Abstract

In digital holographic and speckle interferometry devoted to solid object displacement measurement, the reflecting properties of the object under study are of importance in designing the observation and laser illumination systems. In practical cases, the objects can show separate zones in which the surface property can simultaneously cause either scattering or specular reflectivity. We present strategies for dealing with both reflectivity types at a time in digital holographic and speckle interferometers. The scattered surface is illuminated with a point source whereas the specular one is illuminated by a diffuser. Both types of surfaces visible across the field-of-view give rise to a specific interferogram with gaps in between, which in turn are interpreted separately related to the sensitivity vector, the latter being defined differently for scattering and specular areas.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited]

Marc P. Georges, Jean-François Vandenrijt, Cédric Thizy, Yvan Stockman, Patrick Queeckers, Frank Dubois, and Dominic Doyle
Appl. Opt. 52(1) A102-A116 (2013)

Statistical properties of interference phase detection in speckle fields applied to holographic interferometry

Ruedi Thalmann and René Dändliker
J. Opt. Soc. Am. A 3(7) 972-981 (1986)

Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm

Jean-François Vandenrijt and Marc P. Georges
Appl. Opt. 49(27) 5067-5075 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. Kreis, Handbook of Holographic Interferometry–Optical and Digital Methods (Wiley, 2005).
  2. R. S. Hansen, “Deformation measurement of specularly reflecting objects using holographic interferometry with diffusive illumination,” Opt. Laser Eng. 28, 259–275 (1997).
    [Crossref]
  3. R. S. Hansen, “A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces,” Opt. Laser Eng. 41, 73–80 (2004).
    [Crossref]
  4. F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
    [Crossref]
  5. J.-M. Desse and P. Picart, “Stochastic digital holography for visualizing inside strongly refracting transparent objects,” Appl. Opt. 54, A1–A8 (2015).
    [Crossref]
  6. C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
    [Crossref]
  7. C. Thizy, M. P. Georges, P. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
    [Crossref]
  8. J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53, 112309 (2014).
    [Crossref]
  9. M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [invited],” Appl. Opt. 52, A102–A116 (2013).
    [Crossref]
  10. J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
    [Crossref]
  11. N. Xu, X. Xie, X. Chen, and L. Yang, “Shearography for specular object inspection,” Opt. Laser Eng. 61, 14–18 (2014).
    [Crossref]
  12. P. Yan, Y. Wang, F. Sun, Y. Lu, L. Liu, and Q. Zhao, “Shearography for non-destructive testing of specular reflecting objects using scattered light illumination,” Opt. Laser Technol. 112, 452–457 (2019).
    [Crossref]
  13. J. Butters and J. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349–354 (1971).
    [Crossref]
  14. R. Jones and C. Wykes, Holographic and Speckle Interferometry, Cambridge Studies in Modern Optics, (Cambridge University, 1989), Vol. 6.
  15. U. Schnars and W. Jueptner, Digital Holography, Digital Hologram Recording, Reconstruction Principle, and Related Techniques (Springer, 2005).
  16. J. C. Li and P. Picart, Digital Holography (Wiley, 2012).
  17. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
    [Crossref]
  18. P. Picart, M. Gross, and P. Marquet, “Basic fundamentals of digital holography,” in New Techniques in Digital Holography, P. Picart, ed. (Wiley, 2015), pp. 1–66.
  19. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Laser Eng. 37, 331–340 (2002).
    [Crossref]
  20. Y. Zhao, R. Zemmamouche, J. F. Vandenrijt, and M. P. Georges, “Accuracy concerns in digital speckle photography combined with digital holographic interferometry,” Opt. Laser Eng. 104, 84–89 (2018).
    [Crossref]
  21. J. Sollid, “Holographic interferometry applied to measurements of small static displacements of diffusively reflecting surfaces,” Appl. Opt. 8, 1587–1595 (1969).
    [Crossref]
  22. K. Stetson, “Use of sensitivity vector variations to determine absolute displacements in double exposure hologram interferometry,” Appl. Opt. 29, 502–504 (1990).
    [Crossref]
  23. J. C. Wyant and V. C. Bennet, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972).
    [Crossref]
  24. D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 435–497.
  25. C. Pruss, S. Reichelt, H. Tiziani, and W. Osten, “Computer generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
    [Crossref]
  26. C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19 (2004).
    [Crossref]
  27. C. Pruss, G. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Opt. Eng. 56, 111713 (2017).
    [Crossref]
  28. N. Ninane and M. Georges, “Holographic interferometry using two-wavelength holography for the measurement of large deformations,” Appl. Opt. 34, 1923–1928 (1995).
    [Crossref]
  29. F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” Appl. Opt. 57, 6982–6989 (2018).
    [Crossref]
  30. F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Mechanical deformations of space mirrors under thermal stress and their effect on wavefront errors. Measurements by ESPI and comparison with multiphysics modeling,” Proc. SPIE 10834, 108340V (2018).
    [Crossref]
  31. P. Lemaire and M. P. Georges, “Dynamic holographic interferometry: devices and applications,” in Photorefractive Materials and Their Applications, P. Günther and J.-P. Huignard, eds. (Springer, 2007), pp. 223–251.
  32. E. Neefs, A. C. Vandaele, R. Drummond, I. R. Thomas, S. Berkenbosch, R. Clairquin, S. Delanoye, B. Ristic, J. Maes, S. Bonnewijn, G. Pieck, E. Equeter, C. Depiesse, F. Daerden, E. Van Ransbeeck, D. Nevejans, J. Rodriguez-Gómez, J. J. López-Moreno, R. Sanz, R. Morales, G. P. Candini, M. C. Pastor-Morales, B. A. del Moral, J. M. Jeronimo-Zafra, J. M. Gómez-López, G. Alonso-Rodrigo, I. Pérez-Grande, J. Cubas, A. M. Gomez-Sanjuan, F. Navarro-Medina, T. Thibert, M. R. Patel, G. Bellucci, L. De Vos, S. Lesschaeve, N. Van Vooren, W. Moelans, L. Aballea, S. Glorieux, A. Baeke, D. Kendall, J. De Neef, A. Soenen, P.-Y. Puech, J. Ward, J.-F. Jamoye, D. Diez, A. Vicario-Arroyo, and M. Jankowski, “NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels,” Appl. Opt. 54, 8494–8520 (2015).
    [Crossref]
  33. I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
    [Crossref]
  34. M. P. Georges, “Speckle interferometry in the long-wave infrared for combining holography and thermography in a single sensor. applications to nondestructive testing: The FANTOM project,” Proc. SPIE 9525, 952557 (2015).
    [Crossref]
  35. M. P. Georges, J. F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, and W. Osten, “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Opt. Express 22, 25517–25529 (2014).
    [Crossref]
  36. M. Georges, “Long-wave infrared digital holography,” in New Techniques in Digital Holography, P. Picart, ed. (Wiley, 2015), pp. 219–254.
  37. J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10  µm,” Proc. SPIE 6616, 66162Q (2007).
    [Crossref]
  38. J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 µm,” Appl. Opt. 49, 5067–5075 (2010).
    [Crossref]
  39. J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

2019 (1)

P. Yan, Y. Wang, F. Sun, Y. Lu, L. Liu, and Q. Zhao, “Shearography for non-destructive testing of specular reflecting objects using scattered light illumination,” Opt. Laser Technol. 112, 452–457 (2019).
[Crossref]

2018 (3)

Y. Zhao, R. Zemmamouche, J. F. Vandenrijt, and M. P. Georges, “Accuracy concerns in digital speckle photography combined with digital holographic interferometry,” Opt. Laser Eng. 104, 84–89 (2018).
[Crossref]

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” Appl. Opt. 57, 6982–6989 (2018).
[Crossref]

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Mechanical deformations of space mirrors under thermal stress and their effect on wavefront errors. Measurements by ESPI and comparison with multiphysics modeling,” Proc. SPIE 10834, 108340V (2018).
[Crossref]

2017 (1)

C. Pruss, G. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Opt. Eng. 56, 111713 (2017).
[Crossref]

2016 (1)

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

2015 (3)

2014 (3)

M. P. Georges, J. F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, and W. Osten, “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Opt. Express 22, 25517–25529 (2014).
[Crossref]

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53, 112309 (2014).
[Crossref]

N. Xu, X. Xie, X. Chen, and L. Yang, “Shearography for specular object inspection,” Opt. Laser Eng. 61, 14–18 (2014).
[Crossref]

2013 (1)

2010 (2)

J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 µm,” Appl. Opt. 49, 5067–5075 (2010).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[Crossref]

2008 (1)

2007 (1)

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10  µm,” Proc. SPIE 6616, 66162Q (2007).
[Crossref]

2006 (1)

C. Thizy, M. P. Georges, P. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[Crossref]

2005 (1)

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

2004 (3)

R. S. Hansen, “A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces,” Opt. Laser Eng. 41, 73–80 (2004).
[Crossref]

C. Pruss, S. Reichelt, H. Tiziani, and W. Osten, “Computer generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19 (2004).
[Crossref]

2002 (1)

S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Laser Eng. 37, 331–340 (2002).
[Crossref]

1999 (1)

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[Crossref]

1997 (1)

R. S. Hansen, “Deformation measurement of specularly reflecting objects using holographic interferometry with diffusive illumination,” Opt. Laser Eng. 28, 259–275 (1997).
[Crossref]

1995 (1)

1990 (1)

1972 (1)

1971 (1)

J. Butters and J. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349–354 (1971).
[Crossref]

1969 (1)

Aballea, L.

Alexeenko, I.

M. P. Georges, J. F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, and W. Osten, “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Opt. Express 22, 25517–25529 (2014).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[Crossref]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Alonso-Rodrigo, G.

Baeke, A.

Baer, G.

C. Pruss, G. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Opt. Eng. 56, 111713 (2017).
[Crossref]

Beaumont, F.

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

Bellucci, G.

Bennet, V. C.

Berkenbosch, S.

Bonnewijn, S.

Butters, J.

J. Butters and J. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349–354 (1971).
[Crossref]

Candini, G. P.

Cédric, T.

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[Crossref]

Chen, X.

N. Xu, X. Xie, X. Chen, and L. Yang, “Shearography for specular object inspection,” Opt. Laser Eng. 61, 14–18 (2014).
[Crossref]

Clairquin, R.

Creath, K.

D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 435–497.

Cubas, J.

Daerden, F.

De Neef, J.

De Nicola, S.

S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Laser Eng. 37, 331–340 (2002).
[Crossref]

de Ocáriz, I. S.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

De Vincenzo, P.

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” Appl. Opt. 57, 6982–6989 (2018).
[Crossref]

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Mechanical deformations of space mirrors under thermal stress and their effect on wavefront errors. Measurements by ESPI and comparison with multiphysics modeling,” Proc. SPIE 10834, 108340V (2018).
[Crossref]

De Vos, L.

del Moral, B. A.

Delanoye, S.

Depiesse, C.

Desse, J.-M.

Dewandel, J.-L.

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[Crossref]

Diez, D.

Doyle, D.

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53, 112309 (2014).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [invited],” Appl. Opt. 52, A102–A116 (2013).
[Crossref]

C. Thizy, M. P. Georges, P. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[Crossref]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

Drummond, R.

Dubois, F.

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53, 112309 (2014).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [invited],” Appl. Opt. 52, A102–A116 (2013).
[Crossref]

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[Crossref]

Dupont, O.

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[Crossref]

Equeter, E.

Fabron, C.

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

Ferraro, P.

S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Laser Eng. 37, 331–340 (2002).
[Crossref]

Finizio, A.

S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Laser Eng. 37, 331–340 (2002).
[Crossref]

Garcia, J.

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

Georges, M.

J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 µm,” Appl. Opt. 49, 5067–5075 (2010).
[Crossref]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10  µm,” Proc. SPIE 6616, 66162Q (2007).
[Crossref]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

N. Ninane and M. Georges, “Holographic interferometry using two-wavelength holography for the measurement of large deformations,” Appl. Opt. 34, 1923–1928 (1995).
[Crossref]

M. Georges, “Long-wave infrared digital holography,” in New Techniques in Digital Holography, P. Picart, ed. (Wiley, 2015), pp. 219–254.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Georges, M. P.

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” Appl. Opt. 57, 6982–6989 (2018).
[Crossref]

Y. Zhao, R. Zemmamouche, J. F. Vandenrijt, and M. P. Georges, “Accuracy concerns in digital speckle photography combined with digital holographic interferometry,” Opt. Laser Eng. 104, 84–89 (2018).
[Crossref]

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Mechanical deformations of space mirrors under thermal stress and their effect on wavefront errors. Measurements by ESPI and comparison with multiphysics modeling,” Proc. SPIE 10834, 108340V (2018).
[Crossref]

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

M. P. Georges, “Speckle interferometry in the long-wave infrared for combining holography and thermography in a single sensor. applications to nondestructive testing: The FANTOM project,” Proc. SPIE 9525, 952557 (2015).
[Crossref]

M. P. Georges, J. F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, and W. Osten, “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Opt. Express 22, 25517–25529 (2014).
[Crossref]

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53, 112309 (2014).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [invited],” Appl. Opt. 52, A102–A116 (2013).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[Crossref]

C. Thizy, M. P. Georges, P. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[Crossref]

P. Lemaire and M. P. Georges, “Dynamic holographic interferometry: devices and applications,” in Photorefractive Materials and Their Applications, P. Günther and J.-P. Huignard, eds. (Springer, 2007), pp. 223–251.

Glorieux, S.

Gómez-López, J. M.

Gomez-Sanjuan, A. M.

Gross, M.

P. Picart, M. Gross, and P. Marquet, “Basic fundamentals of digital holography,” in New Techniques in Digital Holography, P. Picart, ed. (Wiley, 2015), pp. 1–66.

Hansen, R. S.

R. S. Hansen, “A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces,” Opt. Laser Eng. 41, 73–80 (2004).
[Crossref]

R. S. Hansen, “Deformation measurement of specularly reflecting objects using holographic interferometry with diffusive illumination,” Opt. Laser Eng. 28, 259–275 (1997).
[Crossref]

Houbrechts, Y.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

Jamoye, J.-F.

Jankowski, M.

Jeronimo-Zafra, J. M.

Joannes, L.

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[Crossref]

Jones, R.

R. Jones and C. Wykes, Holographic and Speckle Interferometry, Cambridge Studies in Modern Optics, (Cambridge University, 1989), Vol. 6.

Jorge, I.

M. P. Georges, J. F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, and W. Osten, “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Opt. Express 22, 25517–25529 (2014).
[Crossref]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography, Digital Hologram Recording, Reconstruction Principle, and Related Techniques (Springer, 2005).

Kendall, D.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry–Optical and Digital Methods (Wiley, 2005).

Languy, F.

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Mechanical deformations of space mirrors under thermal stress and their effect on wavefront errors. Measurements by ESPI and comparison with multiphysics modeling,” Proc. SPIE 10834, 108340V (2018).
[Crossref]

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” Appl. Opt. 57, 6982–6989 (2018).
[Crossref]

Leendertz, J.

J. Butters and J. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349–354 (1971).
[Crossref]

Legros, J.-C.

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[Crossref]

Lemaire, P.

C. Thizy, M. P. Georges, P. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[Crossref]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

P. Lemaire and M. P. Georges, “Dynamic holographic interferometry: devices and applications,” in Photorefractive Materials and Their Applications, P. Günther and J.-P. Huignard, eds. (Springer, 2007), pp. 223–251.

Lesschaeve, S.

Leval, J.

Li, J. C.

J. C. Li and P. Picart, Digital Holography (Wiley, 2012).

Liu, L.

P. Yan, Y. Wang, F. Sun, Y. Lu, L. Liu, and Q. Zhao, “Shearography for non-destructive testing of specular reflecting objects using scattered light illumination,” Opt. Laser Technol. 112, 452–457 (2019).
[Crossref]

Lopez, I.

López, I.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

López-Moreno, J. J.

Lu, Y.

P. Yan, Y. Wang, F. Sun, Y. Lu, L. Liu, and Q. Zhao, “Shearography for non-destructive testing of specular reflecting objects using scattered light illumination,” Opt. Laser Technol. 112, 452–457 (2019).
[Crossref]

Maciaszek, T.

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

Maes, J.

Malacara, D.

D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 435–497.

Marquet, P.

P. Picart, M. Gross, and P. Marquet, “Basic fundamentals of digital holography,” in New Techniques in Digital Holography, P. Picart, ed. (Wiley, 2015), pp. 1–66.

Martin, L.

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

Mazy, E.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

Mazzoli, A.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

Moelans, W.

Morales, R.

Navarro-Medina, F.

Neefs, E.

Nevejans, D.

Ninane, N.

Osten, W.

C. Pruss, G. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Opt. Eng. 56, 111713 (2017).
[Crossref]

M. P. Georges, J. F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, and W. Osten, “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Opt. Express 22, 25517–25529 (2014).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[Crossref]

C. Pruss, S. Reichelt, H. Tiziani, and W. Osten, “Computer generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Paquay, S.

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” Appl. Opt. 57, 6982–6989 (2018).
[Crossref]

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Mechanical deformations of space mirrors under thermal stress and their effect on wavefront errors. Measurements by ESPI and comparison with multiphysics modeling,” Proc. SPIE 10834, 108340V (2018).
[Crossref]

Pastor-Morales, M. C.

Patel, M. R.

Pedrini, G.

M. P. Georges, J. F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, and W. Osten, “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Opt. Express 22, 25517–25529 (2014).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[Crossref]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Pérez-Grande, I.

Picart, P.

J.-M. Desse and P. Picart, “Stochastic digital holography for visualizing inside strongly refracting transparent objects,” Appl. Opt. 54, A1–A8 (2015).
[Crossref]

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
[Crossref]

P. Picart, M. Gross, and P. Marquet, “Basic fundamentals of digital holography,” in New Techniques in Digital Holography, P. Picart, ed. (Wiley, 2015), pp. 1–66.

J. C. Li and P. Picart, Digital Holography (Wiley, 2012).

Pieck, G.

Pierattini, G.

S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Laser Eng. 37, 331–340 (2002).
[Crossref]

Prieto, E.

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

Pruss, C.

C. Pruss, G. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Opt. Eng. 56, 111713 (2017).
[Crossref]

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19 (2004).
[Crossref]

C. Pruss, S. Reichelt, H. Tiziani, and W. Osten, “Computer generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

Puech, P.-Y.

Queeckers, P.

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53, 112309 (2014).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [invited],” Appl. Opt. 52, A102–A116 (2013).
[Crossref]

Reichelt, S.

C. Pruss, S. Reichelt, H. Tiziani, and W. Osten, “Computer generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

Ristic, B.

Rochet, J.

Rodriguez-Gómez, J.

Saint-Georges, P.

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Mechanical deformations of space mirrors under thermal stress and their effect on wavefront errors. Measurements by ESPI and comparison with multiphysics modeling,” Proc. SPIE 10834, 108340V (2018).
[Crossref]

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” Appl. Opt. 57, 6982–6989 (2018).
[Crossref]

Sanz, R.

Schindler, J.

C. Pruss, G. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Opt. Eng. 56, 111713 (2017).
[Crossref]

Schmit, J.

D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 435–497.

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography, Digital Hologram Recording, Reconstruction Principle, and Related Techniques (Springer, 2005).

Soenen, A.

Sollid, J.

Stetson, K.

Stockman, Y.

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [invited],” Appl. Opt. 52, A102–A116 (2013).
[Crossref]

C. Thizy, M. P. Georges, P. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[Crossref]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

Sun, F.

P. Yan, Y. Wang, F. Sun, Y. Lu, L. Liu, and Q. Zhao, “Shearography for non-destructive testing of specular reflecting objects using scattered light illumination,” Opt. Laser Technol. 112, 452–457 (2019).
[Crossref]

Thibert, T.

Thizy, C.

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53, 112309 (2014).
[Crossref]

M. P. Georges, J. F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, and W. Osten, “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Opt. Express 22, 25517–25529 (2014).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [invited],” Appl. Opt. 52, A102–A116 (2013).
[Crossref]

C. Thizy, M. P. Georges, P. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[Crossref]

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Thomas, I. R.

Tiziani, H.

C. Pruss, S. Reichelt, H. Tiziani, and W. Osten, “Computer generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

Tiziani, H. J.

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19 (2004).
[Crossref]

Tychon, I.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

Ulbrich, G.

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

Van Ransbeeck, E.

Van Vooren, N.

Vandaele, A. C.

Vandenrijt, J. F.

Vandenrijt, J.-F.

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” Appl. Opt. 57, 6982–6989 (2018).
[Crossref]

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Mechanical deformations of space mirrors under thermal stress and their effect on wavefront errors. Measurements by ESPI and comparison with multiphysics modeling,” Proc. SPIE 10834, 108340V (2018).
[Crossref]

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53, 112309 (2014).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [invited],” Appl. Opt. 52, A102–A116 (2013).
[Crossref]

J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 µm,” Appl. Opt. 49, 5067–5075 (2010).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[Crossref]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10  µm,” Proc. SPIE 6616, 66162Q (2007).
[Crossref]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Venegas, P.

Vicario-Arroyo, A.

Vollheim, B.

M. P. Georges, J. F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, and W. Osten, “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Opt. Express 22, 25517–25529 (2014).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[Crossref]

Wang, Y.

P. Yan, Y. Wang, F. Sun, Y. Lu, L. Liu, and Q. Zhao, “Shearography for non-destructive testing of specular reflecting objects using scattered light illumination,” Opt. Laser Technol. 112, 452–457 (2019).
[Crossref]

Ward, J.

Wyant, J. C.

J. C. Wyant and V. C. Bennet, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972).
[Crossref]

D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 435–497.

Wykes, C.

R. Jones and C. Wykes, Holographic and Speckle Interferometry, Cambridge Studies in Modern Optics, (Cambridge University, 1989), Vol. 6.

Xie, X.

N. Xu, X. Xie, X. Chen, and L. Yang, “Shearography for specular object inspection,” Opt. Laser Eng. 61, 14–18 (2014).
[Crossref]

Xu, N.

N. Xu, X. Xie, X. Chen, and L. Yang, “Shearography for specular object inspection,” Opt. Laser Eng. 61, 14–18 (2014).
[Crossref]

Yan, P.

P. Yan, Y. Wang, F. Sun, Y. Lu, L. Liu, and Q. Zhao, “Shearography for non-destructive testing of specular reflecting objects using scattered light illumination,” Opt. Laser Technol. 112, 452–457 (2019).
[Crossref]

Yang, L.

N. Xu, X. Xie, X. Chen, and L. Yang, “Shearography for specular object inspection,” Opt. Laser Eng. 61, 14–18 (2014).
[Crossref]

Zemmamouche, R.

Y. Zhao, R. Zemmamouche, J. F. Vandenrijt, and M. P. Georges, “Accuracy concerns in digital speckle photography combined with digital holographic interferometry,” Opt. Laser Eng. 104, 84–89 (2018).
[Crossref]

Zhao, Q.

P. Yan, Y. Wang, F. Sun, Y. Lu, L. Liu, and Q. Zhao, “Shearography for non-destructive testing of specular reflecting objects using scattered light illumination,” Opt. Laser Technol. 112, 452–457 (2019).
[Crossref]

Zhao, Y.

Y. Zhao, R. Zemmamouche, J. F. Vandenrijt, and M. P. Georges, “Accuracy concerns in digital speckle photography combined with digital holographic interferometry,” Opt. Laser Eng. 104, 84–89 (2018).
[Crossref]

Appl. Mech. Mater. (1)

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24-25, 147–152 (2010).
[Crossref]

Appl. Opt. (9)

J. Sollid, “Holographic interferometry applied to measurements of small static displacements of diffusively reflecting surfaces,” Appl. Opt. 8, 1587–1595 (1969).
[Crossref]

J. C. Wyant and V. C. Bennet, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972).
[Crossref]

K. Stetson, “Use of sensitivity vector variations to determine absolute displacements in double exposure hologram interferometry,” Appl. Opt. 29, 502–504 (1990).
[Crossref]

N. Ninane and M. Georges, “Holographic interferometry using two-wavelength holography for the measurement of large deformations,” Appl. Opt. 34, 1923–1928 (1995).
[Crossref]

J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 µm,” Appl. Opt. 49, 5067–5075 (2010).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [invited],” Appl. Opt. 52, A102–A116 (2013).
[Crossref]

J.-M. Desse and P. Picart, “Stochastic digital holography for visualizing inside strongly refracting transparent objects,” Appl. Opt. 54, A1–A8 (2015).
[Crossref]

E. Neefs, A. C. Vandaele, R. Drummond, I. R. Thomas, S. Berkenbosch, R. Clairquin, S. Delanoye, B. Ristic, J. Maes, S. Bonnewijn, G. Pieck, E. Equeter, C. Depiesse, F. Daerden, E. Van Ransbeeck, D. Nevejans, J. Rodriguez-Gómez, J. J. López-Moreno, R. Sanz, R. Morales, G. P. Candini, M. C. Pastor-Morales, B. A. del Moral, J. M. Jeronimo-Zafra, J. M. Gómez-López, G. Alonso-Rodrigo, I. Pérez-Grande, J. Cubas, A. M. Gomez-Sanjuan, F. Navarro-Medina, T. Thibert, M. R. Patel, G. Bellucci, L. De Vos, S. Lesschaeve, N. Van Vooren, W. Moelans, L. Aballea, S. Glorieux, A. Baeke, D. Kendall, J. De Neef, A. Soenen, P.-Y. Puech, J. Ward, J.-F. Jamoye, D. Diez, A. Vicario-Arroyo, and M. Jankowski, “NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels,” Appl. Opt. 54, 8494–8520 (2015).
[Crossref]

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Space mirror deformation: from thermo-mechanical measurements by speckle interferometry to optical comparison with multiphysics simulation,” Appl. Opt. 57, 6982–6989 (2018).
[Crossref]

J. Meas. Control (1)

J. Butters and J. Leendertz, “Holographic and video techniques applied to engineering measurement,” J. Meas. Control 4, 349–354 (1971).
[Crossref]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

F. Dubois, L. Joannes, O. Dupont, J.-L. Dewandel, and J.-C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[Crossref]

Opt. Commun. (1)

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233, 15–19 (2004).
[Crossref]

Opt. Eng. (4)

C. Pruss, G. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Opt. Eng. 56, 111713 (2017).
[Crossref]

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53, 112309 (2014).
[Crossref]

J.-F. Vandenrijt, C. Thizy, L. Martin, F. Beaumont, J. Garcia, C. Fabron, E. Prieto, T. Maciaszek, and M. P. Georges, “Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test,” Opt. Eng. 55, 121723 (2016).
[Crossref]

C. Pruss, S. Reichelt, H. Tiziani, and W. Osten, “Computer generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[Crossref]

Opt. Express (1)

Opt. Laser Eng. (5)

S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Laser Eng. 37, 331–340 (2002).
[Crossref]

Y. Zhao, R. Zemmamouche, J. F. Vandenrijt, and M. P. Georges, “Accuracy concerns in digital speckle photography combined with digital holographic interferometry,” Opt. Laser Eng. 104, 84–89 (2018).
[Crossref]

N. Xu, X. Xie, X. Chen, and L. Yang, “Shearography for specular object inspection,” Opt. Laser Eng. 61, 14–18 (2014).
[Crossref]

R. S. Hansen, “Deformation measurement of specularly reflecting objects using holographic interferometry with diffusive illumination,” Opt. Laser Eng. 28, 259–275 (1997).
[Crossref]

R. S. Hansen, “A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces,” Opt. Laser Eng. 41, 73–80 (2004).
[Crossref]

Opt. Laser Technol. (1)

P. Yan, Y. Wang, F. Sun, Y. Lu, L. Liu, and Q. Zhao, “Shearography for non-destructive testing of specular reflecting objects using scattered light illumination,” Opt. Laser Technol. 112, 452–457 (2019).
[Crossref]

Proc. SPIE (5)

C. Thizy, Y. Stockman, D. Doyle, P. Lemaire, Y. Houbrechts, M. Georges, A. Mazzoli, E. Mazy, I. Tychon, and G. Ulbrich, “Dynamic holography for the space qualification of large reflectors,” Proc. SPIE 5965, 59650W (2005).
[Crossref]

C. Thizy, M. P. Georges, P. Lemaire, Y. Stockman, and D. Doyle, “Phase control strategies for stabilization of photorefractive holographic interferometer,” Proc. SPIE 6341, 63411O (2006).
[Crossref]

F. Languy, J.-F. Vandenrijt, P. Saint-Georges, S. Paquay, P. De Vincenzo, and M. P. Georges, “Mechanical deformations of space mirrors under thermal stress and their effect on wavefront errors. Measurements by ESPI and comparison with multiphysics modeling,” Proc. SPIE 10834, 108340V (2018).
[Crossref]

M. P. Georges, “Speckle interferometry in the long-wave infrared for combining holography and thermography in a single sensor. applications to nondestructive testing: The FANTOM project,” Proc. SPIE 9525, 952557 (2015).
[Crossref]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10  µm,” Proc. SPIE 6616, 66162Q (2007).
[Crossref]

Other (9)

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. scattering requirements,” in Fringe 2009–6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

M. Georges, “Long-wave infrared digital holography,” in New Techniques in Digital Holography, P. Picart, ed. (Wiley, 2015), pp. 219–254.

P. Lemaire and M. P. Georges, “Dynamic holographic interferometry: devices and applications,” in Photorefractive Materials and Their Applications, P. Günther and J.-P. Huignard, eds. (Springer, 2007), pp. 223–251.

D. Malacara, K. Creath, J. Schmit, and J. C. Wyant, “Testing of aspheric wavefronts and surfaces,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 435–497.

T. Kreis, Handbook of Holographic Interferometry–Optical and Digital Methods (Wiley, 2005).

R. Jones and C. Wykes, Holographic and Speckle Interferometry, Cambridge Studies in Modern Optics, (Cambridge University, 1989), Vol. 6.

U. Schnars and W. Jueptner, Digital Holography, Digital Hologram Recording, Reconstruction Principle, and Related Techniques (Springer, 2005).

J. C. Li and P. Picart, Digital Holography (Wiley, 2012).

P. Picart, M. Gross, and P. Marquet, “Basic fundamentals of digital holography,” in New Techniques in Digital Holography, P. Picart, ed. (Wiley, 2015), pp. 1–66.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Sensitivity vector in the case of scattering objects.
Fig. 2.
Fig. 2. Sensitivity vectors in the case of specular objects.
Fig. 3.
Fig. 3. Schematic of speckle interferometry setup.
Fig. 4.
Fig. 4. Mirror object and the reference scattering plate.
Fig. 5.
Fig. 5. (a) White light picture of the mirror object and the reference plate; (b) wrapped phase map obtained for rigid body motion.
Fig. 6.
Fig. 6. Simulation of sensitivity vectors in the object scene.
Fig. 7.
Fig. 7. Schematic of LWIR DH setup. In medallion, a picture of the object with specular area A and scattering area B.
Fig. 8.
Fig. 8. (a) Amplitude of the image reconstructed by the Fresnel principle; (b) phase difference obtained after tilting the object.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = | U O | 2 + | U R | 2 + U O U R + U O U R = I O + I R + 2 I O I R cos ( φ R φ O ) ,
I k = I O + I R + 2 I O I R cos ( ϕ + k π / 2 ) ,
U ( m , n ) = i λ d exp ( i 2 π λ d ) exp [ i π λ d ( m 2 M 2 Δ ξ 2 + n 2 N 2 Δ η 2 ) ] × k = 0 M 1 l = 0 N 1 U R ( k , l ) I H ( k , l ) × exp [ i π λ d ( k 2 Δ ξ 2 + l 2 Δ η 2 ) ] × exp [ i 2 π ( k m M + l n N ) ] ,
Δ φ = φ O φ O = arg ( U O ) arg ( U O ) .
Δ φ s = S . L = ( k o k i ) . L = 2 π λ ( e ^ o e ^ i ) . L .
Δ φ m = 4 π λ ( e ^ o n ^ ) ( n ^ L ) = 4 π λ cos ( α ) L ,

Metrics