Abstract

The past, present, and future industry prospects of virtual reality (VR) and augmented reality (AR) are presented. The future of VR/AR technology based on holographic display is predicted by analogy with the VR/AR based on binocular vision display and light field display. The investigations on holographic display that can be used in VR/AR are reviewed. The breakthroughs of holographic display are promising in VR/AR with high resolution. The challenges faced by VR/AR based on holographic display are analyzed.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display

Jin Su Lee, Yoo Kwang Kim, Mu Young Lee, and Yong Hyub Won
Opt. Express 27(2) 689-701 (2019)

Multifocal planes head-mounted displays

Jannick P. Rolland, Myron W. Krueger, and Alexei Goon
Appl. Opt. 39(19) 3209-3215 (2000)

References

  • View by:
  • |
  • |
  • |

  1. J. Hecht, “Optical dreams, virtual reality,” Opt. Photon. News 27(6), 24–31 (2016).
    [Crossref]
  2. C. H. Li, S. H. Lu, S. Y. Lin, T. Y. Hsieh, K. S. Wang, and W. H. Kuo, “Invited paper: ultra-fast moving-picture response-time LCD for virtual reality application,” SID Int. Symp. Dig. Tech. Pap. 49, 678–680 (2018).
    [Crossref]
  3. C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3” 1443 ppi 120  Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26, 314–324 (2018).
    [Crossref]
  4. G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26, 25076–25085 (2018).
    [Crossref]
  5. G. Tan, Y. Huang, M. C. Li, S. L. Lee, and S. T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26, 16572–16584 (2018).
    [Crossref]
  6. T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26, 4863–4872 (2018).
    [Crossref]
  7. K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39, 127–130 (2014).
    [Crossref]
  8. S. Xie, P. Wang, X. Sang, and C. Li, “Augmented reality three-dimensional display with light field fusion,” Opt. Express 24, 11483–11494 (2016).
    [Crossref]
  9. J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality displays with micro integral imaging,” J. Disp. Technol. 11, 889–893 (2015).
    [Crossref]
  10. Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26, 64–70 (2018).
    [Crossref]
  11. K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
    [Crossref]
  12. Y. T. Liu, K. Y. Liao, C. L. Lin, and Y. L. Li, “Invited paper: pixeLED display for transparent applications,” SID Int. Symp. Dig. Tech. Pap. 49, 874–875 (2018).
    [Crossref]
  13. H. Bellini, W. Chen, M. Sugiyama, M. Shin, S. Alam, and D. Takayama, Profiles in Innovation of Virtual & Augmented Reality (Goldman Sachs, 2016).
  14. J. Liu, Q. Gao, and J. Han, “Compact monocular 3D near-eye display,” in Imaging and Applied Optics 2017, OSA Technical Digest (Optical Society of America, 2017), paper DTu4F.2.
  15. B. C. Kress and W. J. Cummings, “11-1: Invited paper: towards the ultimate mixed reality experience: Hololens display architecture choices,” SID Int. Symp. Dig. Tech. Pap. 48, 127–131 (2017).
    [Crossref]
  16. P. Daugherty, “Extended reality summary,” https://www.accenture.com/us-en/insight-xr-extended-reality .
  17. Qualcomm Technologies Inc., “The mobile future of extended reality (XR),” https://www.qualcomm.com/media/documents/files/the-mobile-future-of-extended-reality-xr.pdf .
  18. T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12, 982–985 (2016).
    [Crossref]
  19. Y. Wang, W. Liu, X. Meng, H. Fu, D. Zhang, Y. Kang, R. Feng, Z. Wei, X. Zhu, and G. Jiang, “Development of an immersive virtual reality head-mounted display with high performance,” Appl. Opt. 55, 6969–6977 (2016).
    [Crossref]
  20. T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2013), paper DW2A.11.
  21. D. Kersten and G. E. Legge, “Convergence accommodation,” J. Opt. Soc. Am. 73, 332–338 (1983).
    [Crossref]
  22. E. Peli, “Real vision & virtual reality,” Opt. Photon. News 6(7), 28–34 (1995).
    [Crossref]
  23. G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 1–10 (2011).
    [Crossref]
  24. L. Liu, Z. Pang, and D. Teng, “Super multi-view three-dimensional display technique for portable devices,” Opt. Express 24, 4421–4430 (2016).
    [Crossref]
  25. D. Sun, C. Wang, D. Teng, and L. Liu, “Three-dimensional display on computer screen free from accommodation-convergence conflict,” Opt. Commun. 390, 36–40 (2017).
    [Crossref]
  26. X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23, 25950–25958 (2015).
    [Crossref]
  27. D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
    [Crossref]
  28. F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cue,” ACM Trans. Graph. 34, 1–12 (2015).
    [Crossref]
  29. C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26, 18292–18301 (2018).
    [Crossref]
  30. H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26, 17578–17590 (2018).
    [Crossref]
  31. L. Wei, Y. Li, J. Jing, L. Feng, and J. Zhou, “Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface,” Opt. Express 26, 8550–8565 (2018).
    [Crossref]
  32. X. Shen and B. Javidi, “Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens,” Appl. Opt. 57, B184–B189 (2018).
    [Crossref]
  33. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22, 13484–13491 (2014).
    [Crossref]
  34. K. Guttag, “Magic Leap review part 2- image issue,” https://www.kguttag.com/2018/10/01/magic-leap-review-part-2-image-issues/ .
  35. S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 1–13 (2016).
  36. C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 1–13 (2017).
    [Crossref]
  37. J. P. Goodman, Introduction to Fourier Optics (W. H. Freeman, 2017).
  38. A. Kozma and D. L. Kelly, “Spatial filtering for detection of signals submerged in noise,” Appl. Opt. 4, 387–392 (1965).
    [Crossref]
  39. Z. Chen, X. Sang, Q. Lin, J. Li, X. Yu, X. Gao, B. Yan, C. Yu, W. Dou, and L. Xiao, “Acceleration for computer-generated hologram in head-mounted display with effective diffraction area recording method for eyes,” Chin. Opt. Lett. 14, 080901 (2016).
    [Crossref]
  40. G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41, 2486–2489 (2016).
    [Crossref]
  41. Y. Z. Liu, X. N. Pang, S. Jiang, and J. W. Dong, “Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling,” Opt. Express 21, 12068–12076 (2013).
    [Crossref]
  42. J. Park and S. Kim, “Optical see-through holographic near-eye-display with eyebox steering and depth of field control,” Opt. Express 26, 27076–27088 (2018).
    [Crossref]
  43. P. Zhou, Y. Li, S. Liu, and Y. Su, “Compact design for optical-see-through holographic displays employing holographic optical elements,” Opt. Express 26, 22866–22876 (2018).
    [Crossref]
  44. E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100-C, 965–971 (2017).
    [Crossref]
  45. J. S. Lee, Y. K. Kim, and Y. H. Won, “See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens,” Opt. Express 26, 19341–19355 (2018).
    [Crossref]
  46. Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56, 112–120 (2017).
    [Crossref]
  47. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22, 6526–6534 (2014).
    [Crossref]
  48. J.-S. Chen and D. P. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23, 18143–18155 (2015).
    [Crossref]
  49. Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25, 8412–8424 (2017).
    [Crossref]
  50. A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 8501–8516 (2017).
    [Crossref]
  51. P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 10140–10151 (2018).
    [Crossref]
  52. J. Y. Hong, G. Li, and B. Lee, “Holographic see-through near-eye display using index-matched anisotropic crystal lens,” in Imaging and Applied Optics 2018, OSA Technical Digest (Optical Society of America, 2018), paper DTu2F.3.
  53. J. Hong, Y. Kim, S. Hong, C. Shin, and H. Kang, “Near-eye foveated holographic display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2018), paper 3M2G.4.
  54. M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A 33, 2348–2364 (2016).
    [Crossref]
  55. C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, and J. Chen, “Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm,” Appl. Opt. 54, 6994–7001 (2015).
    [Crossref]
  56. Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24, 30368–30378 (2016).
    [Crossref]
  57. T. Utsugi and M. Yamaguchi, “Speckle-suppression in hologram calculation using ray-sampling plane,” Opt. Express 22, 17193–17206 (2014).
    [Crossref]
  58. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
    [Crossref]
  59. P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12, 1688–1694 (2016).
    [Crossref]
  60. A. Symeonidou, D. Blinder, and P. Schelkens, “Colour computer-generated holography for point clouds utilizing the Phong illumination model,” Opt. Express 26, 10282–10298 (2018).
    [Crossref]
  61. M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electronic Imaging 2, 28–34 (1993).
    [Crossref]
  62. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34, 3133–3135 (2009).
    [Crossref]
  63. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18, 19504–19509 (2010).
    [Crossref]
  64. T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23, 9852–9857 (2015).
    [Crossref]
  65. S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
    [Crossref]
  66. S. C. Kim, J. M. Kim, and E. S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20, 12021–12034 (2012).
    [Crossref]
  67. S. Jiao, Z. Zhuang, and W. Zou, “Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation,” Opt. Express 25, 112–123 (2017).
    [Crossref]
  68. T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, “Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL,” Opt. Express 18, 9955–9960 (2010).
    [Crossref]
  69. Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17, 13895–13903 (2009).
    [Crossref]
  70. S. Nishi, K. Shiba, K. Mori, S. Nakayama, and S. Murashima, “Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation,” Opt. Rev. 12, 287–292 (2005).
    [Crossref]
  71. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
    [Crossref]
  72. J. P. Liu and H. K. Liao, “Fast occlusion processing for a polygon-based computer-generated hologram using the slice-by-slice silhouette method,” Appl. Opt. 57, A215–A221 (2018).
    [Crossref]
  73. Z. Lu and Y. Sakamoto, “Holographic display methods for volume data: polygon-based and MIP-based methods,” Appl. Opt. 57, A142–A149 (2018).
    [Crossref]
  74. Y. Zhao, K. C. Kwon, Y. Piao, S. H. Jeon, and N. Kim, “Depth-layer weighted prediction method for a full-color polygon-based holographic system with real objects,” Opt. Lett. 42, 2599–2602 (2017).
    [Crossref]
  75. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52, A290–A299 (2013).
    [Crossref]
  76. H. Kim, J. Kwon, and J. Hahn, “Accelerated synthesis of wide-viewing angle polygon computer-generated holograms using the interocular affine similarity of three-dimensional scenes,” Opt. Express 26, 16853–16874 (2018).
    [Crossref]
  77. X. N. Pang, D. C. Chen, Y. C. Ding, Y. G. Chen, S. J. Jiang, and J. W. Dong, “Image quality improvement of polygon computer generated holography,” Opt. Express 23, 19066–19073 (2015).
    [Crossref]
  78. S. Trester, “Computer-simulated Fresnel holography,” Eur. J. Phys. 21, 317–331 (2000).
    [Crossref]
  79. Y. Sando, M. Itoh, and T. Yatagai, “Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects,” Opt. Lett. 28, 2518–2520 (2003).
    [Crossref]
  80. M. Bayraktar and M. Özcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography,” Appl. Opt. 49, 4647–4654 (2010).
    [Crossref]
  81. J. S. Chen, D. Chu, and Q. Y. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electronic Imaging 23, 023016 (2014).
    [Crossref]
  82. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23, 25440–25449 (2015).
    [Crossref]
  83. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15, 5631–5640 (2007).
    [Crossref]
  84. N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photon. Lett. Pol. 6, 90–92 (2014).
  85. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29, 1668–1670 (2004).
    [Crossref]
  86. Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional realistic objects recorded without wave interference,” Appl. Opt. 40, 2864–2870 (2001).
    [Crossref]
  87. N. T. Shaked and J. Rosen, “Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections,” Appl. Opt. 47, D21–D27 (2008).
    [Crossref]
  88. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386 (2008).
    [Crossref]
  89. Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52, 015802 (2013).
    [Crossref]
  90. Y. Lim, K. Hong, H. Kim, H. E. Kim, E. Y. Chang, S. Lee, T. Kim, J. Nam, H. G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
    [Crossref]
  91. G. Li, J. Hong, D. Lee, J. Yeom, and B. Lee, “Viewing zone enlargement of holographic display using high order terms guided by holographic optical element,” in Imaging and Applied Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper JT5A.24.
  92. H. Kim, K. Hong, Y. Lim, H. Choo, and J. Kim, “Continuous viewing window formation for 360-degree holographic display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2017), paper W2A.22.
  93. S. B. Ko and J. H. Park, “Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram,” Opt. Express 25, 29788–29797 (2017).
    [Crossref]
  94. S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
    [Crossref]
  95. D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
    [Crossref]
  96. X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
    [Crossref]
  97. Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
    [Crossref]
  98. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
    [Crossref]

2018 (19)

C. H. Li, S. H. Lu, S. Y. Lin, T. Y. Hsieh, K. S. Wang, and W. H. Kuo, “Invited paper: ultra-fast moving-picture response-time LCD for virtual reality application,” SID Int. Symp. Dig. Tech. Pap. 49, 678–680 (2018).
[Crossref]

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3” 1443 ppi 120  Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26, 314–324 (2018).
[Crossref]

G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26, 25076–25085 (2018).
[Crossref]

G. Tan, Y. Huang, M. C. Li, S. L. Lee, and S. T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26, 16572–16584 (2018).
[Crossref]

T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26, 4863–4872 (2018).
[Crossref]

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26, 64–70 (2018).
[Crossref]

Y. T. Liu, K. Y. Liao, C. L. Lin, and Y. L. Li, “Invited paper: pixeLED display for transparent applications,” SID Int. Symp. Dig. Tech. Pap. 49, 874–875 (2018).
[Crossref]

C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26, 18292–18301 (2018).
[Crossref]

H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26, 17578–17590 (2018).
[Crossref]

L. Wei, Y. Li, J. Jing, L. Feng, and J. Zhou, “Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface,” Opt. Express 26, 8550–8565 (2018).
[Crossref]

X. Shen and B. Javidi, “Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens,” Appl. Opt. 57, B184–B189 (2018).
[Crossref]

J. Park and S. Kim, “Optical see-through holographic near-eye-display with eyebox steering and depth of field control,” Opt. Express 26, 27076–27088 (2018).
[Crossref]

P. Zhou, Y. Li, S. Liu, and Y. Su, “Compact design for optical-see-through holographic displays employing holographic optical elements,” Opt. Express 26, 22866–22876 (2018).
[Crossref]

J. S. Lee, Y. K. Kim, and Y. H. Won, “See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens,” Opt. Express 26, 19341–19355 (2018).
[Crossref]

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 10140–10151 (2018).
[Crossref]

A. Symeonidou, D. Blinder, and P. Schelkens, “Colour computer-generated holography for point clouds utilizing the Phong illumination model,” Opt. Express 26, 10282–10298 (2018).
[Crossref]

J. P. Liu and H. K. Liao, “Fast occlusion processing for a polygon-based computer-generated hologram using the slice-by-slice silhouette method,” Appl. Opt. 57, A215–A221 (2018).
[Crossref]

Z. Lu and Y. Sakamoto, “Holographic display methods for volume data: polygon-based and MIP-based methods,” Appl. Opt. 57, A142–A149 (2018).
[Crossref]

H. Kim, J. Kwon, and J. Hahn, “Accelerated synthesis of wide-viewing angle polygon computer-generated holograms using the interocular affine similarity of three-dimensional scenes,” Opt. Express 26, 16853–16874 (2018).
[Crossref]

2017 (11)

Y. Zhao, K. C. Kwon, Y. Piao, S. H. Jeon, and N. Kim, “Depth-layer weighted prediction method for a full-color polygon-based holographic system with real objects,” Opt. Lett. 42, 2599–2602 (2017).
[Crossref]

S. Jiao, Z. Zhuang, and W. Zou, “Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation,” Opt. Express 25, 112–123 (2017).
[Crossref]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25, 8412–8424 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 8501–8516 (2017).
[Crossref]

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56, 112–120 (2017).
[Crossref]

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100-C, 965–971 (2017).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 1–13 (2017).
[Crossref]

D. Sun, C. Wang, D. Teng, and L. Liu, “Three-dimensional display on computer screen free from accommodation-convergence conflict,” Opt. Commun. 390, 36–40 (2017).
[Crossref]

B. C. Kress and W. J. Cummings, “11-1: Invited paper: towards the ultimate mixed reality experience: Hololens display architecture choices,” SID Int. Symp. Dig. Tech. Pap. 48, 127–131 (2017).
[Crossref]

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

S. B. Ko and J. H. Park, “Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram,” Opt. Express 25, 29788–29797 (2017).
[Crossref]

2016 (13)

Y. Lim, K. Hong, H. Kim, H. E. Kim, E. Y. Chang, S. Lee, T. Kim, J. Nam, H. G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

S. Xie, P. Wang, X. Sang, and C. Li, “Augmented reality three-dimensional display with light field fusion,” Opt. Express 24, 11483–11494 (2016).
[Crossref]

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12, 982–985 (2016).
[Crossref]

Y. Wang, W. Liu, X. Meng, H. Fu, D. Zhang, Y. Kang, R. Feng, Z. Wei, X. Zhu, and G. Jiang, “Development of an immersive virtual reality head-mounted display with high performance,” Appl. Opt. 55, 6969–6977 (2016).
[Crossref]

J. Hecht, “Optical dreams, virtual reality,” Opt. Photon. News 27(6), 24–31 (2016).
[Crossref]

L. Liu, Z. Pang, and D. Teng, “Super multi-view three-dimensional display technique for portable devices,” Opt. Express 24, 4421–4430 (2016).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 1–13 (2016).

Z. Chen, X. Sang, Q. Lin, J. Li, X. Yu, X. Gao, B. Yan, C. Yu, W. Dou, and L. Xiao, “Acceleration for computer-generated hologram in head-mounted display with effective diffraction area recording method for eyes,” Chin. Opt. Lett. 14, 080901 (2016).
[Crossref]

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41, 2486–2489 (2016).
[Crossref]

M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A 33, 2348–2364 (2016).
[Crossref]

Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24, 30368–30378 (2016).
[Crossref]

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12, 1688–1694 (2016).
[Crossref]

2015 (9)

J.-S. Chen and D. P. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23, 18143–18155 (2015).
[Crossref]

C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, and J. Chen, “Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm,” Appl. Opt. 54, 6994–7001 (2015).
[Crossref]

X. N. Pang, D. C. Chen, Y. C. Ding, Y. G. Chen, S. J. Jiang, and J. W. Dong, “Image quality improvement of polygon computer generated holography,” Opt. Express 23, 19066–19073 (2015).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23, 9852–9857 (2015).
[Crossref]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23, 25440–25449 (2015).
[Crossref]

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cue,” ACM Trans. Graph. 34, 1–12 (2015).
[Crossref]

X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23, 25950–25958 (2015).
[Crossref]

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality displays with micro integral imaging,” J. Disp. Technol. 11, 889–893 (2015).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

2014 (6)

K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39, 127–130 (2014).
[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22, 13484–13491 (2014).
[Crossref]

E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22, 6526–6534 (2014).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photon. Lett. Pol. 6, 90–92 (2014).

J. S. Chen, D. Chu, and Q. Y. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electronic Imaging 23, 023016 (2014).
[Crossref]

T. Utsugi and M. Yamaguchi, “Speckle-suppression in hologram calculation using ray-sampling plane,” Opt. Express 22, 17193–17206 (2014).
[Crossref]

2013 (5)

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52, A290–A299 (2013).
[Crossref]

Y. Z. Liu, X. N. Pang, S. Jiang, and J. W. Dong, “Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling,” Opt. Express 21, 12068–12076 (2013).
[Crossref]

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref]

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[Crossref]

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

2012 (1)

2011 (1)

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 1–10 (2011).
[Crossref]

2010 (3)

2009 (2)

2008 (4)

2007 (1)

2005 (3)

S. Nishi, K. Shiba, K. Mori, S. Nakayama, and S. Murashima, “Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation,” Opt. Rev. 12, 287–292 (2005).
[Crossref]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
[Crossref]

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

2004 (1)

2003 (1)

2001 (1)

2000 (1)

S. Trester, “Computer-simulated Fresnel holography,” Eur. J. Phys. 21, 317–331 (2000).
[Crossref]

1995 (1)

E. Peli, “Real vision & virtual reality,” Opt. Photon. News 6(7), 28–34 (1995).
[Crossref]

1993 (1)

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electronic Imaging 2, 28–34 (1993).
[Crossref]

1983 (1)

1966 (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[Crossref]

1965 (1)

Abookasis, D.

Alam, S.

H. Bellini, W. Chen, M. Sugiyama, M. Shin, S. Alam, and D. Takayama, Profiles in Innovation of Virtual & Augmented Reality (Goldman Sachs, 2016).

Asundi, A. K.

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56, 112–120 (2017).
[Crossref]

Balram, N.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3” 1443 ppi 120  Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26, 314–324 (2018).
[Crossref]

Bang, K.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 1–13 (2017).
[Crossref]

Barabas, J.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[Crossref]

Bayraktar, M.

Beausoleil, R. G.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref]

Bellini, H.

H. Bellini, W. Chen, M. Sugiyama, M. Shin, S. Alam, and D. Takayama, Profiles in Innovation of Virtual & Augmented Reality (Goldman Sachs, 2016).

Blanche, P. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Blinder, D.

Bourquin, S.

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12, 982–985 (2016).
[Crossref]

Bove, V. M.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[Crossref]

Brug, J.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref]

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Cao, L.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12, 1688–1694 (2016).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23, 25440–25449 (2015).
[Crossref]

Cao, W.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12, 1688–1694 (2016).
[Crossref]

Chang, C.

Chang, E. Y.

Chang, S.

Chen, D.

Chen, D. C.

Chen, J.

Chen, J. S.

J. S. Chen, D. Chu, and Q. Y. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electronic Imaging 23, 023016 (2014).
[Crossref]

Chen, J.-S.

Chen, K.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cue,” ACM Trans. Graph. 34, 1–12 (2015).
[Crossref]

Chen, W.

H. Bellini, W. Chen, M. Sugiyama, M. Shin, S. Alam, and D. Takayama, Profiles in Innovation of Virtual & Augmented Reality (Goldman Sachs, 2016).

Chen, X.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Chen, Y. G.

Chen, Z.

Cheng, B.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12, 1688–1694 (2016).
[Crossref]

Cheng, D.

Cho, J.

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41, 2486–2489 (2016).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 1–13 (2016).

Choo, H.

H. Kim, K. Hong, Y. Lim, H. Choo, and J. Kim, “Continuous viewing window formation for 360-degree holographic display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2017), paper W2A.22.

Choo, H. G.

Chu, D.

J. S. Chen, D. Chu, and Q. Y. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electronic Imaging 23, 023016 (2014).
[Crossref]

Chu, D. P.

Cummings, W. J.

B. C. Kress and W. J. Cummings, “11-1: Invited paper: towards the ultimate mixed reality experience: Hololens display architecture choices,” SID Int. Symp. Dig. Tech. Pap. 48, 127–131 (2017).
[Crossref]

Ding, Y. C.

Dong, J. W.

Dou, W.

Douyou, M.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Duan, W.

Duan, X.

Fattal, D.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref]

Feng, L.

Feng, R.

Fiorentino, M.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref]

Flores, D.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Fu, H.

Gao, Q.

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25, 8412–8424 (2017).
[Crossref]

J. Liu, Q. Gao, and J. Han, “Compact monocular 3D near-eye display,” in Imaging and Applied Optics 2017, OSA Technical Digest (Optical Society of America, 2017), paper DTu4F.2.

Gao, X.

Georgiou, A.

A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 8501–8516 (2017).
[Crossref]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Goodman, J. P.

J. P. Goodman, Introduction to Fourier Optics (W. H. Freeman, 2017).

Gu, M.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Gu, T.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Hahn, J.

Han, J.

J. Liu, Q. Gao, and J. Han, “Compact monocular 3D near-eye display,” in Imaging and Applied Optics 2017, OSA Technical Digest (Optical Society of America, 2017), paper DTu4F.2.

Hasegawa, A.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Hecht, J.

J. Hecht, “Optical dreams, virtual reality,” Opt. Photon. News 27(6), 24–31 (2016).
[Crossref]

Heidrich, W.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 1–10 (2011).
[Crossref]

Hong, J.

K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39, 127–130 (2014).
[Crossref]

G. Li, J. Hong, D. Lee, J. Yeom, and B. Lee, “Viewing zone enlargement of holographic display using high order terms guided by holographic optical element,” in Imaging and Applied Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper JT5A.24.

J. Hong, Y. Kim, S. Hong, C. Shin, and H. Kang, “Near-eye foveated holographic display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2018), paper 3M2G.4.

Hong, J. Y.

J. Y. Hong, G. Li, and B. Lee, “Holographic see-through near-eye display using index-matched anisotropic crystal lens,” in Imaging and Applied Optics 2018, OSA Technical Digest (Optical Society of America, 2018), paper DTu2F.3.

Hong, K.

Hong, S.

J. Hong, Y. Kim, S. Hong, C. Shin, and H. Kang, “Near-eye foveated holographic display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2018), paper 3M2G.4.

Hsieh, T. Y.

C. H. Li, S. H. Lu, S. Y. Lin, T. Y. Hsieh, K. S. Wang, and W. H. Kuo, “Invited paper: ultra-fast moving-picture response-time LCD for virtual reality application,” SID Int. Symp. Dig. Tech. Pap. 49, 678–680 (2018).
[Crossref]

Hu, B.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Hua, H.

Huang, F. C.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cue,” ACM Trans. Graph. 34, 1–12 (2015).
[Crossref]

Huang, H.

Huang, Y.

Ichihashi, Y.

Imai, T.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Ito, S.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Ito, T.

Itoh, M.

Jang, C.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 1–13 (2017).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 1–13 (2016).

K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39, 127–130 (2014).
[Crossref]

Javidi, B.

Jeon, S. H.

Jeong, Y.

Jia, J.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52, A290–A299 (2013).
[Crossref]

Jiang, G.

Jiang, S.

Jiang, S. J.

Jiao, S.

Jin, G.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12, 1688–1694 (2016).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23, 25440–25449 (2015).
[Crossref]

Jing, J.

Jolly, S.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[Crossref]

Jung, S. H.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3” 1443 ppi 120  Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26, 314–324 (2018).
[Crossref]

Kakue, T.

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23, 9852–9857 (2015).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photon. Lett. Pol. 6, 90–92 (2014).

Kang, H.

J. Hong, Y. Kim, S. Hong, C. Shin, and H. Kang, “Near-eye foveated holographic display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2018), paper 3M2G.4.

Kang, I. B.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3” 1443 ppi 120  Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26, 314–324 (2018).
[Crossref]

Kang, Y.

Kato, H.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Kelly, D. L.

Kersten, D.

Kilcher, L.

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12, 982–985 (2016).
[Crossref]

Kim, E. S.

Kim, H.

Kim, H. E.

Kim, J.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 1–13 (2017).
[Crossref]

Y. Lim, K. Hong, H. Kim, H. E. Kim, E. Y. Chang, S. Lee, T. Kim, J. Nam, H. G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

H. Kim, K. Hong, Y. Lim, H. Choo, and J. Kim, “Continuous viewing window formation for 360-degree holographic display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2017), paper W2A.22.

Kim, J. M.

Kim, M.

Kim, N.

Kim, S.

Kim, S. C.

Kim, T.

Kim, Y.

J. Hong, Y. Kim, S. Hong, C. Shin, and H. Kang, “Near-eye foveated holographic display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2018), paper 3M2G.4.

Kim, Y. K.

Ko, S. B.

Kollin, J.

A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 8501–8516 (2017).
[Crossref]

Kong, D.

Kozma, A.

Kress, B. C.

B. C. Kress and W. J. Cummings, “11-1: Invited paper: towards the ultimate mixed reality experience: Hololens display architecture choices,” SID Int. Symp. Dig. Tech. Pap. 48, 127–131 (2017).
[Crossref]

Kuo, W. H.

C. H. Li, S. H. Lu, S. Y. Lin, T. Y. Hsieh, K. S. Wang, and W. H. Kuo, “Invited paper: ultra-fast moving-picture response-time LCD for virtual reality application,” SID Int. Symp. Dig. Tech. Pap. 49, 678–680 (2018).
[Crossref]

Kwon, J.

Kwon, K. C.

Lanman, D.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 1–10 (2011).
[Crossref]

Lee, B.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 1–13 (2017).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 1–13 (2016).

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41, 2486–2489 (2016).
[Crossref]

K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39, 127–130 (2014).
[Crossref]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386 (2008).
[Crossref]

G. Li, J. Hong, D. Lee, J. Yeom, and B. Lee, “Viewing zone enlargement of holographic display using high order terms guided by holographic optical element,” in Imaging and Applied Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper JT5A.24.

J. Y. Hong, G. Li, and B. Lee, “Holographic see-through near-eye display using index-matched anisotropic crystal lens,” in Imaging and Applied Optics 2018, OSA Technical Digest (Optical Society of America, 2018), paper DTu2F.3.

Lee, D.

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41, 2486–2489 (2016).
[Crossref]

G. Li, J. Hong, D. Lee, J. Yeom, and B. Lee, “Viewing zone enlargement of holographic display using high order terms guided by holographic optical element,” in Imaging and Applied Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper JT5A.24.

Lee, G.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3” 1443 ppi 120  Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26, 314–324 (2018).
[Crossref]

Lee, J. S.

Lee, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 1–13 (2017).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 1–13 (2016).

Y. Lim, K. Hong, H. Kim, H. E. Kim, E. Y. Chang, S. Lee, T. Kim, J. Nam, H. G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

Lee, S. L.

Lee, Y. H.

Legge, G. E.

Lei, W.

Li, C.

S. Xie, P. Wang, X. Sang, and C. Li, “Augmented reality three-dimensional display with light field fusion,” Opt. Express 24, 11483–11494 (2016).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Li, C. H.

C. H. Li, S. H. Lu, S. Y. Lin, T. Y. Hsieh, K. S. Wang, and W. H. Kuo, “Invited paper: ultra-fast moving-picture response-time LCD for virtual reality application,” SID Int. Symp. Dig. Tech. Pap. 49, 678–680 (2018).
[Crossref]

Li, G.

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41, 2486–2489 (2016).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

G. Li, J. Hong, D. Lee, J. Yeom, and B. Lee, “Viewing zone enlargement of holographic display using high order terms guided by holographic optical element,” in Imaging and Applied Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper JT5A.24.

J. Y. Hong, G. Li, and B. Lee, “Holographic see-through near-eye display using index-matched anisotropic crystal lens,” in Imaging and Applied Optics 2018, OSA Technical Digest (Optical Society of America, 2018), paper DTu2F.3.

Li, J.

Li, M. C.

Li, Q.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Li, X.

Li, Y.

Li, Y. L.

Y. T. Liu, K. Y. Liao, C. L. Lin, and Y. L. Li, “Invited paper: pixeLED display for transparent applications,” SID Int. Symp. Dig. Tech. Pap. 49, 874–875 (2018).
[Crossref]

Liang, X.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12, 1688–1694 (2016).
[Crossref]

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Liao, H. K.

Liao, K. Y.

Y. T. Liu, K. Y. Liao, C. L. Lin, and Y. L. Li, “Invited paper: pixeLED display for transparent applications,” SID Int. Symp. Dig. Tech. Pap. 49, 874–875 (2018).
[Crossref]

Lim, Y.

Lin, C. L.

Y. T. Liu, K. Y. Liao, C. L. Lin, and Y. L. Li, “Invited paper: pixeLED display for transparent applications,” SID Int. Symp. Dig. Tech. Pap. 49, 874–875 (2018).
[Crossref]

Lin, Q.

Lin, S. Y.

C. H. Li, S. H. Lu, S. Y. Lin, T. Y. Hsieh, K. S. Wang, and W. H. Kuo, “Invited paper: ultra-fast moving-picture response-time LCD for virtual reality application,” SID Int. Symp. Dig. Tech. Pap. 49, 678–680 (2018).
[Crossref]

Lin, W.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Liu, J.

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25, 8412–8424 (2017).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52, A290–A299 (2013).
[Crossref]

J. Liu, Q. Gao, and J. Han, “Compact monocular 3D near-eye display,” in Imaging and Applied Optics 2017, OSA Technical Digest (Optical Society of America, 2017), paper DTu4F.2.

Liu, J. P.

Liu, L.

D. Sun, C. Wang, D. Teng, and L. Liu, “Three-dimensional display on computer screen free from accommodation-convergence conflict,” Opt. Commun. 390, 36–40 (2017).
[Crossref]

L. Liu, Z. Pang, and D. Teng, “Super multi-view three-dimensional display technique for portable devices,” Opt. Express 24, 4421–4430 (2016).
[Crossref]

Liu, P.

Liu, S.

Liu, W.

Liu, Y. T.

Y. T. Liu, K. Y. Liao, C. L. Lin, and Y. L. Li, “Invited paper: pixeLED display for transparent applications,” SID Int. Symp. Dig. Tech. Pap. 49, 874–875 (2018).
[Crossref]

Liu, Y. Z.

Lu, S. H.

C. H. Li, S. H. Lu, S. Y. Lin, T. Y. Hsieh, K. S. Wang, and W. H. Kuo, “Invited paper: ultra-fast moving-picture response-time LCD for virtual reality application,” SID Int. Symp. Dig. Tech. Pap. 49, 678–680 (2018).
[Crossref]

Lu, Z.

Lucente, M. E.

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electronic Imaging 2, 28–34 (1993).
[Crossref]

Lum, Z. M. A.

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Ma, J.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12, 1688–1694 (2016).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 8501–8516 (2017).
[Crossref]

Masuda, N.

Matsushima, K.

Matsushima, S.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Meng, X.

Mizuno, M.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Moon, E.

Moon, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 1–13 (2017).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 1–13 (2016).

Mori, K.

S. Nishi, K. Shiba, K. Mori, S. Nakayama, and S. Murashima, “Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation,” Opt. Rev. 12, 287–292 (2005).
[Crossref]

Muffoletto, R. P.

Murakami, E.

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100-C, 965–971 (2017).
[Crossref]

Murashima, S.

S. Nishi, K. Shiba, K. Mori, S. Nakayama, and S. Murashima, “Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation,” Opt. Rev. 12, 287–292 (2005).
[Crossref]

Nakahara, T.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Nakamura, T.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Nakayama, H.

Nakayama, S.

S. Nishi, K. Shiba, K. Mori, S. Nakayama, and S. Murashima, “Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation,” Opt. Rev. 12, 287–292 (2005).
[Crossref]

Nam, J.

Nishi, S.

S. Nishi, K. Shiba, K. Mori, S. Nakayama, and S. Murashima, “Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation,” Opt. Rev. 12, 287–292 (2005).
[Crossref]

Nishitsuji, T.

Nomura, S.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

North, T.

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12, 982–985 (2016).
[Crossref]

Norwood, R. A.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Numata, Y.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Oguro, Y.

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100-C, 965–971 (2017).
[Crossref]

Oi, R.

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photon. Lett. Pol. 6, 90–92 (2014).

Okada, N.

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photon. Lett. Pol. 6, 90–92 (2014).

Okuyama, F.

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2013), paper DW2A.11.

Okuyama, K.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Oue, Y.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Ozaki, T.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Özcan, M.

Pan, Y.

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52, A290–A299 (2013).
[Crossref]

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Pang, X. N.

Pang, Z.

Park, G.

Park, J.

Park, J. H.

Peli, E.

E. Peli, “Real vision & virtual reality,” Opt. Photon. News 6(7), 28–34 (1995).
[Crossref]

Peng, Z.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref]

Peyghambarian, N.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Piao, Y.

Qi, Y.

Raskar, R.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 1–10 (2011).
[Crossref]

Ren, H.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Roh, J.

Rokutanda, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Rosen, J.

Sahu, A.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Sakamoto, Y.

Z. Lu and Y. Sakamoto, “Holographic display methods for volume data: polygon-based and MIP-based methods,” Appl. Opt. 57, A142–A149 (2018).
[Crossref]

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100-C, 965–971 (2017).
[Crossref]

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2013), paper DW2A.11.

Sando, Y.

Sang, X.

Schelkens, P.

Shaked, N. T.

Shen, X.

Shiba, K.

S. Nishi, K. Shiba, K. Mori, S. Nakayama, and S. Murashima, “Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation,” Opt. Rev. 12, 287–292 (2005).
[Crossref]

Shimobaba, T.

Shin, C.

J. Hong, Y. Kim, S. Hong, C. Shin, and H. Kang, “Near-eye foveated holographic display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2018), paper 3M2G.4.

Shin, M.

H. Bellini, W. Chen, M. Sugiyama, M. Shin, S. Alam, and D. Takayama, Profiles in Innovation of Virtual & Augmented Reality (Goldman Sachs, 2016).

Shiraki, A.

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Smalley, D. E.

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[Crossref]

Smithwick, Q. Y.

J. S. Chen, D. Chu, and Q. Y. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electronic Imaging 23, 023016 (2014).
[Crossref]

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[Crossref]

St Hilaire, P.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Su, P.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12, 1688–1694 (2016).
[Crossref]

Su, Y.

Sugie, T.

Sugiyama, H.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Sugiyama, M.

H. Bellini, W. Chen, M. Sugiyama, M. Shin, S. Alam, and D. Takayama, Profiles in Innovation of Virtual & Augmented Reality (Goldman Sachs, 2016).

Sun, D.

D. Sun, C. Wang, D. Teng, and L. Liu, “Three-dimensional display on computer screen free from accommodation-convergence conflict,” Opt. Commun. 390, 36–40 (2017).
[Crossref]

Sun, P.

Symeonidou, A.

Takada, N.

Takayama, D.

H. Bellini, W. Chen, M. Sugiyama, M. Shin, S. Alam, and D. Takayama, Profiles in Innovation of Virtual & Augmented Reality (Goldman Sachs, 2016).

Takeuchi, S.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Takizawa, K.

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Tan, G.

Tao, X.

Tay, S.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Teng, D.

D. Sun, C. Wang, D. Teng, and L. Liu, “Three-dimensional display on computer screen free from accommodation-convergence conflict,” Opt. Commun. 390, 36–40 (2017).
[Crossref]

L. Liu, Z. Pang, and D. Teng, “Super multi-view three-dimensional display technique for portable devices,” Opt. Express 24, 4421–4430 (2016).
[Crossref]

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Thomas, J.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Tohline, J. E.

Tran, T.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref]

Trester, S.

S. Trester, “Computer-simulated Fresnel holography,” Eur. J. Phys. 21, 317–331 (2000).
[Crossref]

Tunç, A. V.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Tyler, J. M.

Utsugi, T.

Valyukh, S.

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56, 112–120 (2017).
[Crossref]

Vieri, C.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3” 1443 ppi 120  Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26, 314–324 (2018).
[Crossref]

Vo, S.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref]

Voorakaranam, R.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Wagner, M.

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12, 982–985 (2016).
[Crossref]

Wang, C.

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 10140–10151 (2018).
[Crossref]

D. Sun, C. Wang, D. Teng, and L. Liu, “Three-dimensional display on computer screen free from accommodation-convergence conflict,” Opt. Commun. 390, 36–40 (2017).
[Crossref]

Wang, C. M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Wang, J.

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality displays with micro integral imaging,” J. Disp. Technol. 11, 889–893 (2015).
[Crossref]

Wang, K. S.

C. H. Li, S. H. Lu, S. Y. Lin, T. Y. Hsieh, K. S. Wang, and W. H. Kuo, “Invited paper: ultra-fast moving-picture response-time LCD for virtual reality application,” SID Int. Symp. Dig. Tech. Pap. 49, 678–680 (2018).
[Crossref]

Wang, P.

S. Xie, P. Wang, X. Sang, and C. Li, “Augmented reality three-dimensional display with light field fusion,” Opt. Express 24, 11483–11494 (2016).
[Crossref]

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Wang, Y.

Waters, J. P.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[Crossref]

Wei, L.

Wei, Z.

Wetzstein, G.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cue,” ACM Trans. Graph. 34, 1–12 (2015).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 1–10 (2011).
[Crossref]

Won, Y. H.

Wu, S. T.

Xia, J.

Xiao, L.

Xiao, X.

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality displays with micro integral imaging,” J. Disp. Technol. 11, 889–893 (2015).
[Crossref]

Xie, S.

Xu, D.

Xu, X.

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Xue, G.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Yamaguchi, I.

Yamaguchi, M.

Yamamoto, K.

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photon. Lett. Pol. 6, 90–92 (2014).

Yamamoto, M.

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

Yan, B.

Yang, C.

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2013), paper DW2A.11.

Yang, J.

Yang, J. Y.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3” 1443 ppi 120  Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26, 314–324 (2018).
[Crossref]

Yang, L.

Yang, T.

Yang, Z.

Yao, C.

Yaroslavsky, L. P.

Yatagai, T.

Yeom, J.

K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39, 127–130 (2014).
[Crossref]

G. Li, J. Hong, D. Lee, J. Yeom, and B. Lee, “Viewing zone enlargement of holographic display using high order terms guided by holographic optical element,” in Imaging and Applied Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper JT5A.24.

Yin, K.

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26, 64–70 (2018).
[Crossref]

Yoneyama, T.

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2013), paper DW2A.11.

Yoon, S. Y.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3” 1443 ppi 120  Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26, 314–324 (2018).
[Crossref]

Yu, C.

Yu, X.

Yu, Y.

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56, 112–120 (2017).
[Crossref]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Zeng, Z.

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56, 112–120 (2017).
[Crossref]

Zhan, T.

Zhang, D.

Zhang, F.

Zhang, H.

Zhao, D.

Zhao, T.

Zhao, Y.

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Zheng, H.

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56, 112–120 (2017).
[Crossref]

Zheng, R.

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Zheng, Z.

Zhou, J.

Zhou, P.

Zhu, X.

Zhuang, Z.

Zou, W.

ACM Trans. Graph. (5)

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30, 1–10 (2011).
[Crossref]

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cue,” ACM Trans. Graph. 34, 1–12 (2015).
[Crossref]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35, 1–13 (2016).

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36, 1–13 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 8501–8516 (2017).
[Crossref]

Appl. Opt. (13)

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56, 112–120 (2017).
[Crossref]

A. Kozma and D. L. Kelly, “Spatial filtering for detection of signals submerged in noise,” Appl. Opt. 4, 387–392 (1965).
[Crossref]

Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional realistic objects recorded without wave interference,” Appl. Opt. 40, 2864–2870 (2001).
[Crossref]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
[Crossref]

N. T. Shaked and J. Rosen, “Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections,” Appl. Opt. 47, D21–D27 (2008).
[Crossref]

S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
[Crossref]

M. Bayraktar and M. Özcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography,” Appl. Opt. 49, 4647–4654 (2010).
[Crossref]

C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, and J. Chen, “Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm,” Appl. Opt. 54, 6994–7001 (2015).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52, A290–A299 (2013).
[Crossref]

X. Shen and B. Javidi, “Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens,” Appl. Opt. 57, B184–B189 (2018).
[Crossref]

Y. Wang, W. Liu, X. Meng, H. Fu, D. Zhang, Y. Kang, R. Feng, Z. Wei, X. Zhu, and G. Jiang, “Development of an immersive virtual reality head-mounted display with high performance,” Appl. Opt. 55, 6969–6977 (2016).
[Crossref]

Z. Lu and Y. Sakamoto, “Holographic display methods for volume data: polygon-based and MIP-based methods,” Appl. Opt. 57, A142–A149 (2018).
[Crossref]

J. P. Liu and H. K. Liao, “Fast occlusion processing for a polygon-based computer-generated hologram using the slice-by-slice silhouette method,” Appl. Opt. 57, A215–A221 (2018).
[Crossref]

Appl. Phys. Lett. (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[Crossref]

Chin. Opt. Lett. (1)

Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Eur. J. Phys. (1)

S. Trester, “Computer-simulated Fresnel holography,” Eur. J. Phys. 21, 317–331 (2000).
[Crossref]

IEICE Trans. Electron. (1)

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100-C, 965–971 (2017).
[Crossref]

J. Disp. Technol. (3)

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12, 1688–1694 (2016).
[Crossref]

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12, 982–985 (2016).
[Crossref]

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality displays with micro integral imaging,” J. Disp. Technol. 11, 889–893 (2015).
[Crossref]

J. Electronic Imaging (2)

J. S. Chen, D. Chu, and Q. Y. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electronic Imaging 23, 023016 (2014).
[Crossref]

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electronic Imaging 2, 28–34 (1993).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (2)

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26, 64–70 (2018).
[Crossref]

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3” 1443 ppi 120  Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26, 314–324 (2018).
[Crossref]

Nat. Commun. (1)

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
[Crossref]

Nat. Photonics (1)

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Nature (3)

S. Tay, P. A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[Crossref]

D. E. Smalley, Q. Y. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498, 313–317 (2013).
[Crossref]

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref]

Opt. Commun. (1)

D. Sun, C. Wang, D. Teng, and L. Liu, “Three-dimensional display on computer screen free from accommodation-convergence conflict,” Opt. Commun. 390, 36–40 (2017).
[Crossref]

Opt. Eng. (1)

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52, 015802 (2013).
[Crossref]

Opt. Express (34)

T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, “Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL,” Opt. Express 18, 9955–9960 (2010).
[Crossref]

T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18, 19504–19509 (2010).
[Crossref]

S. C. Kim, J. M. Kim, and E. S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20, 12021–12034 (2012).
[Crossref]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386 (2008).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17, 13895–13903 (2009).
[Crossref]

R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15, 5631–5640 (2007).
[Crossref]

Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24, 30368–30378 (2016).
[Crossref]

S. Jiao, Z. Zhuang, and W. Zou, “Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation,” Opt. Express 25, 112–123 (2017).
[Crossref]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25, 8412–8424 (2017).
[Crossref]

S. Xie, P. Wang, X. Sang, and C. Li, “Augmented reality three-dimensional display with light field fusion,” Opt. Express 24, 11483–11494 (2016).
[Crossref]

Y. Z. Liu, X. N. Pang, S. Jiang, and J. W. Dong, “Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling,” Opt. Express 21, 12068–12076 (2013).
[Crossref]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23, 25440–25449 (2015).
[Crossref]

X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23, 25950–25958 (2015).
[Crossref]

L. Liu, Z. Pang, and D. Teng, “Super multi-view three-dimensional display technique for portable devices,” Opt. Express 24, 4421–4430 (2016).
[Crossref]

E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22, 6526–6534 (2014).
[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22, 13484–13491 (2014).
[Crossref]

T. Utsugi and M. Yamaguchi, “Speckle-suppression in hologram calculation using ray-sampling plane,” Opt. Express 22, 17193–17206 (2014).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram using run-length encoding based recurrence relation,” Opt. Express 23, 9852–9857 (2015).
[Crossref]

J.-S. Chen and D. P. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23, 18143–18155 (2015).
[Crossref]

X. N. Pang, D. C. Chen, Y. C. Ding, Y. G. Chen, S. J. Jiang, and J. W. Dong, “Image quality improvement of polygon computer generated holography,” Opt. Express 23, 19066–19073 (2015).
[Crossref]

T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26, 4863–4872 (2018).
[Crossref]

Y. Lim, K. Hong, H. Kim, H. E. Kim, E. Y. Chang, S. Lee, T. Kim, J. Nam, H. G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
[Crossref]

S. B. Ko and J. H. Park, “Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram,” Opt. Express 25, 29788–29797 (2017).
[Crossref]

L. Wei, Y. Li, J. Jing, L. Feng, and J. Zhou, “Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface,” Opt. Express 26, 8550–8565 (2018).
[Crossref]

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26, 10140–10151 (2018).
[Crossref]

A. Symeonidou, D. Blinder, and P. Schelkens, “Colour computer-generated holography for point clouds utilizing the Phong illumination model,” Opt. Express 26, 10282–10298 (2018).
[Crossref]

G. Tan, Y. Huang, M. C. Li, S. L. Lee, and S. T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26, 16572–16584 (2018).
[Crossref]

H. Kim, J. Kwon, and J. Hahn, “Accelerated synthesis of wide-viewing angle polygon computer-generated holograms using the interocular affine similarity of three-dimensional scenes,” Opt. Express 26, 16853–16874 (2018).
[Crossref]

H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26, 17578–17590 (2018).
[Crossref]

C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26, 18292–18301 (2018).
[Crossref]

J. S. Lee, Y. K. Kim, and Y. H. Won, “See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens,” Opt. Express 26, 19341–19355 (2018).
[Crossref]

P. Zhou, Y. Li, S. Liu, and Y. Su, “Compact design for optical-see-through holographic displays employing holographic optical elements,” Opt. Express 26, 22866–22876 (2018).
[Crossref]

G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26, 25076–25085 (2018).
[Crossref]

J. Park and S. Kim, “Optical see-through holographic near-eye-display with eyebox steering and depth of field control,” Opt. Express 26, 27076–27088 (2018).
[Crossref]

Opt. Lett. (6)

Opt. Photon. News (2)

E. Peli, “Real vision & virtual reality,” Opt. Photon. News 6(7), 28–34 (1995).
[Crossref]

J. Hecht, “Optical dreams, virtual reality,” Opt. Photon. News 27(6), 24–31 (2016).
[Crossref]

Opt. Rev. (1)

S. Nishi, K. Shiba, K. Mori, S. Nakayama, and S. Murashima, “Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation,” Opt. Rev. 12, 287–292 (2005).
[Crossref]

Photon. Lett. Pol. (1)

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, and T. Ito, “Fast calculation of computer-generated hologram for RGB and depth images using wavefront recording plane method,” Photon. Lett. Pol. 6, 90–92 (2014).

SID Int. Symp. Dig. Tech. Pap. (4)

C. H. Li, S. H. Lu, S. Y. Lin, T. Y. Hsieh, K. S. Wang, and W. H. Kuo, “Invited paper: ultra-fast moving-picture response-time LCD for virtual reality application,” SID Int. Symp. Dig. Tech. Pap. 49, 678–680 (2018).
[Crossref]

B. C. Kress and W. J. Cummings, “11-1: Invited paper: towards the ultimate mixed reality experience: Hololens display architecture choices,” SID Int. Symp. Dig. Tech. Pap. 48, 127–131 (2017).
[Crossref]

K. Okuyama, T. Nakahara, Y. Numata, T. Nakamura, M. Mizuno, H. Sugiyama, S. Nomura, S. Takeuchi, Y. Oue, H. Kato, S. Ito, A. Hasegawa, T. Ozaki, M. Douyou, T. Imai, K. Takizawa, and S. Matsushima, “Late—news paper: highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light,” SID Int. Symp. Dig. Tech. Pap. 48, 1166–1169 (2017).
[Crossref]

Y. T. Liu, K. Y. Liao, C. L. Lin, and Y. L. Li, “Invited paper: pixeLED display for transparent applications,” SID Int. Symp. Dig. Tech. Pap. 49, 874–875 (2018).
[Crossref]

Other (11)

H. Bellini, W. Chen, M. Sugiyama, M. Shin, S. Alam, and D. Takayama, Profiles in Innovation of Virtual & Augmented Reality (Goldman Sachs, 2016).

J. Liu, Q. Gao, and J. Han, “Compact monocular 3D near-eye display,” in Imaging and Applied Optics 2017, OSA Technical Digest (Optical Society of America, 2017), paper DTu4F.2.

P. Daugherty, “Extended reality summary,” https://www.accenture.com/us-en/insight-xr-extended-reality .

Qualcomm Technologies Inc., “The mobile future of extended reality (XR),” https://www.qualcomm.com/media/documents/files/the-mobile-future-of-extended-reality-xr.pdf .

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, “Eyepiece-type full-color electro-holographic binocular display with see-through vision,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2013), paper DW2A.11.

K. Guttag, “Magic Leap review part 2- image issue,” https://www.kguttag.com/2018/10/01/magic-leap-review-part-2-image-issues/ .

J. Y. Hong, G. Li, and B. Lee, “Holographic see-through near-eye display using index-matched anisotropic crystal lens,” in Imaging and Applied Optics 2018, OSA Technical Digest (Optical Society of America, 2018), paper DTu2F.3.

J. Hong, Y. Kim, S. Hong, C. Shin, and H. Kang, “Near-eye foveated holographic display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2018), paper 3M2G.4.

J. P. Goodman, Introduction to Fourier Optics (W. H. Freeman, 2017).

G. Li, J. Hong, D. Lee, J. Yeom, and B. Lee, “Viewing zone enlargement of holographic display using high order terms guided by holographic optical element,” in Imaging and Applied Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper JT5A.24.

H. Kim, K. Hong, Y. Lim, H. Choo, and J. Kim, “Continuous viewing window formation for 360-degree holographic display,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2017), paper W2A.22.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Differences among VR, AR, MR, and XR.
Fig. 2.
Fig. 2. VR system based on binocular vision.
Fig. 3.
Fig. 3. AR system based on binocular vision display.
Fig. 4.
Fig. 4. VR device based on light field display technology.
Fig. 5.
Fig. 5. AR device based on computer-generated holographic display. The CGH is uploaded onto the SLM, the diffracted light under the illumination of the reference light reaches human eyes through one direction of the BS, and the real environment enters human eyes through another direction of the BS.

Tables (4)

Tables Icon

Table 1. Comparison of Virtual Reality, Augmented Reality, Mixed Reality, and Extended Reality

Tables Icon

Table 2. Advantages of Holographic Display Over Binocular Vision Display and Light Field Display

Tables Icon

Table 3. Different Computer-Generated Holographic Algorithms

Tables Icon

Table 4. Different Methods for SBP Expansion

Metrics