Abstract

Experimental investigations have been undertaken of some aspects of the propagation of helium–neon gas laser radiation at λ = 0.63 μ for different scattering media (artificial water fogs, wood smokes, model media). It has been shown that the attenuation coefficients practically coincide when coherent and incoherent radiation is scattered. The applicability limits of Bouguer-Beer’s law for describing the attenuation of radiation in scattering media are investigated and the intensity of multiple forward-scattered light for different geometrical parameters of the source and radiation receiver are measured. The applicability of single scattering theory formulas for describing forward-scattered light intensity are discussed.

© 1969 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser beam broadening and depolarization in dense fogs

J. S. Ryan and A. I. Carswell
J. Opt. Soc. Am. 68(7) 900-908 (1978)

Lidar system model for use with path obscurants and experimental validation

J. W. Giles, I. N. Bankman, R. M. Sova, T. R. Morgan, D. D. Duncan, J. A. Millard, W. J. Green, and F. J. Marcotte
Appl. Opt. 47(22) 4085-4093 (2008)

Study of polarization memory’s impact on detection range in natural water fogs

Grégoire Tremblay and Gilles Roy
Appl. Opt. 59(7) 1885-1895 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription