Abstract

This paper proposes a nonlinear equalization technique enabled by long short-term memory (LSTM) recurrent neural networks. The proposed technique is implemented at the end of offline digital signal processing. And two approaches utilizing the LSTM network are experimentally tested and demonstrated in transmission of a 50-Gb/s four-level pulse amplitude modulation intensity modulation direct detection link over 100-km standard single-mode fiber. The first approach uses the LSTM network-based equalizer to directly categorize the received signal into four amplitude levels, and the second approach uses the LSTM network to estimate signal noise for compensating the received signal. The experimental results show remarkable performance improvement of the proposed method over conventional linear equalizers, and significant enhancement at high launch power compared with Volterra filtering. Also, the proposed method reveals better short-time universality.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Amplifier-free 4×96 Gb/s PAM8 transmission enabled by modified Volterra equalizer for short-reach applications using directly modulated lasers

Di Li, Lei Deng, Yao Ye, Yucheng Zhang, Haiping Song, Mengfan Cheng, Songnian Fu, Ming Tang, and Deming Liu
Opt. Express 27(13) 17927-17939 (2019)

Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system

Xingyu Lu, Chao Lu, Weixiang Yu, Liang Qiao, Shangyu Liang, Alan Pak Tao Lau, and Nan Chi
Opt. Express 27(5) 7822-7833 (2019)

Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF

Zhiquan Wan, Jianqiang Li, Liang Shu, Ming Luo, Xiang Li, Songnian Fu, and Kun Xu
Opt. Express 26(8) 10631-10642 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription