Sbarcea, G. Naik, A. Boltesseva, T. Klar, and J. D. Pedarnig, “Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition,” Appl. Phys. A 110, 929–934 (2013).
[Crossref]

Boltasseva, A.

E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, V. M. Shalaev, D. Faccio, A. Boltasseva, and M. Ferrera, “Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides,” Opt. Mater. Express 8, 3392–3400 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090 (2011).
[Crossref]

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

Boltesseva, A.

G. Naik, V. Shaleav, and A. Boltesseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

M. Bodea, G. Sbarcea, G. Naik, A. Boltesseva, T. Klar, and J. D. Pedarnig, “Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition,” Appl. Phys. A 110, 929–934 (2013).
[Crossref]

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltesseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

Bonner, C.

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

Bruno, V.

Cal, X.-M.

G. Liang, P. Fan, X.-M. Cal, D.-P. Zhang, and Z.-H. Zheng, “The influence of film thickness on the transparency and conductivity of Al-doped ZnO thin films fabricated by ion-beam sputtering,” J. Electron. Mater. 40, 267–273 (2011).
[Crossref]

Carnemolla, E. G.

E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, V. M. Shalaev, D. Faccio, A. Boltasseva, and M. Ferrera, “Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides,” Opt. Mater. Express 8, 3392–3400 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

Caspani, L.

E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, V. M. Shalaev, D. Faccio, A. Boltasseva, and M. Ferrera, “Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides,” Opt. Mater. Express 8, 3392–3400 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Chang, J. F.

J. F. Chang and M. H. Hon, “The effect of deposition temperature on the properties of Al-doped zinc oxide thin films,” Thin Solid Films 386, 79–86 (2001).
[Crossref]

Cheaito, R.

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Chen, X.

X. Chen, W. Guan, G. Fang, and X. Zhao, “Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by pulsed laser deposition,” Appl. Surf. Sci. 252, 1561–1567(2005).
[Crossref]

Chikoidze, E.

E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
[Crossref]

Christian, R.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. 30, 021202 (2012).
[Crossref]

Clerici, M.

E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, V. M. Shalaev, D. Faccio, A. Boltasseva, and M. Ferrera, “Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides,” Opt. Mater. Express 8, 3392–3400 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Creatore, M.

I. Volintiru, M. Creatore, B. J. Kniknie, C. Spee, and M. Van de Sanden, “Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition,” J. Appl. Phys. 102, 043709 (2007).
[Crossref]

Das, S.

S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution—an updated survey,” Swarm and Evolutionary Computation 27, 1–30 (2016).
[Crossref]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

DeVault, C.

Dhakal, T.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. 30, 021202 (2012).
[Crossref]

Di Falco, A.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Dryden, D.

Dye, R.

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

Ebihara, K.

S. Park, T. Ikegami, and K. Ebihara, “Growth of transparent conductive Al-doped ZnO thin films and device applications,” Jpn. J. Appl. Phys. 45, 8453–8456 (2006).
[Crossref]

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

Escolá, M.

U. Betz, M. Olsson, J. Marthy, M. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: large area flat panel displays application,” Surf. Coat. Technol. 200, 5751–5759 (2006).
[Crossref]

Esler, J.

J. Esler, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Estler, R.

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

Faccio, D.

E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, V. M. Shalaev, D. Faccio, A. Boltasseva, and M. Ferrera, “Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides,” Opt. Mater. Express 8, 3392–3400 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Fainman, Y.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Fan, P.

G. Liang, P. Fan, X.-M. Cal, D.-P. Zhang, and Z.-H. Zheng, “The influence of film thickness on the transparency and conductivity of Al-doped ZnO thin films fabricated by ion-beam sputtering,” J. Electron. Mater. 40, 267–273 (2011).
[Crossref]

Fang, G.

X. Chen, W. Guan, G. Fang, and X. Zhao, “Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by pulsed laser deposition,” Appl. Surf. Sci. 252, 1561–1567(2005).
[Crossref]

Ferrera, M.

E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, V. M. Shalaev, D. Faccio, A. Boltasseva, and M. Ferrera, “Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides,” Opt. Mater. Express 8, 3392–3400 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

Foltyn, S.

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

Galtier, P.

E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
[Crossref]

Glembocki, O.

H. Kim, M. Osofsky, S. Prokes, O. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phy. Lett. 102, 171103 (2013).
[Crossref]

Godlewski, M.

G. Luka, L. Wachnicki, B. S. Witowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176, 237–241 (2011).
[Crossref]

Griffiths, D. J.

D. J. Griffiths, Introduction to Electrodynamics (Cambridge University, 2017).

Gu, L.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Guan, W.

X. Chen, W. Guan, G. Fang, and X. Zhao, “Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by pulsed laser deposition,” Appl. Surf. Sci. 252, 1561–1567(2005).
[Crossref]

Guziewicz, E.

G. Luka, L. Wachnicki, B. S. Witowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176, 237–241 (2011).
[Crossref]

Haranath, D.

B. Sharma, N. Khare, and D. Haranath, “Photoluminescence lifetime of Al-doped ZnO films in visible region,” Solid State Commun. 150, 2341–2345 (2010).
[Crossref]

Hon, M. H.

J. F. Chang and M. H. Hon, “The effect of deposition temperature on the properties of Al-doped zinc oxide thin films,” Thin Solid Films 386, 79–86 (2001).
[Crossref]

Hopkins, P.

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Horwat, D.

D. Horwat and A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO:Al films prepared by reactive co-sputtering,” Thin Solid Films 515, 5444–5448 (2007).
[Crossref]

Hubbard, K.

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

Hutchinson, W.

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

Huyberechts, G.

E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
[Crossref]

Ikegami, T.

S. Park, T. Ikegami, and K. Ebihara, “Growth of transparent conductive Al-doped ZnO thin films and device applications,” Jpn. J. Appl. Phys. 45, 8453–8456 (2006).
[Crossref]

Jacob, Z.

H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. Menon, “Topological transmissions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

M. Noginov, H. Li, Y. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. Bonner, M. Mayy, Z. Jacob, and E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

Jakiela, R.

G. Luka, L. Wachnicki, B. S. Witowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176, 237–241 (2011).
[Crossref]

Jensen, F.

Kaipurath, R. P. M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Kargar, A.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Katiyar, R. S.

J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed layer deposition,” Mater. Sci. Eng. B 103, 9–15 (2003).
[Crossref]

Kelly, P.

P. Kelly and L. Kuznetsova, “Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial,” Appl. Phys. B 124, 60 (2018).
[Crossref]

P. Kelly and L. Kuznetsova, “Finite-difference time-domain numerical study of ultrashort pulse propagation across sub-micron scale distances in Al:ZnO/ZnO at the epsilon near-zero spectral point,” Proc. SPIE 10719, 1071923 (2018).
[Crossref]

P. Kelly, M. Liu, and L. Kuznetsova, “Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique,” Appl. Opt. 55, 2993–2997 (2016).
[Crossref]

C. Bacco, P. Kelly, and L. Kuznetsova, “Optical mode confinement in the Al/SiO2 disk nanocavities with hyperbolic dispersion in the infrared spectral region,” J. Nanophoton. 10, 046003 (2016).
[Crossref]

Khare, N.

B. Sharma, N. Khare, and D. Haranath, “Photoluminescence lifetime of Al-doped ZnO films in visible region,” Solid State Commun. 150, 2341–2345 (2010).
[Crossref]

Kieu, T.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Kildishev, A.

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltesseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

Kim, H.

H. Kim, M. Osofsky, S. Prokes, O. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phy. Lett. 102, 171103 (2013).
[Crossref]

W. Kim, W. Maeng, M. Kim, and H. Kim, “Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes,” J. Electrochem. Soc. 158, E8 (2011).
[Crossref]

Kim, J.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090 (2011).
[Crossref]

Kim, M.

W. Kim, W. Maeng, M. Kim, and H. Kim, “Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes,” J. Electrochem. Soc. 158, E8 (2011).
[Crossref]

Kim, S.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Kim, W.

W. Kim, W. Maeng, M. Kim, and H. Kim, “Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes,” J. Electrochem. Soc. 158, E8 (2011).
[Crossref]

Kinsey, N.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

Klar, T.

M. Bodea, G. Sbarcea, G. Naik, A. Boltesseva, T. Klar, and J. D. Pedarnig, “Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition,” Appl. Phys. A 110, 929–934 (2013).
[Crossref]

Kniknie, B. J.

I. Volintiru, M. Creatore, B. J. Kniknie, C. Spee, and M. Van de Sanden, “Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition,” J. Appl. Phys. 102, 043709 (2007).
[Crossref]

Kouroupis-Agalou, K.

E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
[Crossref]

Krajewski, T. A.

G. Luka, L. Wachnicki, B. S. Witowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176, 237–241 (2011).
[Crossref]

Krajnovich, D.

D. Krajnovich, J. Vazquez, and R. Savoy, “Impurity-driven cone formation during laser sputtering of graphite,” Science 259, 1590–1592 (1993).
[Crossref]

Kretzschmar, I.

H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. Menon, “Topological transmissions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

Krishnamoorthy, H.

H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. Menon, “Topological transmissions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

Kuznetsova, L.

P. Kelly and L. Kuznetsova, “Finite-difference time-domain numerical study of ultrashort pulse propagation across sub-micron scale distances in Al:ZnO/ZnO at the epsilon near-zero spectral point,” Proc. SPIE 10719, 1071923 (2018).
[Crossref]

P. Kelly and L. Kuznetsova, “Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial,” Appl. Phys. B 124, 60 (2018).
[Crossref]

P. Kelly, M. Liu, and L. Kuznetsova, “Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique,” Appl. Opt. 55, 2993–2997 (2016).
[Crossref]

C. Bacco, P. Kelly, and L. Kuznetsova, “Optical mode confinement in the Al/SiO2 disk nanocavities with hyperbolic dispersion in the infrared spectral region,” J. Nanophoton. 10, 046003 (2016).
[Crossref]

Larsen, P. V.

Lavrinenko, A. V.

Lee, C.

K. Yim and C. Lee, “Optical properties of Al-doped ZnO thin films deposited by two different sputtering methods,” Cryst. Res. Technol. 41, 1198–1202 (2006).
[Crossref]

Lee, S.

P. Banerjee, W. Lee, K. Bae, S. Lee, and G. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

Lee, W.

P. Banerjee, W. Lee, K. Bae, S. Lee, and G. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

Li, H.

Lian, J.

Y. Liu and J. Lian, “Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition,” Appl. Surf. Sci. 253, 3727–3730 (2007).
[Crossref]

Y. Liu, L. Zhao, and J. Lian, “Al-doped ZnO films by pulsed laser deposition at room temperature,” Vacuum 81, 18–21 (2006).
[Crossref]

Liang, G.

G. Liang, P. Fan, X.-M. Cal, D.-P. Zhang, and Z.-H. Zheng, “The influence of film thickness on the transparency and conductivity of Al-doped ZnO thin films fabricated by ion-beam sputtering,” J. Electron. Mater. 40, 267–273 (2011).
[Crossref]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

Liu, J.

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltesseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

Liu, M.

Liu, P.

Liu, Y.

Y. Liu and J. Lian, “Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition,” Appl. Surf. Sci. 253, 3727–3730 (2007).
[Crossref]

Y. Liu, L. Zhao, and J. Lian, “Al-doped ZnO films by pulsed laser deposition at room temperature,” Vacuum 81, 18–21 (2006).
[Crossref]

Livenere, J.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Luka, G.

G. Luka, L. Wachnicki, B. S. Witowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176, 237–241 (2011).
[Crossref]

Maeng, W.

W. Kim, W. Maeng, M. Kim, and H. Kim, “Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes,” J. Electrochem. Soc. 158, E8 (2011).
[Crossref]

Mar, M. D.

Marthy, J.

U. Betz, M. Olsson, J. Marthy, M. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: large area flat panel displays application,” Surf. Coat. Technol. 200, 5751–5759 (2006).
[Crossref]

Mass, J.

J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed layer deposition,” Mater. Sci. Eng. B 103, 9–15 (2003).
[Crossref]

Matsushita, T.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

Mayy, M.

Menon, V.

H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. Menon, “Topological transmissions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

Minami, T.

T. Minami, “Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitues,” Thin Solid Films 516, 5822–5828 (2008).
[Crossref]

Muenchausen, R.

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

Mullick, S. S.

S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution—an updated survey,” Swarm and Evolutionary Computation 27, 1–30 (2016).
[Crossref]

Mundle, R.

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Naik, G.

G. Naik, V. Shaleav, and A. Boltesseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

M. Bodea, G. Sbarcea, G. Naik, A. Boltesseva, T. Klar, and J. D. Pedarnig, “Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition,” Appl. Phys. A 110, 929–934 (2013).
[Crossref]

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltesseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

Naik, G. V.

Nandur, A.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. 30, 021202 (2012).
[Crossref]

Narimanov, E.

H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. Menon, “Topological transmissions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

M. Noginov, H. Li, Y. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. Bonner, M. Mayy, Z. Jacob, and E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

Narimanov, E. E.

A. S. Rogov and E. E. Narimanov, "Pulse shaping for super-resolution imaging," in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh1G.4.
[Crossref]

Nataraj, G.

Nogar, N.

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

Noginov, M.

Noginov, M. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Okuda, M.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

Olsson, M.

U. Betz, M. Olsson, J. Marthy, M. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: large area flat panel displays application,” Surf. Coat. Technol. 200, 5751–5759 (2006).
[Crossref]

Osofsky, M.

H. Kim, M. Osofsky, S. Prokes, O. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phy. Lett. 102, 171103 (2013).
[Crossref]

Ott, K.

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

Pan, A.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Pan, X.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Papadopoulou, E.

E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
[Crossref]

Park, S.

S. Park, T. Ikegami, and K. Ebihara, “Growth of transparent conductive Al-doped ZnO thin films and device applications,” Jpn. J. Appl. Phys. 45, 8453–8456 (2006).
[Crossref]

Pedarnig, J. D.

M. Bodea, G. Sbarcea, G. Naik, A. Boltesseva, T. Klar, and J. D. Pedarnig, “Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition,” Appl. Phys. A 110, 929–934 (2013).
[Crossref]

Peterson, E.

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

Pietrzyk, M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Piqué, A.

H. Kim, M. Osofsky, S. Prokes, O. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phy. Lett. 102, 171103 (2013).
[Crossref]

Podolskiy, V.

J. Esler, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Podolskiy, V. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Post, K.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Pradhan, A.

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Pradhan, A. K.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Price, K.

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11, 341–359 (1997).
[Crossref]

Prokes, S.

H. Kim, M. Osofsky, S. Prokes, O. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phy. Lett. 102, 171103 (2013).
[Crossref]

Rho, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6, 450–454 (2012).
[Crossref]

Riley, C.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Roger, T.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Rogov, A. S.

A. S. Rogov and E. E. Narimanov, "Pulse shaping for super-resolution imaging," in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh1G.4.
[Crossref]

Rubloff, G.

P. Banerjee, W. Lee, K. Bae, S. Lee, and G. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

Salakhutdinov, I.

J. Esler, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Santiago, K.

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Savoy, R.

D. Krajnovich, J. Vazquez, and R. Savoy, “Impurity-driven cone formation during laser sputtering of graphite,” Science 259, 1590–1592 (1993).
[Crossref]

Sbarcea, G.

M. Bodea, G. Sbarcea, G. Naik, A. Boltesseva, T. Klar, and J. D. Pedarnig, “Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition,” Appl. Phys. A 110, 929–934 (2013).
[Crossref]

Schubert, M.

M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures (Springer, 2004).

Shalaev, V.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltesseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

Shalaev, V. M.

Shaleav, V.

G. Naik, V. Shaleav, and A. Boltesseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Shaltout, A.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

Sharma, A.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. 30, 021202 (2012).
[Crossref]

Sharma, B.

B. Sharma, N. Khare, and D. Haranath, “Photoluminescence lifetime of Al-doped ZnO films in visible region,” Solid State Commun. 150, 2341–2345 (2010).
[Crossref]

Shkondin, E.

Sirbuly, D.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Skuza, J.

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Smalley, J.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Song, K.

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Spee, C.

I. Volintiru, M. Creatore, B. J. Kniknie, C. Spee, and M. Van de Sanden, “Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition,” J. Appl. Phys. 102, 043709 (2007).
[Crossref]

Storn, R.

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11, 341–359 (1997).
[Crossref]

Suganthan, P. N.

S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution—an updated survey,” Swarm and Evolutionary Computation 27, 1–30 (2016).
[Crossref]

Suzuki, A.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

Takayama, O.

Van de Sanden, M.

I. Volintiru, M. Creatore, B. J. Kniknie, C. Spee, and M. Van de Sanden, “Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition,” J. Appl. Phys. 102, 043709 (2007).
[Crossref]

Vanhart, D.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. 30, 021202 (2012).
[Crossref]

Varda, M.

E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
[Crossref]

Vazquez, J.

D. Krajnovich, J. Vazquez, and R. Savoy, “Impurity-driven cone formation during laser sputtering of graphite,” Science 259, 1590–1592 (1993).
[Crossref]

Vezzoli, S.

Volintiru, I.

I. Volintiru, M. Creatore, B. J. Kniknie, C. Spee, and M. Van de Sanden, “Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition,” J. Appl. Phys. 102, 043709 (2007).
[Crossref]

Wachnicki, L.

G. Luka, L. Wachnicki, B. S. Witowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176, 237–241 (2011).
[Crossref]

Wang, D.

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Wang, F.

F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, and L. Zhuge, “Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films,” Vacuum 89, 127–131(2013).
[Crossref]

Wang, Y.

F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, and L. Zhuge, “Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films,” Vacuum 89, 127–131(2013).
[Crossref]

Weiher, R. L.

R. L. Weiher, “Optical properties of free electrons in ZnO,” Phys. Rev. 152, 736–739 (1966).
[Crossref]

Westgate, C.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. 30, 021202 (2012).
[Crossref]

Witowski, B. S.

G. Luka, L. Wachnicki, B. S. Witowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176, 237–241 (2011).
[Crossref]

Wu, M.

F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, and L. Zhuge, “Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films,” Vacuum 89, 127–131(2013).
[Crossref]

Wu, X.

F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, and L. Zhuge, “Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films,” Vacuum 89, 127–131(2013).
[Crossref]

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

Xiao, B.

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Yang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6, 450–454 (2012).
[Crossref]

Yao, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6, 450–454 (2012).
[Crossref]

Yim, K.

K. Yim and C. Lee, “Optical properties of Al-doped ZnO thin films deposited by two different sputtering methods,” Cryst. Res. Technol. 41, 1198–1202 (2006).
[Crossref]

Yin, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6, 450–454 (2012).
[Crossref]

Yoshikawa, H.

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36, 6237–6243 (1997).
[Crossref]

Yu, Y.

F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, and L. Zhuge, “Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films,” Vacuum 89, 127–131(2013).
[Crossref]

Zhang, D.-P.

G. Liang, P. Fan, X.-M. Cal, D.-P. Zhang, and Z.-H. Zheng, “The influence of film thickness on the transparency and conductivity of Al-doped ZnO thin films fabricated by ion-beam sputtering,” J. Electron. Mater. 40, 267–273 (2011).
[Crossref]

Zhang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6, 450–454 (2012).
[Crossref]

Zhao, L.

Y. Liu, L. Zhao, and J. Lian, “Al-doped ZnO films by pulsed laser deposition at room temperature,” Vacuum 81, 18–21 (2006).
[Crossref]

Zhao, X.

X. Chen, W. Guan, G. Fang, and X. Zhao, “Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by pulsed laser deposition,” Appl. Surf. Sci. 252, 1561–1567(2005).
[Crossref]

Zheng, Z.-H.

G. Liang, P. Fan, X.-M. Cal, D.-P. Zhang, and Z.-H. Zheng, “The influence of film thickness on the transparency and conductivity of Al-doped ZnO thin films fabricated by ion-beam sputtering,” J. Electron. Mater. 40, 267–273 (2011).
[Crossref]

Zhu, G.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

M. Noginov, H. Li, Y. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. Bonner, M. Mayy, Z. Jacob, and E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010).
[Crossref]

Zhuge, L.

F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, and L. Zhuge, “Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films,” Vacuum 89, 127–131(2013).
[Crossref]

Adv. Mater. (1)

G. Naik, V. Shaleav, and A. Boltesseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phy. Lett. (1)

H. Kim, M. Osofsky, S. Prokes, O. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phy. Lett. 102, 171103 (2013).
[Crossref]

Appl. Phys. A (1)

M. Bodea, G. Sbarcea, G. Naik, A. Boltesseva, T. Klar, and J. D. Pedarnig, “Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition,” Appl. Phys. A 110, 929–934 (2013).
[Crossref]

Appl. Phys. B (1)

P. Kelly and L. Kuznetsova, “Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial,” Appl. Phys. B 124, 60 (2018).
[Crossref]

Appl. Phys. Lett. (2)

J. Esler, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Appl. Surf. Sci. (2)

Y. Liu and J. Lian, “Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition,” Appl. Surf. Sci. 253, 3727–3730 (2007).
[Crossref]

X. Chen, W. Guan, G. Fang, and X. Zhao, “Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by pulsed laser deposition,” Appl. Surf. Sci. 252, 1561–1567(2005).
[Crossref]

Cryst. Res. Technol. (1)

K. Yim and C. Lee, “Optical properties of Al-doped ZnO thin films deposited by two different sputtering methods,” Cryst. Res. Technol. 41, 1198–1202 (2006).
[Crossref]

J. Appl. Phys. (2)

P. Banerjee, W. Lee, K. Bae, S. Lee, and G. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108, 043504 (2010).
[Crossref]

I. Volintiru, M. Creatore, B. J. Kniknie, C. Spee, and M. Van de Sanden, “Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition,” J. Appl. Phys. 102, 043709 (2007).
[Crossref]

J. Electrochem. Soc. (1)

W. Kim, W. Maeng, M. Kim, and H. Kim, “Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes,” J. Electrochem. Soc. 158, E8 (2011).
[Crossref]

J. Electron. Mater. (1)

G. Liang, P. Fan, X.-M. Cal, D.-P. Zhang, and Z.-H. Zheng, “The influence of film thickness on the transparency and conductivity of Al-doped ZnO thin films fabricated by ion-beam sputtering,” J. Electron. Mater. 40, 267–273 (2011).
[Crossref]

J. Glob. Optim. (1)

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11, 341–359 (1997).
[Crossref]

J. Nanophoton. (1)

C. Bacco, P. Kelly, and L. Kuznetsova, “Optical mode confinement in the Al/SiO2 disk nanocavities with hyperbolic dispersion in the infrared spectral region,” J. Nanophoton. 10, 046003 (2016).
[Crossref]

J. Vac. Sci. Technol. (1)

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. 30, 021202 (2012).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Park, T. Ikegami, and K. Ebihara, “Growth of transparent conductive Al-doped ZnO thin films and device applications,” Jpn. J. Appl. Phys. 45, 8453–8456 (2006).
[Crossref]

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys. 36, 6237–6243 (1997).
[Crossref]

Mater. Sci. Eng. B (2)

G. Luka, L. Wachnicki, B. S. Witowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176, 237–241 (2011).
[Crossref]

J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed layer deposition,” Mater. Sci. Eng. B 103, 9–15 (2003).
[Crossref]

Nat. Commun. (1)

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).
[Crossref]

Nat. Photonics (2)

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6, 450–454 (2012).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (3)

Optica (1)

Phys. Rev. (1)

R. L. Weiher, “Optical properties of free electrons in ZnO,” Phys. Rev. 152, 736–739 (1966).
[Crossref]

Phys. Rev. Lett. (1)

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116, 233901 (2016).
[Crossref]

Phys. Status Solidi RRL (1)

C. Riley, T. Kieu, J. Smalley, A. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Status Solidi RRL 8, 948–952 (2014).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltesseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. USA 109, 8834–8838 (2012).
[Crossref]

Proc. SPIE (1)

P. Kelly and L. Kuznetsova, “Finite-difference time-domain numerical study of ultrashort pulse propagation across sub-micron scale distances in Al:ZnO/ZnO at the epsilon near-zero spectral point,” Proc. SPIE 10719, 1071923 (2018).
[Crossref]

Sci. Rep. (1)

A. Pradhan, R. Mundle, K. Santiago, J. Skuza, B. Xiao, K. Song, M. Bahoura, R. Cheaito, and P. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Science (4)

H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. Menon, “Topological transmissions in metamaterials,” Science 336, 205–209 (2012).
[Crossref]

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352, 795–797 (2016).
[Crossref]

D. Krajnovich, J. Vazquez, and R. Savoy, “Impurity-driven cone formation during laser sputtering of graphite,” Science 259, 1590–1592 (1993).
[Crossref]

Solid State Commun. (1)

B. Sharma, N. Khare, and D. Haranath, “Photoluminescence lifetime of Al-doped ZnO films in visible region,” Solid State Commun. 150, 2341–2345 (2010).
[Crossref]

Surf. Coat. Technol. (1)

U. Betz, M. Olsson, J. Marthy, M. Escolá, and F. Atamny, “Thin films engineering of indium tin oxide: large area flat panel displays application,” Surf. Coat. Technol. 200, 5751–5759 (2006).
[Crossref]

Swarm and Evolutionary Computation (1)

S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution—an updated survey,” Swarm and Evolutionary Computation 27, 1–30 (2016).
[Crossref]

Thin Solid Films (5)

T. Minami, “Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitues,” Thin Solid Films 516, 5822–5828 (2008).
[Crossref]

J. F. Chang and M. H. Hon, “The effect of deposition temperature on the properties of Al-doped zinc oxide thin films,” Thin Solid Films 386, 79–86 (2001).
[Crossref]

D. Horwat and A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO:Al films prepared by reactive co-sputtering,” Thin Solid Films 515, 5444–5448 (2007).
[Crossref]

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

E. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films 516, 8141–8145 (2008).
[Crossref]

Vacuum (2)

Y. Liu, L. Zhao, and J. Lian, “Al-doped ZnO films by pulsed laser deposition at room temperature,” Vacuum 81, 18–21 (2006).
[Crossref]

F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, and L. Zhuge, “Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films,” Vacuum 89, 127–131(2013).
[Crossref]

Other (5)

S. Foltyn, R. Muenchausen, R. Estler, E. Peterson, W. Hutchinson, K. Ott, N. Nogar, K. Hubbard, R. Dye, and X. Wu, “Influence of beam and target properties on the excimer laser deposition of YBa2Cu3)7-x thin films,” in Materials Research Society Symposium Proceedings (1990), Vol. 191.
[Crossref]

D. J. Griffiths, Introduction to Electrodynamics (Cambridge University, 2017).

M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures (Springer, 2004).

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

A. S. Rogov and E. E. Narimanov, "Pulse shaping for super-resolution imaging," in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper FTh1G.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Structural characterization for multilayered AZO/ZnO metamaterial with a 1:1 AZO/ZnO deposition ratio, N = 10 layers, deposited at 400°C. (a) Cross-sectional SEM image. (b) Atomic force microscopy image for the surface. (c)–(e) Cross-sectional-view electron microscopy images: (c) bright-field TEM, (d) HAADF TEM at lower and (e) higher magnifications.
Fig. 2.
Fig. 2. (a) Schematic of an AZO/ZnO multilayered sample. (b–d) The dependence of the plasma frequency ω p (red, squares) and damping frequency γ p (blue, circles) for the multilayered AZO/ZnO metamaterial with a 2:8 AZO/ZnO deposition ratio (25% AZO in the period) (b) on sample thickness (samples grown at 400°C) and (c) on deposition temperatures [sample thickness of 300 nm (30 periods)]. (d) The dependence of the plasma frequency ω p (red, squares) and damping frequency γ p (blue, circles) on AZO percentage in the period at deposition temperature 400°C. Period thickness is 10 nm for (b)–(d).
Fig. 3.
Fig. 3. Results of the ellipsometry data fitting of (a)  ψ and (b)  Δ and the (c) real and (d) imaginary parts of the permittivity for the optimized multilayered Al:ZnO/ZnO (2:8 AZO/ZnO ratio, deposition temperature 100°C, 30 periods, individual period thickness 10 nm, measured total thickness 298 ± 02 nm ).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r p p r s s = tan ( ψ ) e i Δ .
ε D ( ω ) = ε f D ω p 2 ω ( ω + i γ p ) ,
ω p 2 = n e 2 ε 0 m * .
MSE = χ 2 2 N M ,

Metrics