Abstract

Stimulated Raman scattering (SRS) is a powerful optical technique for probing the vibrational states of molecules in biological tissues and provides greater signal intensities than when using spontaneous Raman scattering. In this study, we examined the use of continuous wave (cw) and picosecond (ps) laser excitations to generate SRS signals in pure methanol, a carotene–methanol solution, acetone, and brain tissue samples. The cw-SRS system, which utilized two cw lasers, produced better signal-to-noise (S/N) than the conventional ps-SRS system, suggesting that the cw-SRS system is an efficient and cost-effective approach for studying SRS in complex systems like the brain. The cw-SRS approach will reduce the size of the SRS system, allowing for stimulated Raman gain/loss microscopy. In addition, we showed that there exists a resonance SRS (RSRS) effect from the carotene–methanol solution and brain tissue samples using cw laser excitations. The RSRS effect will further improve the signal-to-noise and may be utilized as an enhanced, label-free SRS microscopic tool for the study of biological tissues.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tissue imaging depth limit of stimulated Raman scattering microscopy

Andrew H. Hill, Bryce Manifold, and Dan Fu
Biomed. Opt. Express 11(2) 762-774 (2020)

Effects of fixatives on myelin molecular order probed with RP-CARS microscopy

Giuseppe de Vito, Paola Parlanti, Roberta Cecchi, Stefano Luin, Valentina Cappello, Ilaria Tonazzini, and Vincenzo Piazza
Appl. Opt. 59(6) 1756-1762 (2020)

Multi-modal label-free imaging based on a femtosecond fiber laser

Ruxin Xie, Jue Su, Eric C. Rentchler, Ziyan Zhang, Carey K. Johnson, Honglian Shi, and Rongqing Hui
Biomed. Opt. Express 5(7) 2390-2396 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription