Abstract

For the past year, the authors have been studying a long-wave infrared (LWIR) sensor design concept that combines high detector well capacity, small-pitch detectors, and digital image processing to optimize target acquisition. Theoretical performance modeling [via the Night Vision Integrated Performance Model (NVIPM)] suggests that our approach offers a large increase in target identification range, but multiple field trials using triangle orientation discrimination (TOD) have yielded results that are inconsistent with the model’s predictions. For this reason, we have performed human perception experiments on simulated TOD targets, with and without image processing, to assess the utility of our approach and the value of TOD as an evaluation for digital image enhancement. The results do not agree with the NVIPM modeling of range improvement. We present our results, along with our modeling and experiment methodologies, to guide future investigations into the effects of boost or restoration filtering on target identification performance.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Triangle orientation discrimination performance model for a multiband IR imaging system with human vision

Xin Liu, Xiaorui Wang, Jianqi Zhang, and Honggang Bai
Appl. Opt. 50(24) 4701-4710 (2011)

Predicting range performance of sampled imagers by treating aliased signal as target-dependent noise

Richard H. Vollmerhausen, Ronald G. Driggers, and David L. Wilson
J. Opt. Soc. Am. A 25(8) 2055-2065 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription