Y. B. Huang, K. C. Fan, W. Sun, and S. J. Liu, “Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error,” Opt. Express 26, 17185–17198 (2018).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, and X. Y. Teng, “Laser heterodyne interference signal processing method based on phase shift of reference signal,” Opt. Express 26, 8656–8668 (2018).

[Crossref]

Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).

[Crossref]

Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).

[Crossref]

Y. Q. Zhao, B. Zhang, and Q. B. Feng, “Measurement system and model for simultaneously measuring 6DOF geometric errors,” Opt. Express 25, 20993–21007 (2017).

[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).

[Crossref]

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).

[Crossref]

J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).

[Crossref]

C. X. Cui, Q. B. Feng, B. Zhang, and Y. Q. Zhao, “System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser,” Opt. Express 24, 6735–6748 (2016).

[Crossref]

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).

[Crossref]

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).

[Crossref]

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).

[Crossref]

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).

[Crossref]

P. Huang, Y. Li, H. Y. Wei, L. B. Ren, and S. J. Zhao, “Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique,” Appl. Opt. 52, 6607–6615 (2013).

[Crossref]

Q. B. Feng, B. Zhang, C. X. Cui, C. F. Kuang, Y. S. Zhai, and F. L. You, “Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide,” Opt. Express 21, 25805–25819 (2013).

[Crossref]

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).

[Crossref]

V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).

[Crossref]

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).

[Crossref]

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).

[Crossref]

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).

[Crossref]

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, and X. Y. Teng, “Laser heterodyne interference signal processing method based on phase shift of reference signal,” Opt. Express 26, 8656–8668 (2018).

[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).

[Crossref]

Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).

[Crossref]

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).

[Crossref]

J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).

[Crossref]

Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).

[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).

[Crossref]

C. X. Cui, Q. B. Feng, B. Zhang, and Y. Q. Zhao, “System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser,” Opt. Express 24, 6735–6748 (2016).

[Crossref]

Q. B. Feng, B. Zhang, C. X. Cui, C. F. Kuang, Y. S. Zhai, and F. L. You, “Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide,” Opt. Express 21, 25805–25819 (2013).

[Crossref]

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).

[Crossref]

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).

[Crossref]

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).

[Crossref]

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).

[Crossref]

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).

[Crossref]

Y. Q. Zhao, B. Zhang, and Q. B. Feng, “Measurement system and model for simultaneously measuring 6DOF geometric errors,” Opt. Express 25, 20993–21007 (2017).

[Crossref]

C. X. Cui, Q. B. Feng, B. Zhang, and Y. Q. Zhao, “System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser,” Opt. Express 24, 6735–6748 (2016).

[Crossref]

Q. B. Feng, B. Zhang, C. X. Cui, C. F. Kuang, Y. S. Zhai, and F. L. You, “Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide,” Opt. Express 21, 25805–25819 (2013).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).

[Crossref]

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).

[Crossref]

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).

[Crossref]

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).

[Crossref]

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).

[Crossref]

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).

[Crossref]

V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).

[Crossref]

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).

[Crossref]

Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).

[Crossref]

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).

[Crossref]

Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).

[Crossref]

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).

[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).

[Crossref]

Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).

[Crossref]

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).

[Crossref]

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).

[Crossref]

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).

[Crossref]

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).

[Crossref]

V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).

[Crossref]

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, and X. Y. Teng, “Laser heterodyne interference signal processing method based on phase shift of reference signal,” Opt. Express 26, 8656–8668 (2018).

[Crossref]

V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).

[Crossref]

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).

[Crossref]

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).

[Crossref]

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).

[Crossref]

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).

[Crossref]

J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).

[Crossref]

Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).

[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).

[Crossref]

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).

[Crossref]

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).

[Crossref]

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).

[Crossref]

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).

[Crossref]

J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).

[Crossref]

Y. Q. Zhao, B. Zhang, and Q. B. Feng, “Measurement system and model for simultaneously measuring 6DOF geometric errors,” Opt. Express 25, 20993–21007 (2017).

[Crossref]

C. X. Cui, Q. B. Feng, B. Zhang, and Y. Q. Zhao, “System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser,” Opt. Express 24, 6735–6748 (2016).

[Crossref]

Q. B. Feng, B. Zhang, C. X. Cui, C. F. Kuang, Y. S. Zhai, and F. L. You, “Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide,” Opt. Express 21, 25805–25819 (2013).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, and X. Y. Teng, “Laser heterodyne interference signal processing method based on phase shift of reference signal,” Opt. Express 26, 8656–8668 (2018).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).

[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).

[Crossref]

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).

[Crossref]

Y. Q. Zhao, B. Zhang, and Q. B. Feng, “Measurement system and model for simultaneously measuring 6DOF geometric errors,” Opt. Express 25, 20993–21007 (2017).

[Crossref]

C. X. Cui, Q. B. Feng, B. Zhang, and Y. Q. Zhao, “System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser,” Opt. Express 24, 6735–6748 (2016).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, and X. Y. Teng, “Laser heterodyne interference signal processing method based on phase shift of reference signal,” Opt. Express 26, 8656–8668 (2018).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).

[Crossref]

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).

[Crossref]

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).

[Crossref]

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37, 135–147 (1997).

[Crossref]

Q. Z. Bi, N. D. Huang, C. Sun, Y. H. Wang, L. M. Zhu, and H. Ding, “Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement,” Int. J. Mach. Tools Manuf. 89, 182–191 (2015).

[Crossref]

J. Zha, F. Xue, and Y. L. Chen, “Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine,” Int. J. Mach. Tools Manuf. 112, 1–6 (2017).

[Crossref]

J. Q. Yang, D. Y. Wang, B. X. Fan, D. F. Dong, and W. H. Zhou, “Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement,” Opt. Eng. 56, 034111 (2017).

[Crossref]

V. Vekteris, M. Jurevichius, and V. Strishka, “Two-dimensional straightness measurement using optical meter,” Opt. Eng. 47, 123605 (2008).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, L. P. Yan, and X. Y. Teng, “Laser heterodyne interferometer with rotational error compensation for precision displacement measurement,” Opt. Express 26, 90–98 (2018).

[Crossref]

E. Z. Zhang, B. Y. Chen, H. Zheng, and X. Y. Teng, “Laser heterodyne interference signal processing method based on phase shift of reference signal,” Opt. Express 26, 8656–8668 (2018).

[Crossref]

Y. T. Lou, L. P. Yan, B. Y. Chen, and S. H. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25, 6805–6821 (2017).

[Crossref]

Y. Q. Zhao, B. Zhang, and Q. B. Feng, “Measurement system and model for simultaneously measuring 6DOF geometric errors,” Opt. Express 25, 20993–21007 (2017).

[Crossref]

Q. B. Feng, B. Zhang, C. X. Cui, C. F. Kuang, Y. S. Zhai, and F. L. You, “Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide,” Opt. Express 21, 25805–25819 (2013).

[Crossref]

Y. B. Huang, K. C. Fan, W. Sun, and S. J. Liu, “Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error,” Opt. Express 26, 17185–17198 (2018).

[Crossref]

B. Y. Chen, B. Xu, L. P. Yan, E. Z. Zhang, and Y. N. Liu, “Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters,” Opt. Express 23, 9052–9073 (2015).

[Crossref]

C. X. Cui, Q. B. Feng, B. Zhang, and Y. Q. Zhao, “System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser,” Opt. Express 24, 6735–6748 (2016).

[Crossref]

Y. T. Chen, W. C. Lin, and C. S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage,” Opt. Lasers. Eng. 92, 94–104 (2017).

[Crossref]

B. Oleg, F. Simon, L. S. Andrew, and M. Alan, “Performance evaluation of a new taut wire system for straightness measurement of machine tools,” Precis. Eng. 38, 492–498 (2014).

[Crossref]

C. H. Liu, W. Y. Jywe, Y. R. Jeng, H. L. Huang, T. H. Hsu, M. S. Wang, and S. Y. Deng, “Development of a straightness measuring system and compensation technique using multiple corner cubes for precision stages,” Proc. Inst. Mech. Eng. B 224, 483–492 (2010).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, C. R. Li, W. H. Tang, and Q. B. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113 (2009).

[Crossref]

B. Y. Chen, L. Cheng, L. P. Yan, E. Z. Zhang, and Y. T. Lou, “A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology,” Rev. Sci. Instrum. 88, 035114 (2017).

[Crossref]

X. Z. Yu, S. R. Gilmer, S. C. Woody, and J. D. Ellis, “Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology,” Rev. Sci. Instrum. 87, 065109 (2016).

[Crossref]

B. Y. Chen, E. Z. Zhang, L. P. Yan, and Y. N. Liu, “An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer,” Rev. Sci. Instrum. 85, 105103 (2014).

[Crossref]