Abstract

The extraordinary electronic and two-dimensional materials make them promising candidates to replace traditional photodetectors in infrared and terahertz spectral ranges. This paper reviews the latest achievements in graphene detectors in competition with traditional commercially dominated ones in different applications. It is shown that the performance of graphene-based infrared and terahertz detectors is lower in comparison with those detectors existing on the global market. The high sensitivity of hybrid photodetectors does not coincide with a fast response time, which limits real detector functions. The most effective single graphene detectors operated at room temperature are terahertz detectors, which utilize plasma rectification phenomena in field effect transistors. The challenges facing the development of focal-plane arrays in the future are also considered. Special attention is directed toward the main trends in the development of arrays in the near future—an increase in the pixel count to above 108 pixels, with pixel size decreasing to about 5 μm for both cooled and uncooled long-wavelength infrared arrays. To date, these questions have not been considered in literature devoted to graphene-based infrared and terahertz detectors.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Toward real-time terahertz imaging

Hichem Guerboukha, Kathirvel Nallappan, and Maksim Skorobogatiy
Adv. Opt. Photon. 10(4) 843-938 (2018)

Ultrafast terahertz detectors based on three-dimensional meta-atoms

B. Paulillo, S. Pirotta, H. Nong, P. Crozat, S. Guilet, G. Xu, S. Dhillon, L. H. Li, A. G. Davies, E. H. Linfield, and R. Colombelli
Optica 4(12) 1451-1456 (2017)

Universal ultrafast detector for short optical pulses based on graphene

Martin Mittendorff, Josef Kamann, Jonathan Eroms, Dieter Weiss, Christoph Drexler, Sergey D. Ganichev, Jochen Kerbusch, Artur Erbe, Ryan J. Suess, Thomas E. Murphy, Sangam Chatterjee, Kolja Kolata, Joachim Ohser, Jacob C. König-Otto, Harald Schneider, Manfred Helm, and Stephan Winnerl
Opt. Express 23(22) 28728-28735 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  3. X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
    [Crossref]
  4. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
    [Crossref]
  5. G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
    [Crossref]
  6. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
    [Crossref]
  7. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
    [Crossref]
  8. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
    [Crossref]
  9. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  10. A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19, 346–404 (2011).
    [Crossref]
  11. A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-Based Infrared Detectors: a New Perspective (SPIE, 2018).
  12. A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2010).
  13. D. Long, “Photovoltaic and photoconductive infrared detectors,” in Optical and Infrared Detectors, R. J. Keyes, ed. (Springer, 1980), pp. 101–147.
  14. A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4355–4391 (2003).
    [Crossref]
  15. R. D. Hudson, Infrared System Engineering (Wiley, 1969).
  16. W. I. Wolfe and G. J. Zissis, eds. The Infrared Handbook (Office of Naval Research, 1985).
  17. W. D. Rogatto, ed. The Infrared and Electro-Optical Systems Handbook (Infrared Information Analysis Center/SPIE, 1993).
  18. J. D. Vincent, Fundamentals of Infrared Detector Operation and Testing (Wiley, 1990).
  19. J. D. Vincent, S. E. Hodges, J. Vampola, M. Stegall, and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing (Wiley, 2016).
  20. R. C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” Proc. IRE 47, 1495–1502 (1959).
    [Crossref]
  21. A. Rogalski, “Progress in focal plane array technology,” Prog. Quantum Electron. 36, 342–473 (2012).
    [Crossref]
  22. Z. Jakšić, Micro and Nanophotonics for Semiconductor Infrared Detectors (Springer, 2014).
  23. S. J. Fonash, Solar Cell Device Physics (Elsevier, 2010).
  24. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6, 153–161 (2012).
    [Crossref]
  25. J. Piotrowski and A. Rogalski, “Comment on ‘Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe’ [J. Appl. Phys. 74, 4774 (1993)],” J. Appl. Phys. 80, 2542–2544 (1996).
    [Crossref]
  26. J. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors (SPIE, 2007).
  27. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, 1968).
  28. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology (Wiley, 1962).
  29. P. G. Datskos, “Detectors—figures of merit,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Dekker, 2003), pp. 349–357.
  30. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [Crossref]
  31. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
    [Crossref]
  32. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  33. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3, 206–209 (2008).
    [Crossref]
  34. F. Xia, H. Yan, and P. Avouris, “The interaction of light and graphene: basic, devices, and applications,” Proc. IEEE 101, 1717–1731 (2013).
    [Crossref]
  35. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
    [Crossref]
  36. T. Low and P. Avouris, “Graphene plasmonic for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
    [Crossref]
  37. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
    [Crossref]
  38. V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures,” J. Appl. Phys. 107, 054512 (2010).
    [Crossref]
  39. V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. R. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20, 15–25 (2012).
    [Crossref]
  40. V. Ryzhii, T. Otsuji, M. Ryzhii, and M. S. Shur, “Double graphene-layer plasma resonances terahertz detector,” J. Phys. D 45, 302001 (2012).
    [Crossref]
  41. M. Dyakonov and M. S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
    [Crossref]
  42. M. Dyakonov and M. Shur, “Plasma wave electronics: novel terahertz devices using two dimensional electron fluid,” IEEE Trans. Electron Devices 43, 1640–1645 (1996).
    [Crossref]
  43. X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
    [Crossref]
  44. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
    [Crossref]
  45. D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
    [Crossref]
  46. F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
    [Crossref]
  47. C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
    [Crossref]
  48. A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
    [Crossref]
  49. X. Du, D. E. Prober, H. Vora, and C. B. Mckitterick, “Graphene-based bolometers,” Graphene 2D Mater. 1, 1–22 (2014).
  50. J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
    [Crossref]
  51. U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
    [Crossref]
  52. A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance THz bolometers,” Nat. Nanotechnol. 11, 335–338 (2016).
    [Crossref]
  53. A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
    [Crossref]
  54. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
    [Crossref]
  55. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
    [Crossref]
  56. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
    [Crossref]
  57. Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
    [Crossref]
  58. W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, “Oxygen-assisted charge transfer between ZnO quantum dots and graphene,” Small 9, 3031–3036 (2013).
    [Crossref]
  59. I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nat. Commun. 7, 11954 (2016).
    [Crossref]
  60. S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
    [Crossref]
  61. C. H. Liu, Y. C. Chang, T. B. Norris, and Z. H. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
    [Crossref]
  62. A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
    [Crossref]
  63. X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
    [Crossref]
  64. D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
    [Crossref]
  65. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
    [Crossref]
  66. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
    [Crossref]
  67. M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
    [Crossref]
  68. X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
    [Crossref]
  69. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
    [Crossref]
  70. M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun. 4, 1951 (2013).
    [Crossref]
  71. R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
    [Crossref]
  72. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
    [Crossref]
  73. Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
    [Crossref]
  74. C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
    [Crossref]
  75. T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors graphene photodetectors,” Nano Lett. 16, 8–20 (2015).
    [Crossref]
  76. J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
    [Crossref]
  77. Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
    [Crossref]
  78. W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonator for sensing applications,” Nanoscale 8, 15196–15204 (2016).
    [Crossref]
  79. Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
    [Crossref]
  80. J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
    [Crossref]
  81. A. De Sanctis, J. D. Mehew, M. F. Craciun, and S. Russo, “Graphene-based light sensing: fabrication, characterisation, physical properties and performance,” Materials 11, 1762 (2018).
    [Crossref]
  82. D. H. Shin and S.-H. Choi, “Graphene-based semiconductor heterostructures for photodetectors,” Micromachines 9, 350 (2018).
    [Crossref]
  83. S. Cakmakyapan, P. K. Lu, A. Navabi, and M. Jarrahi, “Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime,” Light: Sci. Appl. 7, 20 (2018).
    [Crossref]
  84. M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductor,” Chem. Soc. Rev. 44, 3691–3718 (2015).
    [Crossref]
  85. C. L. Tan and H. Mohseni, “Emerging technologies for high performance infrared detectors,” Nanophotonics 7, 169–197 (2018).
    [Crossref]
  86. Q. Cui, Y. Yang, J. Li, F. Teng, and X. Wang, “Material and device architecture engineering toward high performance two-dimensional (2D) photodetectors,” Crystals 7, 149 (2017).
    [Crossref]
  87. L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
    [Crossref]
  88. L. Viti, A. Politano, and M. S. Vitiello, “Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges,” APL Mater. 5, 035602 (2017).
    [Crossref]
  89. M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
    [Crossref]
  90. D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril, and M. Otyepka, “Chemistry, properties, and applications of fluorographene,” Appl. Mater. Today 9, 60–70 (2017).
    [Crossref]
  91. M. Currie, “Applications of graphene to photonics,” (Naval Research Laboratory, 2014).
  92. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18, 1415–1417 (2006).
    [Crossref]
  93. N. Oda, “Uncooled bolometer-type terahertz focal-plane array and camera for real-time imaging,” C. R. Physique 11, 496–509 (2010).
    [Crossref]
  94. M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
    [Crossref]
  95. D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements,” IEEE Trans. Terahertz Sci. Technol. 2, 299–305 (2012).
    [Crossref]
  96. O. Djazovski, “Focal plane arrays for optical payloads,” in Optical Payloads for Space Missions, S.-E. Qian, ed. (Wiley, 2016), Chap. 17.
  97. P. Norton, “Detector focal plane array technology,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Dekker, 2003), pp. 320–348.
  98. A. Hoffman, “Semiconductor processing technology improves resolution of infrared arrays,” Laser Focus World 42, 81–84 (2006).
  99. J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
    [Crossref]
  100. T. Hirayama, “The evolution of CMOS image sensors,” in IEEE Asian Solid-State Circuits Conference (2013), pp. 5–8.
  101. B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
    [Crossref]
  102. G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems (JCD Publishing/SPIE, 2007).
  103. M. A. Kinch, State-of-the-Art Infrared Detector Technology (SPIE, 2014).
  104. J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE 9100, 91000I (2014).
    [Crossref]
  105. R. G. Driggers, R. Vollmerhausen, J. P. Reynolds, J. Fanning, and G. C. Holst, “Infrared detector size: how low should you go?” Opt. Eng. 51, 063202 (2012).
    [Crossref]
  106. G. C. Holst and R. G. Driggers, “Small detectors in infrared system design,” Opt. Eng. 51, 096401 (2012).
    [Crossref]
  107. R. L. Strong, M. A. Kinch, and J. M. Armstrong, “Performance of 12-μm- to 15-μm-pitch MWIR and LWIR HgCdTe FPAs at elevated temperatures,” J. Electron. Mater. 42, 3103–3107 (2013).
    [Crossref]
  108. Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
    [Crossref]
  109. Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
    [Crossref]
  110. R. K. McEven, D. Jeckells, S. Bains, and H. Weller, “Developments in reduced pixel geometries with MOCVD grown MCT arrays,” Proc. SPIE 9451, 94512D (2015).
    [Crossref]
  111. J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033(2014).
    [Crossref]
  112. W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
    [Crossref]
  113. R. Bates and K. Kubala, “Direct optimization of LWIR systems for maximized detection range and minimized size and weight,” Proc. SPIE 9100, 91000M (2014).
    [Crossref]
  114. D. Lohrmann, R. Littleton, C. Reese, D. Murphy, and J. Vizgaitis, “Uncooled long-wave infrared small pixel focal plane array and system challenges,” Opt. Eng. 52, 061305 (2013).
    [Crossref]
  115. A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79, 046501 (2016).
    [Crossref]
  116. L. J. Kozlowski and W. F. Kosonocky, “Infrared detector arrays,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Chap. 23.
  117. J. M. Mooney, F. D. Shepherd, W. S. Ewing, and J. Silverman, “Responsivity nonuniformity limited performance of infrared staring cameras,” Opt. Eng. 28, 1151–1161 (1989).
    [Crossref]
  118. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
    [Crossref]
  119. D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
    [Crossref]
  120. A. Rogalski, M. Kopytko, and P. Martyniuk, “Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes,” Appl. Opt. 57, D11–D19 (2018).
    [Crossref]
  121. G. Destefanis, P. Tribolet, M. Vuillermet, and D. B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE 8012, 801235 (2011).
    [Crossref]
  122. N. Oda, Radio Application, Guidance and Electro-Optics Division, NEC Corporation, Tokyo 183-8501 (private communication, 2017).
  123. S. Lloyd, “Advances in detectors: graphene photodetectors advance with help from collective EU Flagship,” Laser Focus World, 2017, https://www.laserfocusworld.com/articles/print/volume-53/issue-07/features/advances-in-detectors-graphene-photodetectors-advance-with-help-from-collective-eu-flagship.html .
  124. S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
    [Crossref]
  125. J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys. 91, 4590–4594 (2002).
    [Crossref]
  126. M. A. Kinch, “An infrared journey,” Proc. SPIE 9451, 94512B (2015).
    [Crossref]

2018 (8)

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

A. De Sanctis, J. D. Mehew, M. F. Craciun, and S. Russo, “Graphene-based light sensing: fabrication, characterisation, physical properties and performance,” Materials 11, 1762 (2018).
[Crossref]

D. H. Shin and S.-H. Choi, “Graphene-based semiconductor heterostructures for photodetectors,” Micromachines 9, 350 (2018).
[Crossref]

S. Cakmakyapan, P. K. Lu, A. Navabi, and M. Jarrahi, “Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime,” Light: Sci. Appl. 7, 20 (2018).
[Crossref]

C. L. Tan and H. Mohseni, “Emerging technologies for high performance infrared detectors,” Nanophotonics 7, 169–197 (2018).
[Crossref]

A. Rogalski, M. Kopytko, and P. Martyniuk, “Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes,” Appl. Opt. 57, D11–D19 (2018).
[Crossref]

2017 (11)

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Q. Cui, Y. Yang, J. Li, F. Teng, and X. Wang, “Material and device architecture engineering toward high performance two-dimensional (2D) photodetectors,” Crystals 7, 149 (2017).
[Crossref]

L. Viti, A. Politano, and M. S. Vitiello, “Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges,” APL Mater. 5, 035602 (2017).
[Crossref]

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril, and M. Otyepka, “Chemistry, properties, and applications of fluorographene,” Appl. Mater. Today 9, 60–70 (2017).
[Crossref]

J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
[Crossref]

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
[Crossref]

2016 (6)

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance THz bolometers,” Nat. Nanotechnol. 11, 335–338 (2016).
[Crossref]

I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nat. Commun. 7, 11954 (2016).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonator for sensing applications,” Nanoscale 8, 15196–15204 (2016).
[Crossref]

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79, 046501 (2016).
[Crossref]

2015 (8)

M. A. Kinch, “An infrared journey,” Proc. SPIE 9451, 94512B (2015).
[Crossref]

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

R. K. McEven, D. Jeckells, S. Bains, and H. Weller, “Developments in reduced pixel geometries with MOCVD grown MCT arrays,” Proc. SPIE 9451, 94512D (2015).
[Crossref]

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors graphene photodetectors,” Nano Lett. 16, 8–20 (2015).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductor,” Chem. Soc. Rev. 44, 3691–3718 (2015).
[Crossref]

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

2014 (15)

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

X. Du, D. E. Prober, H. Vora, and C. B. Mckitterick, “Graphene-based bolometers,” Graphene 2D Mater. 1, 1–22 (2014).

T. Low and P. Avouris, “Graphene plasmonic for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. H. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033(2014).
[Crossref]

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

R. Bates and K. Kubala, “Direct optimization of LWIR systems for maximized detection range and minimized size and weight,” Proc. SPIE 9100, 91000M (2014).
[Crossref]

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE 9100, 91000I (2014).
[Crossref]

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

2013 (10)

R. L. Strong, M. A. Kinch, and J. M. Armstrong, “Performance of 12-μm- to 15-μm-pitch MWIR and LWIR HgCdTe FPAs at elevated temperatures,” J. Electron. Mater. 42, 3103–3107 (2013).
[Crossref]

D. Lohrmann, R. Littleton, C. Reese, D. Murphy, and J. Vizgaitis, “Uncooled long-wave infrared small pixel focal plane array and system challenges,” Opt. Eng. 52, 061305 (2013).
[Crossref]

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, “Oxygen-assisted charge transfer between ZnO quantum dots and graphene,” Small 9, 3031–3036 (2013).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun. 4, 1951 (2013).
[Crossref]

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

F. Xia, H. Yan, and P. Avouris, “The interaction of light and graphene: basic, devices, and applications,” Proc. IEEE 101, 1717–1731 (2013).
[Crossref]

2012 (16)

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. R. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20, 15–25 (2012).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, and M. S. Shur, “Double graphene-layer plasma resonances terahertz detector,” J. Phys. D 45, 302001 (2012).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

A. Rogalski, “Progress in focal plane array technology,” Prog. Quantum Electron. 36, 342–473 (2012).
[Crossref]

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6, 153–161 (2012).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

R. G. Driggers, R. Vollmerhausen, J. P. Reynolds, J. Fanning, and G. C. Holst, “Infrared detector size: how low should you go?” Opt. Eng. 51, 063202 (2012).
[Crossref]

G. C. Holst and R. G. Driggers, “Small detectors in infrared system design,” Opt. Eng. 51, 096401 (2012).
[Crossref]

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements,” IEEE Trans. Terahertz Sci. Technol. 2, 299–305 (2012).
[Crossref]

2011 (6)

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

G. Destefanis, P. Tribolet, M. Vuillermet, and D. B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE 8012, 801235 (2011).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19, 346–404 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

2010 (5)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

N. Oda, “Uncooled bolometer-type terahertz focal-plane array and camera for real-time imaging,” C. R. Physique 11, 496–509 (2010).
[Crossref]

2009 (2)

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

2008 (3)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3, 206–209 (2008).
[Crossref]

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

2006 (2)

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18, 1415–1417 (2006).
[Crossref]

A. Hoffman, “Semiconductor processing technology improves resolution of infrared arrays,” Laser Focus World 42, 81–84 (2006).

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

2003 (1)

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4355–4391 (2003).
[Crossref]

2002 (1)

J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys. 91, 4590–4594 (2002).
[Crossref]

1996 (2)

J. Piotrowski and A. Rogalski, “Comment on ‘Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe’ [J. Appl. Phys. 74, 4774 (1993)],” J. Appl. Phys. 80, 2542–2544 (1996).
[Crossref]

M. Dyakonov and M. Shur, “Plasma wave electronics: novel terahertz devices using two dimensional electron fluid,” IEEE Trans. Electron Devices 43, 1640–1645 (1996).
[Crossref]

1993 (1)

M. Dyakonov and M. S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[Crossref]

1989 (1)

J. M. Mooney, F. D. Shepherd, W. S. Ewing, and J. Silverman, “Responsivity nonuniformity limited performance of infrared staring cameras,” Opt. Eng. 28, 1151–1161 (1989).
[Crossref]

1959 (1)

R. C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” Proc. IRE 47, 1495–1502 (1959).
[Crossref]

Ahn, J.-H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Ajayan, P. M.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Alain, C.

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Ali, A.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Andersson, M. A.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Andrews, A. M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Ang, L. K.

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[Crossref]

Armstrong, J. M.

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033(2014).
[Crossref]

R. L. Strong, M. A. Kinch, and J. M. Armstrong, “Performance of 12-μm- to 15-μm-pitch MWIR and LWIR HgCdTe FPAs at elevated temperatures,” J. Electron. Mater. 42, 3103–3107 (2013).
[Crossref]

Assefa, S.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Augey, T.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonic for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

F. Xia, H. Yan, and P. Avouris, “The interaction of light and graphene: basic, devices, and applications,” Proc. IEEE 101, 1717–1731 (2013).
[Crossref]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun. 4, 1951 (2013).
[Crossref]

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Bachmann, D.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Badet, V.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Badioli, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Bai, J.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

Bains, S.

R. K. McEven, D. Jeckells, S. Bains, and H. Weller, “Developments in reduced pixel geometries with MOCVD grown MCT arrays,” Proc. SPIE 9451, 94512D (2015).
[Crossref]

Bakandritsos, A.

D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril, and M. Otyepka, “Chemistry, properties, and applications of fluorographene,” Appl. Mater. Today 9, 60–70 (2017).
[Crossref]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Baltasseva, A.

J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
[Crossref]

Barbara, P.

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance THz bolometers,” Nat. Nanotechnol. 11, 335–338 (2016).
[Crossref]

Baryshnikov, N. V.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. R. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20, 15–25 (2012).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Bates, R.

R. Bates and K. Kubala, “Direct optimization of LWIR systems for maximized detection range and minimized size and weight,” Proc. SPIE 9100, 91000M (2014).
[Crossref]

Baud, L.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Bauer, M.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Beams, R.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Beletic, J. W.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Bergeron, A.

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Bernechea, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Beuville, E.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Bhargava, S.

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

Bianco, F.

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

Bisotto, S.

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Blank, R.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Blanter, S. I.

M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductor,” Chem. Soc. Rev. 44, 3691–3718 (2015).
[Crossref]

Boe, R.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Bolduc, M.

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Bolten, J.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Borini, S.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

Bourqui, M. L.

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

Boyd, A. K.

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance THz bolometers,” Nat. Nanotechnol. 11, 335–338 (2016).
[Crossref]

Britnell, L.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Bruna, M.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

Burwell, G.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Buscema, M.

M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductor,” Chem. Soc. Rev. 44, 3691–3718 (2015).
[Crossref]

Cai, X.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Cakmakyapan, S.

S. Cakmakyapan, P. K. Lu, A. Navabi, and M. Jarrahi, “Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime,” Light: Sci. Appl. 7, 20 (2018).
[Crossref]

Capasso, F.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Carmody, M.

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Castellanos-Gomez, A.

M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductor,” Chem. Soc. Rev. 44, 3691–3718 (2015).
[Crossref]

Centeno, A.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Chakraborty, C.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Chang, Y. C.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. H. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Chasmar, R. P.

A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, 1968).

Chen,

J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
[Crossref]

Chen, A.

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Chen, G.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

Chen, J.-H.

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3, 206–209 (2008).
[Crossref]

Chen, P.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Chen, X.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonator for sensing applications,” Nanoscale 8, 15196–15204 (2016).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Chen, Z.

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
[Crossref]

Cheng, R.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

Cheng, Z.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Cheng, Z. Z.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Chmielak, B.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Choi, S.-H.

D. H. Shin and S.-H. Choi, “Graphene-based semiconductor heterostructures for photodetectors,” Micromachines 9, 350 (2018).
[Crossref]

Chronopoulos, D.

D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril, and M. Otyepka, “Chemistry, properties, and applications of fluorographene,” Appl. Mater. Today 9, 60–70 (2017).
[Crossref]

Chung, T.-F.

J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
[Crossref]

Coletti, C.

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

Colli, A.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

Convertino, D.

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

Cooper, D. E.

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Coquillat, D.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Corrales, E.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Coutaz, J.-L.

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements,” IEEE Trans. Terahertz Sci. Technol. 2, 299–305 (2012).
[Crossref]

Craciun, M. F.

A. De Sanctis, J. D. Mehew, M. F. Craciun, and S. Russo, “Graphene-based light sensing: fabrication, characterisation, physical properties and performance,” Materials 11, 1762 (2018).
[Crossref]

Cui, A.

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

Cui, Q.

Q. Cui, Y. Yang, J. Li, F. Teng, and X. Wang, “Material and device architecture engineering toward high performance two-dimensional (2D) photodetectors,” Crystals 7, 149 (2017).
[Crossref]

Currie, M.

M. Currie, “Applications of graphene to photonics,” (Naval Research Laboratory, 2014).

Dan, Y.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Daniels, K. M.

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance THz bolometers,” Nat. Nanotechnol. 11, 335–338 (2016).
[Crossref]

Datskos, P. G.

P. G. Datskos, “Detectors—figures of merit,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Dekker, 2003), pp. 349–357.

de Arquer, F. P. G.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

De Bonis, S. L.

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

De Fazio, D.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

De Sanctis, A.

A. De Sanctis, J. D. Mehew, M. F. Craciun, and S. Russo, “Graphene-based light sensing: fabrication, characterisation, physical properties and performance,” Materials 11, 1762 (2018).
[Crossref]

Decaens, G.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

Destefanis, G.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

G. Destefanis, P. Tribolet, M. Vuillermet, and D. B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE 8012, 801235 (2011).
[Crossref]

Detz, H.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

DeVault, C. T.

J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
[Crossref]

Djazovski, O.

O. Djazovski, “Focal plane arrays for optical payloads,” in Optical Payloads for Space Missions, S.-E. Qian, ed. (Wiley, 2016), Chap. 17.

Dong, S.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Doucet, M.

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Doyle, C.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Drab, J.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Dreiske, P.

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Drew, H. D.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Driggers, R. G.

R. G. Driggers, R. Vollmerhausen, J. P. Reynolds, J. Fanning, and G. C. Holst, “Infrared detector size: how low should you go?” Opt. Eng. 51, 063202 (2012).
[Crossref]

G. C. Holst and R. G. Driggers, “Small detectors in infrared system design,” Opt. Eng. 51, 096401 (2012).
[Crossref]

Du, S.

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, “Oxygen-assisted charge transfer between ZnO quantum dots and graphene,” Small 9, 3031–3036 (2013).
[Crossref]

Du, X.

X. Du, D. E. Prober, H. Vora, and C. B. Mckitterick, “Graphene-based bolometers,” Graphene 2D Mater. 1, 1–22 (2014).

Duan, X.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Dyakonov, M.

M. Dyakonov and M. Shur, “Plasma wave electronics: novel terahertz devices using two dimensional electron fluid,” IEEE Trans. Electron Devices 43, 1640–1645 (1996).
[Crossref]

M. Dyakonov and M. S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[Crossref]

Echtermeyer, T. J.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors graphene photodetectors,” Nano Lett. 16, 8–20 (2015).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Edwall, D.

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Eglund, D.

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

Eiden, A.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors graphene photodetectors,” Nano Lett. 16, 8–20 (2015).
[Crossref]

El Fatimy, A.

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance THz bolometers,” Nat. Nanotechnol. 11, 335–338 (2016).
[Crossref]

Elle, J. A.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Engel, M.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Englund, D.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Ewing, W. S.

J. M. Mooney, F. D. Shepherd, W. S. Ewing, and J. Silverman, “Responsivity nonuniformity limited performance of infrared staring cameras,” Opt. Eng. 28, 1151–1161 (1989).
[Crossref]

Fang, H.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
[Crossref]

Fang, J.

J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
[Crossref]

Fang, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Fanning, J.

R. G. Driggers, R. Vollmerhausen, J. P. Reynolds, J. Fanning, and G. C. Holst, “Infrared detector size: how low should you go?” Opt. Eng. 51, 063202 (2012).
[Crossref]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[Crossref]

Ferrari, A. C.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors graphene photodetectors,” Nano Lett. 16, 8–20 (2015).
[Crossref]

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Fonash, S. J.

S. J. Fonash, Solar Cell Device Physics (Elsevier, 2010).

Freeman, S.

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Freitag, M.

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun. 4, 1951 (2013).
[Crossref]

Fromherz, T.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Fu, Y.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Fuhrer, M. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3, 206–209 (2008).
[Crossref]

Fulk, C.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Furchi, M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Furchi, M. M.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Galán, T.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Gan, X.

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Gao, A.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Gao, C.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Gao, Y.

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Gaskill, D. K.

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance THz bolometers,” Nat. Nanotechnol. 11, 335–338 (2016).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Gatti, F.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Gaudreau, L.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Geim, A. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Getty, J.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Giesecke, A. L.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Goodfellow, K. M.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Goossens, S.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nat. Commun. 7, 11954 (2016).
[Crossref]

Gorbachev, R. V.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Gravrand, O.

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Groenendijk, D. J.

M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductor,” Chem. Soc. Rev. 44, 3691–3718 (2015).
[Crossref]

Guider, R.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Gulbransen, D.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Gulbransen, D. J.

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Guo, H.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Guo, N.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Guo, W.

W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, “Oxygen-assisted charge transfer between ZnO quantum dots and graphene,” Small 9, 3031–3036 (2013).
[Crossref]

Gupta, S.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Halas, N. J.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Hasan, T.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Hatami, F.

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Heinz, T. F.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Hirayama, T.

T. Hirayama, “The evolution of CMOS image sensors,” in IEEE Asian Solid-State Circuits Conference (2013), pp. 5–8.

Ho, J. C.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Hodges, S. E.

J. D. Vincent, S. E. Hodges, J. Vampola, M. Stegall, and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing (Wiley, 2016).

Hoffman, A.

A. Hoffman, “Semiconductor processing technology improves resolution of infrared arrays,” Laser Focus World 42, 81–84 (2006).

Holst, G. C.

R. G. Driggers, R. Vollmerhausen, J. P. Reynolds, J. Fanning, and G. C. Holst, “Infrared detector size: how low should you go?” Opt. Eng. 51, 063202 (2012).
[Crossref]

G. C. Holst and R. G. Driggers, “Small detectors in infrared system design,” Opt. Eng. 51, 096401 (2012).
[Crossref]

G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems (JCD Publishing/SPIE, 2007).

Hone, J.

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Hu, J.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

Hu, Q.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18, 1415–1417 (2006).
[Crossref]

Hu, W.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Hu, X.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Huang, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

Hudson, R. D.

R. D. Hudson, Infrared System Engineering (Wiley, 1969).

Humer, M.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Ishigami, M.

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3, 206–209 (2008).
[Crossref]

Island, J. O.

M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductor,” Chem. Soc. Rev. 44, 3691–3718 (2015).
[Crossref]

Jadidi, M. M.

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Jakšic, Z.

Z. Jakšić, Micro and Nanophotonics for Semiconductor Infrared Detectors (Springer, 2014).

Jang, C.

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3, 206–209 (2008).
[Crossref]

Jarrahi, M.

S. Cakmakyapan, P. K. Lu, A. Navabi, and M. Jarrahi, “Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime,” Light: Sci. Appl. 7, 20 (2018).
[Crossref]

Jasnos, P. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Jeckells, D.

R. K. McEven, D. Jeckells, S. Bains, and H. Weller, “Developments in reduced pixel geometries with MOCVD grown MCT arrays,” Proc. SPIE 9451, 94512D (2015).
[Crossref]

Jenkins, G. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Jeppson, K.

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE 9100, 91000I (2014).
[Crossref]

Jerominek, H.

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Jiang, T.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Jones, F. E.

A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, 1968).

Jones, R. C.

R. C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” Proc. IRE 47, 1495–1502 (1959).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Julius, A.

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Junginger, B.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Karasik, V. R.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. R. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20, 15–25 (2012).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Kessler, A.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Kilcoyne, S.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Kildishev, A. V.

J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
[Crossref]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Kim, M.-H.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Kinch, M.

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE 9100, 91000I (2014).
[Crossref]

Kinch, M. A.

M. A. Kinch, “An infrared journey,” Proc. SPIE 9451, 94512B (2015).
[Crossref]

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033(2014).
[Crossref]

R. L. Strong, M. A. Kinch, and J. M. Armstrong, “Performance of 12-μm- to 15-μm-pitch MWIR and LWIR HgCdTe FPAs at elevated temperatures,” J. Electron. Mater. 42, 3103–3107 (2013).
[Crossref]

M. A. Kinch, State-of-the-Art Infrared Detector Technology (SPIE, 2014).

Klang, P.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Knap, W.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Kong, B. D.

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

Kong, J.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Konstantatos, G.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nat. Commun. 7, 11954 (2016).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Koppens, F.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Koppens, F. H.

I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nat. Commun. 7, 11954 (2016).
[Crossref]

Koppens, F. H. L.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Kopytko, M.

A. Rogalski, M. Kopytko, and P. Martyniuk, “Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes,” Appl. Opt. 57, D11–D19 (2018).
[Crossref]

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79, 046501 (2016).
[Crossref]

A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-Based Infrared Detectors: a New Perspective (SPIE, 2018).

Kosonocky, W. F.

L. J. Kozlowski and W. F. Kosonocky, “Infrared detector arrays,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Chap. 23.

Kozlowski, L. J.

L. J. Kozlowski and W. F. Kosonocky, “Infrared detector arrays,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Chap. 23.

Krupke, R.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Kruse, W.

W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology (Wiley, 1962).

Kubala, K.

R. Bates and K. Kubala, “Direct optimization of LWIR systems for maximized detection range and minimized size and weight,” Proc. SPIE 9100, 91000M (2014).
[Crossref]

Kuebart, W.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Kufer, D.

I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nat. Commun. 7, 11954 (2016).
[Crossref]

Kumar, S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18, 1415–1417 (2006).
[Crossref]

Kurz, H.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Lanfrey, D. B.

G. Destefanis, P. Tribolet, M. Vuillermet, and D. B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE 8012, 801235 (2011).
[Crossref]

Lasanta, T.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nat. Commun. 7, 11954 (2016).
[Crossref]

Lau, S.-P.

Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Lee, A. W. M.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18, 1415–1417 (2006).
[Crossref]

Lee, D.

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Li, D.

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

Li, E.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Li, G.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6, 153–161 (2012).
[Crossref]

Li, H.

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

Li, J.

Q. Cui, Y. Yang, J. Li, F. Teng, and X. Wang, “Material and device architecture engineering toward high performance two-dimensional (2D) photodetectors,” Crystals 7, 149 (2017).
[Crossref]

Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Li, L.

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

Li, X.

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
[Crossref]

X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
[Crossref]

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Liang, G.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Liang, S.-J.

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

Liao, L.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

Lidorikis, E.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors graphene photodetectors,” Nano Lett. 16, 8–20 (2015).
[Crossref]

Lilley, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Lin, C.-T.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Lin, Y. M.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Lisauskas, A.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Littlejohn, D.

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE 9100, 91000I (2014).
[Crossref]

Littleton, R.

D. Lohrmann, R. Littleton, C. Reese, D. Murphy, and J. Vizgaitis, “Uncooled long-wave infrared small pixel focal plane array and system challenges,” Opt. Eng. 52, 061305 (2013).
[Crossref]

Liu, B.

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

Liu, C.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonator for sensing applications,” Nanoscale 8, 15196–15204 (2016).
[Crossref]

Liu, C. H.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. H. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Liu, D.

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

Liu, E.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Liu, G.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

Liu, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Liu, T.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Liu, X.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Liu, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

Liu, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Löhneysen, H. v.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Lohrmann, D.

D. Lohrmann, R. Littleton, C. Reese, D. Murphy, and J. Vizgaitis, “Uncooled long-wave infrared small pixel focal plane array and system challenges,” Opt. Eng. 52, 061305 (2013).
[Crossref]

Lombardo, A.

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Lomheim, T. S.

G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems (JCD Publishing/SPIE, 2007).

Loncar, M.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Long, D.

D. Long, “Photovoltaic and photoconductive infrared detectors,” in Optical and Infrared Detectors, R. J. Keyes, ed. (Springer, 1980), pp. 101–147.

Long, M.

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Loose, M.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Low, T.

T. Low and P. Avouris, “Graphene plasmonic for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun. 4, 1951 (2013).
[Crossref]

Loy, M. M. T.

W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, “Oxygen-assisted charge transfer between ZnO quantum dots and graphene,” Small 9, 3031–3036 (2013).
[Crossref]

Lu, P. K.

S. Cakmakyapan, P. K. Lu, A. Navabi, and M. Jarrahi, “Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime,” Light: Sci. Appl. 7, 20 (2018).
[Crossref]

Lu, W.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonator for sensing applications,” Nanoscale 8, 15196–15204 (2016).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Lu, Z.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Luo, J.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Luttmer, J. D.

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033(2014).
[Crossref]

Ma, L.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

Maillart, P.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Mak, K. F.

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Marchese, L.

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Marquis, M.

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE 9100, 91000I (2014).
[Crossref]

Martyniuk, P.

A. Rogalski, M. Kopytko, and P. Martyniuk, “Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes,” Appl. Opt. 57, D11–D19 (2018).
[Crossref]

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79, 046501 (2016).
[Crossref]

A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-Based Infrared Detectors: a New Perspective (SPIE, 2018).

Matheisen, C.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Matukas, J.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

McEven, R. K.

R. K. McEven, D. Jeckells, S. Bains, and H. Weller, “Developments in reduced pixel geometries with MOCVD grown MCT arrays,” Proc. SPIE 9451, 94512D (2015).
[Crossref]

McGlauchlin, L. D.

W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology (Wiley, 1962).

Mckitterick, C. B.

X. Du, D. E. Prober, H. Vora, and C. B. Mckitterick, “Graphene-based bolometers,” Graphene 2D Mater. 1, 1–22 (2014).

McLevige, W.

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

McQuistan, R. B.

W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology (Wiley, 1962).

Mears, L.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Mehew, J. D.

A. De Sanctis, J. D. Mehew, M. F. Craciun, and S. Russo, “Graphene-based light sensing: fabrication, characterisation, physical properties and performance,” Materials 11, 1762 (2018).
[Crossref]

Meilhan, J.

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements,” IEEE Trans. Terahertz Sci. Technol. 2, 299–305 (2012).
[Crossref]

Meng, B.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Meric, I.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Miao, F.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Miao, J.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Milana, S.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors graphene photodetectors,” Nano Lett. 16, 8–20 (2015).
[Crossref]

Milchberg, H. M.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Mitin, V.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. R. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20, 15–25 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

Mohseni, H.

C. L. Tan and H. Mohseni, “Emerging technologies for high performance infrared detectors,” Nanophotonics 7, 169–197 (2018).
[Crossref]

Mohsin, M.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Monasterio, C.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Mooney, J. M.

J. M. Mooney, F. D. Shepherd, W. S. Ewing, and J. Silverman, “Responsivity nonuniformity limited performance of infrared staring cameras,” Opt. Eng. 28, 1151–1161 (1989).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Mueller, T.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Murphy, D.

D. Lohrmann, R. Littleton, C. Reese, D. Murphy, and J. Vizgaitis, “Uncooled long-wave infrared small pixel focal plane array and system challenges,” Opt. Eng. 52, 061305 (2013).
[Crossref]

Murphy, T. E.

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Myers-Ward, R. L.

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance THz bolometers,” Nat. Nanotechnol. 11, 335–338 (2016).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Nanot, S.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

Nath, A.

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

Navabi, A.

S. Cakmakyapan, P. K. Lu, A. Navabi, and M. Jarrahi, “Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime,” Light: Sci. Appl. 7, 20 (2018).
[Crossref]

Navickaite, G.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nat. Commun. 7, 11954 (2016).
[Crossref]

Neumaier, D.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Nguyen, D.-T.

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements,” IEEE Trans. Terahertz Sci. Technol. 2, 299–305 (2012).
[Crossref]

Ni, Z.

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

Nikitskiy, I.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nat. Commun. 7, 11954 (2016).
[Crossref]

Nilges, T.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Nordlander, P.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Norris, T. B.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. H. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Norton, P.

P. Norton, “Detector focal plane array technology,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Dekker, 2003), pp. 320–348.

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Novotny, L.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Nyakiti, L. O.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Oda, N.

N. Oda, “Uncooled bolometer-type terahertz focal-plane array and camera for real-time imaging,” C. R. Physique 11, 496–509 (2010).
[Crossref]

N. Oda, Radio Application, Guidance and Electro-Optics Division, NEC Corporation, Tokyo 183-8501 (private communication, 2017).

Osmond, J.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Otsuji, T.

V. Ryzhii, T. Otsuji, M. Ryzhii, and M. S. Shur, “Double graphene-layer plasma resonances terahertz detector,” J. Phys. D 45, 302001 (2012).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. R. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20, 15–25 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

Ott, C.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Otyepka, M.

D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril, and M. Otyepka, “Chemistry, properties, and applications of fluorographene,” Appl. Mater. Today 9, 60–70 (2017).
[Crossref]

Oulachgar, H.

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Ouvrier-Buffet, J.-L.

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements,” IEEE Trans. Terahertz Sci. Technol. 2, 299–305 (2012).
[Crossref]

Özyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Pacaud, O.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Pan, C.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Parret, R.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

Pellegrini, V.

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Peralta, R.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Pere-Laperne, N.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

Perenzoni, D.

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

Perenzoni, M.

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Pérez, R.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Pesquera, A.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Phillips, J.

J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys. 91, 4590–4594 (2002).
[Crossref]

Pi, X.

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Pierce, G.

J. D. Vincent, S. E. Hodges, J. Vampola, M. Stegall, and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing (Wiley, 2016).

Piotrowski, J.

J. Piotrowski and A. Rogalski, “Comment on ‘Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe’ [J. Appl. Phys. 74, 4774 (1993)],” J. Appl. Phys. 80, 2542–2544 (1996).
[Crossref]

J. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors (SPIE, 2007).

Piqueras, J. J.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Piquette, E.

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Piquette, E. C.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Polini, M.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Politano, A.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

L. Viti, A. Politano, and M. S. Vitiello, “Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges,” APL Mater. 5, 035602 (2017).
[Crossref]

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Porschatis, C.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Pospischil, A.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Prinzen, A.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Prober, D. E.

X. Du, D. E. Prober, H. Vora, and C. B. Mckitterick, “Graphene-based bolometers,” Graphene 2D Mater. 1, 1–22 (2014).

Puma, E.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Pykal, M.

D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril, and M. Otyepka, “Chemistry, properties, and applications of fluorographene,” Appl. Mater. Today 9, 60–70 (2017).
[Crossref]

Rauter, P.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Reese, C.

D. Lohrmann, R. Littleton, C. Reese, D. Murphy, and J. Vizgaitis, “Uncooled long-wave infrared small pixel focal plane array and system challenges,” Opt. Eng. 52, 061305 (2013).
[Crossref]

Reibel, Y.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

Reno, J. L.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18, 1415–1417 (2006).
[Crossref]

Reynolds, J. P.

R. G. Driggers, R. Vollmerhausen, J. P. Reynolds, J. Fanning, and G. C. Holst, “Infrared detector size: how low should you go?” Opt. Eng. 51, 063202 (2012).
[Crossref]

Ricard, N.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Robinson, J.

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE 9100, 91000I (2014).
[Crossref]

Rogalski, A.

A. Rogalski, M. Kopytko, and P. Martyniuk, “Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes,” Appl. Opt. 57, D11–D19 (2018).
[Crossref]

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79, 046501 (2016).
[Crossref]

A. Rogalski, “Progress in focal plane array technology,” Prog. Quantum Electron. 36, 342–473 (2012).
[Crossref]

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19, 346–404 (2011).
[Crossref]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[Crossref]

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4355–4391 (2003).
[Crossref]

J. Piotrowski and A. Rogalski, “Comment on ‘Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe’ [J. Appl. Phys. 74, 4774 (1993)],” J. Appl. Phys. 80, 2542–2544 (1996).
[Crossref]

J. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors (SPIE, 2007).

A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2010).

A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-Based Infrared Detectors: a New Perspective (SPIE, 2018).

Roll, A.

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Roskos, H. G.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Roumegoux, J.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Rubaldo, L.

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

Russo, S.

A. De Sanctis, J. D. Mehew, M. F. Craciun, and S. Russo, “Graphene-based light sensing: fabrication, characterisation, physical properties and performance,” Materials 11, 1762 (2018).
[Crossref]

Ryabova, N.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. R. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20, 15–25 (2012).
[Crossref]

Ryzhii, M.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. R. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20, 15–25 (2012).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, and M. S. Shur, “Double graphene-layer plasma resonances terahertz detector,” J. Phys. D 45, 302001 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

Ryzhii, V.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. R. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20, 15–25 (2012).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, and M. S. Shur, “Double graphene-layer plasma resonances terahertz detector,” J. Phys. D 45, 302001 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

Sassi, U.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors graphene photodetectors,” Nano Lett. 16, 8–20 (2015).
[Crossref]

Savard, E.

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Schall, D.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Schrenk, W.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Shalaev, V. M.

J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Shehzad, K.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Shepard, K.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Shepherd, F. D.

J. M. Mooney, F. D. Shepherd, W. S. Ewing, and J. Silverman, “Responsivity nonuniformity limited performance of infrared staring cameras,” Opt. Eng. 28, 1151–1161 (1989).
[Crossref]

Shin, D. H.

D. H. Shin and S.-H. Choi, “Graphene-based semiconductor heterostructures for photodetectors,” Micromachines 9, 350 (2018).
[Crossref]

Shiue, R.-J.

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Shu, C.

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

Shur, M.

M. Dyakonov and M. Shur, “Plasma wave electronics: novel terahertz devices using two dimensional electron fluid,” IEEE Trans. Electron Devices 43, 1640–1645 (1996).
[Crossref]

Shur, M. S.

V. Ryzhii, T. Otsuji, M. Ryzhii, and M. S. Shur, “Double graphene-layer plasma resonances terahertz detector,” J. Phys. D 45, 302001 (2012).
[Crossref]

M. Dyakonov and M. S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[Crossref]

Silverman, J.

J. M. Mooney, F. D. Shepherd, W. S. Ewing, and J. Silverman, “Responsivity nonuniformity limited performance of infrared staring cameras,” Opt. Eng. 28, 1151–1161 (1989).
[Crossref]

Simoens, F.

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements,” IEEE Trans. Terahertz Sci. Technol. 2, 299–305 (2012).
[Crossref]

Sizov, F.

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19, 346–404 (2011).
[Crossref]

Skokan, M. R.

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033(2014).
[Crossref]

Smith, A.

A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, 1968).

Song, Y.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Spirito, D.

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

Sprafke, T.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Stake, J.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Starr, B.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Steele, G. A.

M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductor,” Chem. Soc. Rev. 44, 3691–3718 (2015).
[Crossref]

Stegall, M.

J. D. Vincent, S. E. Hodges, J. Vampola, M. Stegall, and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing (Wiley, 2016).

Steiner, M.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Strasser, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Strong, R. L.

R. L. Strong, M. A. Kinch, and J. M. Armstrong, “Performance of 12-μm- to 15-μm-pitch MWIR and LWIR HgCdTe FPAs at elevated temperatures,” J. Electron. Mater. 42, 3103–3107 (2013).
[Crossref]

Suess, R. J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Sun, Z.

Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Sushkov, A. B.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Szep, A.

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

Tai, G.-A.

Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Tan, C. L.

C. L. Tan and H. Mohseni, “Emerging technologies for high performance infrared detectors,” Nanophotonics 7, 169–197 (2018).
[Crossref]

Tan, P.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Tang, W.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonator for sensing applications,” Nanoscale 8, 15196–15204 (2016).
[Crossref]

Tao, L.

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
[Crossref]

Templ, W.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Teng, F.

Q. Cui, Y. Yang, J. Li, F. Teng, and X. Wang, “Material and device architecture engineering toward high performance two-dimensional (2D) photodetectors,” Crystals 7, 149 (2017).
[Crossref]

Tennanat, W. E.

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

Tennant, W. E.

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Terroux, M.

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Tracy, C.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Tredicucci, A.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Tremblay, B.

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Tribolet, P.

G. Destefanis, P. Tribolet, M. Vuillermet, and D. B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE 8012, 801235 (2011).
[Crossref]

Tsang, H. K.

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Unterrainer, K.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Urich, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Vamivakas, A. N.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Vampola, J.

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

J. D. Vincent, S. E. Hodges, J. Vampola, M. Stegall, and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing (Wiley, 2016).

van der Zant, H. S. J.

M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductor,” Chem. Soc. Rev. 44, 3691–3718 (2015).
[Crossref]

Vicarelli, L.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Vincent, J. D.

J. D. Vincent, Fundamentals of Infrared Detector Operation and Testing (Wiley, 1990).

J. D. Vincent, S. E. Hodges, J. Vampola, M. Stegall, and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing (Wiley, 2016).

Viti, L.

L. Viti, A. Politano, and M. S. Vitiello, “Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges,” APL Mater. 5, 035602 (2017).
[Crossref]

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

Vitiello, M. S.

L. Viti, A. Politano, and M. S. Vitiello, “Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges,” APL Mater. 5, 035602 (2017).
[Crossref]

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Vizgaitis, J.

D. Lohrmann, R. Littleton, C. Reese, D. Murphy, and J. Vizgaitis, “Uncooled long-wave infrared small pixel focal plane array and system challenges,” Opt. Eng. 52, 061305 (2013).
[Crossref]

Vollmerhausen, R.

R. G. Driggers, R. Vollmerhausen, J. P. Reynolds, J. Fanning, and G. C. Holst, “Infrared detector size: how low should you go?” Opt. Eng. 51, 063202 (2012).
[Crossref]

Vora, H.

X. Du, D. E. Prober, H. Vora, and C. B. Mckitterick, “Graphene-based bolometers,” Graphene 2D Mater. 1, 1–22 (2014).

Vuillermet, M.

G. Destefanis, P. Tribolet, M. Vuillermet, and D. B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE 8012, 801235 (2011).
[Crossref]

Walker, D.

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

Wang, D.

J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Wang, G.

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

Wang, H.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Wang, J.

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

Wang, L.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonator for sensing applications,” Nanoscale 8, 15196–15204 (2016).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Wang, N.

W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, “Oxygen-assisted charge transfer between ZnO quantum dots and graphene,” Small 9, 3031–3036 (2013).
[Crossref]

Wang, P.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Wang, Q. J.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Wang, X.

X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
[Crossref]

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Q. Cui, Y. Yang, J. Li, F. Teng, and X. Wang, “Material and device architecture engineering toward high performance two-dimensional (2D) photodetectors,” Crystals 7, 149 (2017).
[Crossref]

Wang, X. M.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Wang, Y.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Wang, Z.

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

Wei, D.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

Weller, H.

R. K. McEven, D. Jeckells, S. Bains, and H. Weller, “Developments in reduced pixel geometries with MOCVD grown MCT arrays,” Proc. SPIE 9451, 94512D (2015).
[Crossref]

Wicks, G. W.

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

Williams, B. S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18, 1415–1417 (2006).
[Crossref]

Wu, M.

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors graphene photodetectors,” Nano Lett. 16, 8–20 (2015).
[Crossref]

Wu, S.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Wu, Z.

W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, “Oxygen-assisted charge transfer between ZnO quantum dots and graphene,” Small 9, 3031–3036 (2013).
[Crossref]

Xia, F.

F. Xia, H. Yan, and P. Avouris, “The interaction of light and graphene: basic, devices, and applications,” Proc. IEEE 101, 1717–1731 (2013).
[Crossref]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun. 4, 1951 (2013).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Xia, H.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Xiao, S.

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3, 206–209 (2008).
[Crossref]

Xu, J.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Xu, J. B.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Xu, J.-B.

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
[Crossref]

Xu, K.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

Xu, M.

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

Xu, S.

W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, “Oxygen-assisted charge transfer between ZnO quantum dots and graphene,” Small 9, 3031–3036 (2013).
[Crossref]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Xu, Y.

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Xu, Z.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Yan, F.

Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Yan, H.

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

F. Xia, H. Yan, and P. Avouris, “The interaction of light and graphene: basic, devices, and applications,” Proc. IEEE 101, 1717–1731 (2013).
[Crossref]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun. 4, 1951 (2013).
[Crossref]

Yan, J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Yang, D.

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

Yang, J.

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Yang, Y.

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

Q. Cui, Y. Yang, J. Li, F. Teng, and X. Wang, “Material and device architecture engineering toward high performance two-dimensional (2D) photodetectors,” Crystals 7, 149 (2017).
[Crossref]

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6, 153–161 (2012).
[Crossref]

Yao, X.

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

Yao, Y.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

Yin, W.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

You, C.

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

You, Y.

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

Yu, A.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonator for sensing applications,” Nanoscale 8, 15196–15204 (2016).
[Crossref]

Yu, B.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Yuan, M.

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

Yulius, A.

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

Zak, A.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Zandian, M.

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Zboril, R.

D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril, and M. Otyepka, “Chemistry, properties, and applications of fluorographene,” Appl. Mater. Today 9, 60–70 (2017).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhang, Y.

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Zhao, P.

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

Zhao, Z.

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

Zhong, Z. H.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. H. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Zhou, H.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

Zhu, H.

X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
[Crossref]

Zhu, R.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6, 153–161 (2012).
[Crossref]

Zhu, W.

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun. 4, 1951 (2013).
[Crossref]

Zino, J.

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

Zurutuza, A.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

ACS Nano (4)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonic for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref]

Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, and J.-B. Xu, “Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity,” ACS Nano 11, 430–437 (2017).
[Crossref]

Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, “Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors,” ACS Nano 11, 9854–9862 (2017).
[Crossref]

ACS Photon. (1)

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50  GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems,” ACS Photon. 1, 781–784 (2014).
[Crossref]

Adv. Mater. (3)

Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, H. Fang, Z. Xu, C. Gao, Y. Dan, P. Tan, H. Wang, C.-T. Lin, J. Yang, S. Dong, Z. Cheng, E. Li, W. Yin, J. Luo, B. Yu, T. Hasan, Y. Xu, W. Hu, and X. Duan, “A broadband fluorographene photodetector,” Adv. Mater. 29, 1700463 (2017).
[Crossref]

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

Adv. Opt. Mater. (1)

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene,” Adv. Opt. Mater. 6, 1800836 (2018).
[Crossref]

APL Mater. (1)

L. Viti, A. Politano, and M. S. Vitiello, “Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges,” APL Mater. 5, 035602 (2017).
[Crossref]

Appl. Mater. Today (1)

D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril, and M. Otyepka, “Chemistry, properties, and applications of fluorographene,” Appl. Mater. Today 9, 60–70 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

R.-J. Shiue, X. Gan, Y. Gao, L. Li, X. Yao, A. Szep, D. Walker, J. Hone, and D. Eglund, “Enhanced photodetection in graphene-integrated photonic crystal cavity,” Appl. Phys. Lett. 103, 241109 (2013).
[Crossref]

C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. N. Vamivakas, “Optical antenna enhanced graphene photodetector,” Appl. Phys. Lett. 105, 241114 (2014).
[Crossref]

D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High performance bilayer-graphene terahertz detectors,” Appl. Phys. Lett. 104, 061111 (2014).
[Crossref]

F. Bianco, D. Perenzoni, D. Convertino, S. L. De Bonis, D. Spirito, M. Perenzoni, C. Coletti, M. S. Vitiello, and A. Tredicucci, “Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide,” Appl. Phys. Lett. 107, 131104 (2015).
[Crossref]

Appl. Phys. Rev. (1)

X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, “Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics,” Appl. Phys. Rev. 4, 021306 (2017).
[Crossref]

C. R. Physique (1)

N. Oda, “Uncooled bolometer-type terahertz focal-plane array and camera for real-time imaging,” C. R. Physique 11, 496–509 (2010).
[Crossref]

Chem. Soc. Rev. (1)

M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductor,” Chem. Soc. Rev. 44, 3691–3718 (2015).
[Crossref]

Crystals (1)

Q. Cui, Y. Yang, J. Li, F. Teng, and X. Wang, “Material and device architecture engineering toward high performance two-dimensional (2D) photodetectors,” Crystals 7, 149 (2017).
[Crossref]

Graphene 2D Mater. (1)

X. Du, D. E. Prober, H. Vora, and C. B. Mckitterick, “Graphene-based bolometers,” Graphene 2D Mater. 1, 1–22 (2014).

IEEE Photon. Technol. Lett. (1)

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett. 18, 1415–1417 (2006).
[Crossref]

IEEE Trans. Electron Devices (1)

M. Dyakonov and M. Shur, “Plasma wave electronics: novel terahertz devices using two dimensional electron fluid,” IEEE Trans. Electron Devices 43, 1640–1645 (1996).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements,” IEEE Trans. Terahertz Sci. Technol. 2, 299–305 (2012).
[Crossref]

Infrared Phys. Technol. (1)

G. Wang, Y. Zhang, C. You, B. Liu, Y. Yang, H. Li, A. Cui, D. Liu, and H. Yan, “Two dimensional materials based photodetectors,” Infrared Phys. Technol. 88, 149–173 (2018).
[Crossref]

J. Appl. Phys. (5)

J. Piotrowski and A. Rogalski, “Comment on ‘Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe’ [J. Appl. Phys. 74, 4774 (1993)],” J. Appl. Phys. 80, 2542–2544 (1996).
[Crossref]

A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93, 4355–4391 (2003).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures,” J. Appl. Phys. 107, 054512 (2010).
[Crossref]

J. Phillips, “Evaluation of the fundamental properties of quantum dot infrared detectors,” J. Appl. Phys. 91, 4590–4594 (2002).
[Crossref]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
[Crossref]

J. Electron. Mater. (3)

D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. E. Tennant, “High-operating temperature HgCdTe: a vision for the near future,” J. Electron. Mater. 45, 4587–4595(2016).
[Crossref]

W. E. Tennanat, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, and E. Piquette, “Small-pitch HgCdTe photodetectors,” J. Electron. Mater. 43, 3041–3046 (2014).
[Crossref]

R. L. Strong, M. A. Kinch, and J. M. Armstrong, “Performance of 12-μm- to 15-μm-pitch MWIR and LWIR HgCdTe FPAs at elevated temperatures,” J. Electron. Mater. 42, 3103–3107 (2013).
[Crossref]

J. Phys. D (1)

V. Ryzhii, T. Otsuji, M. Ryzhii, and M. S. Shur, “Double graphene-layer plasma resonances terahertz detector,” J. Phys. D 45, 302001 (2012).
[Crossref]

Laser Focus World (1)

A. Hoffman, “Semiconductor processing technology improves resolution of infrared arrays,” Laser Focus World 42, 81–84 (2006).

Light: Sci. Appl. (1)

S. Cakmakyapan, P. K. Lu, A. Navabi, and M. Jarrahi, “Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime,” Light: Sci. Appl. 7, 20 (2018).
[Crossref]

Materials (1)

A. De Sanctis, J. D. Mehew, M. F. Craciun, and S. Russo, “Graphene-based light sensing: fabrication, characterisation, physical properties and performance,” Materials 11, 1762 (2018).
[Crossref]

Micromachines (1)

D. H. Shin and S.-H. Choi, “Graphene-based semiconductor heterostructures for photodetectors,” Micromachines 9, 350 (2018).
[Crossref]

Nano Lett. (7)

T. J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari, “Surface plasmon polariton graphene photodetectors graphene photodetectors,” Nano Lett. 16, 8–20 (2015).
[Crossref]

J. Fang, D. Wang, C. T. DeVault, T.-F. Chung, Chen, A. Baltasseva, V. M. Shalaev, and A. V. Kildishev, “Enhanced graphene photodetector with fractal metasurface,” Nano Lett. 17, 57–62 (2017).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna enhanced photocarrier generation and collection,” Nano Lett. 14, 3749–3754 (2014).
[Crossref]

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626–5631 (2012).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012).
[Crossref]

Nanophotonics (2)

A. El Fatimy, A. Nath, B. D. Kong, A. K. Boyd, R. L. Myers-Ward, K. M. Daniels, M. M. Jadidi, T. E. Murphy, D. K. Gaskill, and P. Barbara, “Ultra-broadband photodetectors based on epitaxial graphene quantum dots,” Nanophotonics 7, 735–740 (2018).
[Crossref]

C. L. Tan and H. Mohseni, “Emerging technologies for high performance infrared detectors,” Nanophotonics 7, 169–197 (2018).
[Crossref]

Nanoscale (1)

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonator for sensing applications,” Nanoscale 8, 15196–15204 (2016).
[Crossref]

Nat. Commun. (7)

U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F. H. L. Koppens, A. C. Ferrari, and A. Colli, “Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance,” Nat. Commun. 8, 14311 (2017).
[Crossref]

M. Freitag, T. Low, W. Zhu, H. Yan, F. Xia, and P. Avouris, “Photocurrent in graphene harnessed by tunable intrinsic plasmons,” Nat. Commun. 4, 1951 (2013).
[Crossref]

I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, and G. Konstantatos, “Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor,” Nat. Commun. 7, 11954 (2016).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011).
[Crossref]

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. v. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Nat. Mater. (2)

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nat. Nanotechnol. (9)

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3, 206–209 (2008).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574–578 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. H. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

A. El Fatimy, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, and P. Barbara, “Epitaxial graphene quantum dots for high-performance THz bolometers,” Nat. Nanotechnol. 11, 335–338 (2016).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Nat. Photonics (8)

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7, 892–896 (2013).
[Crossref]

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7, 888–891 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6, 153–161 (2012).
[Crossref]

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene-CMOS integration,” Nat. Photonics 11, 366–371 (2017).
[Crossref]

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Opt. Eng. (4)

J. M. Mooney, F. D. Shepherd, W. S. Ewing, and J. Silverman, “Responsivity nonuniformity limited performance of infrared staring cameras,” Opt. Eng. 28, 1151–1161 (1989).
[Crossref]

D. Lohrmann, R. Littleton, C. Reese, D. Murphy, and J. Vizgaitis, “Uncooled long-wave infrared small pixel focal plane array and system challenges,” Opt. Eng. 52, 061305 (2013).
[Crossref]

R. G. Driggers, R. Vollmerhausen, J. P. Reynolds, J. Fanning, and G. C. Holst, “Infrared detector size: how low should you go?” Opt. Eng. 51, 063202 (2012).
[Crossref]

G. C. Holst and R. G. Driggers, “Small detectors in infrared system design,” Opt. Eng. 51, 096401 (2012).
[Crossref]

Opto-Electron. Rev. (2)

A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev. 19, 346–404 (2011).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. R. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20, 15–25 (2012).
[Crossref]

Phys. Rev. Lett. (1)

M. Dyakonov and M. S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[Crossref]

Proc. IEEE (1)

F. Xia, H. Yan, and P. Avouris, “The interaction of light and graphene: basic, devices, and applications,” Proc. IEEE 101, 1717–1731 (2013).
[Crossref]

Proc. IRE (1)

R. C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” Proc. IRE 47, 1495–1502 (1959).
[Crossref]

Proc. SPIE (11)

R. Bates and K. Kubala, “Direct optimization of LWIR systems for maximized detection range and minimized size and weight,” Proc. SPIE 9100, 91000M (2014).
[Crossref]

G. Destefanis, P. Tribolet, M. Vuillermet, and D. B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE 8012, 801235 (2011).
[Crossref]

M. A. Kinch, “An infrared journey,” Proc. SPIE 9451, 94512B (2015).
[Crossref]

J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne imaging sensors: infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
[Crossref]

M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera,” Proc. SPIE 8023, 80230C (2011).
[Crossref]

Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M. L. Bourqui, S. Bisotto, O. Gravrand, and G. Destefanis, “Getting small, new 10  μm pixel pitch cooled infrared products,” Proc. SPIE 9070, 907034 (2014).
[Crossref]

Y. Reibel, N. Pere-Laperne, L. Rubaldo, T. Augey, G. Decaens, V. Badet, L. Baud, J. Roumegoux, A. Kessler, P. Maillart, N. Ricard, O. Pacaud, and G. Destefanis, “Update on 10  μm pixel pitch MCT-based focal plane array with enhanced functionalities,” Proc. SPIE 9451, 94512E (2015).
[Crossref]

R. K. McEven, D. Jeckells, S. Bains, and H. Weller, “Developments in reduced pixel geometries with MOCVD grown MCT arrays,” Proc. SPIE 9451, 94512D (2015).
[Crossref]

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033(2014).
[Crossref]

J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge,” Proc. SPIE 9100, 91000I (2014).
[Crossref]

B. Starr, L. Mears, C. Fulk, J. Getty, E. Beuville, R. Boe, C. Tracy, E. Corrales, S. Kilcoyne, J. Vampola, J. Drab, R. Peralta, and C. Doyle, “RVS large format arrays for astronomy,” Proc. SPIE 9915, 99152X (2016).
[Crossref]

Prog. Quantum Electron. (1)

A. Rogalski, “Progress in focal plane array technology,” Prog. Quantum Electron. 36, 342–473 (2012).
[Crossref]

Rep. Prog. Phys. (1)

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79, 046501 (2016).
[Crossref]

Sci. Adv. (1)

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Science (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Small (2)

W. Guo, S. Xu, Z. Wu, N. Wang, M. M. T. Loy, and S. Du, “Oxygen-assisted charge transfer between ZnO quantum dots and graphene,” Small 9, 3031–3036 (2013).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Other (23)

G. C. Holst and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems (JCD Publishing/SPIE, 2007).

M. A. Kinch, State-of-the-Art Infrared Detector Technology (SPIE, 2014).

M. Currie, “Applications of graphene to photonics,” (Naval Research Laboratory, 2014).

T. Hirayama, “The evolution of CMOS image sensors,” in IEEE Asian Solid-State Circuits Conference (2013), pp. 5–8.

O. Djazovski, “Focal plane arrays for optical payloads,” in Optical Payloads for Space Missions, S.-E. Qian, ed. (Wiley, 2016), Chap. 17.

P. Norton, “Detector focal plane array technology,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Dekker, 2003), pp. 320–348.

L. J. Kozlowski and W. F. Kosonocky, “Infrared detector arrays,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Chap. 23.

N. Oda, Radio Application, Guidance and Electro-Optics Division, NEC Corporation, Tokyo 183-8501 (private communication, 2017).

S. Lloyd, “Advances in detectors: graphene photodetectors advance with help from collective EU Flagship,” Laser Focus World, 2017, https://www.laserfocusworld.com/articles/print/volume-53/issue-07/features/advances-in-detectors-graphene-photodetectors-advance-with-help-from-collective-eu-flagship.html .

J. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors (SPIE, 2007).

A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infrared Radiation (Clarendon, 1968).

W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology (Wiley, 1962).

P. G. Datskos, “Detectors—figures of merit,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Dekker, 2003), pp. 349–357.

Z. Jakšić, Micro and Nanophotonics for Semiconductor Infrared Detectors (Springer, 2014).

S. J. Fonash, Solar Cell Device Physics (Elsevier, 2010).

R. D. Hudson, Infrared System Engineering (Wiley, 1969).

W. I. Wolfe and G. J. Zissis, eds. The Infrared Handbook (Office of Naval Research, 1985).

W. D. Rogatto, ed. The Infrared and Electro-Optical Systems Handbook (Infrared Information Analysis Center/SPIE, 1993).

J. D. Vincent, Fundamentals of Infrared Detector Operation and Testing (Wiley, 1990).

J. D. Vincent, S. E. Hodges, J. Vampola, M. Stegall, and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing (Wiley, 2016).

A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-Based Infrared Detectors: a New Perspective (SPIE, 2018).

A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2010).

D. Long, “Photovoltaic and photoconductive infrared detectors,” in Optical and Infrared Detectors, R. J. Keyes, ed. (Springer, 1980), pp. 101–147.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (48)

Figure 1.
Figure 1. Electromagnetic spectrum. Reprinted from Opto-Electron. Rev. 19, Rogalski and Sizov, “Terahertz detectors and focal plane arrays,” pp. 346–404, Copyright 2011, with permission from Elsevier [10].
Figure 2.
Figure 2. Optical excitation processes in (a) bulk semiconductors, (b) quantum wells, and (c) type-II InAs/GaSb superlattices. Reprinted with permission from [11]. Copyright 2018 SPIE.
Figure 3.
Figure 3. Relative spectral response for a photon and thermal detector for (a) constant incident radiant power and (b) photon flux. Reprinted with permission from [11]. Copyright 2018 SPIE.
Figure 4.
Figure 4. Operating temperatures for low-background material systems with their spectral band of greatest sensitivity. The dashed line indicates the trend toward lower operating temperature for longer-wavelength detection. Reprinted with permission from [11]. Copyright 2018 SPIE.
Figure 5.
Figure 5. Schematic diagram of thermal detector. Reprinted with permission from Rogalski, J. Appl. Phys. 93, 4355–4391 (2003) [14]. Copyright 2003 AIP Publishing LLC.
Figure 6.
Figure 6. Temperature dependence of the resistance of three bolometer material types. Reprinted with permission from [11]. Copyright 2018 SPIE.
Figure 7.
Figure 7. Comparison of the D * of various available detectors when operated at the indicated temperature. The chopping frequency is 1000 Hz for all detectors except the thermopile (10 Hz), thermocouple (10 Hz), thermistor bolometer (10 Hz), Golay cell (10 Hz), and pyroelectric detector (10 Hz). Each detector is assumed to view a surrounding hemisphere (2π field of view) at a temperature of 300 K. Theoretical curves for the background-limited D * (dashed lines) for ideal photovoltaic and photoconductive detectors and thermal detectors are also shown. PC, photoconductive detector; PV, photovoltaic detector; PEM, photoelectromagnetic detector; HEB, hot-electron bolometer. Reprinted from Prog. Quantum Electron. 36, Rogalski, “Progress in focal plane array technology,” pp. 342–473, Copyright 2012, with permission from Elsevier [21].
Figure 8.
Figure 8. Quantum efficiency of different detectors. Reprinted with permission from [11]. Copyright 2018 SPIE.
Figure 9.
Figure 9. Different methods of absorption enhancement in a photodetector use an optical concentrator, an antireflection structure, structures for optical path increase (cavity enhancement), and light localization structures. Reprinted with permission from [11]. Copyright 2018 SPIE.
Figure 10.
Figure 10. α / G ratio versus temperature for (a) MWIR ( λ = 5 μm ) and (b) LWIR ( λ = 10 μm ) photodetectors based on HgCdTe, QWIP, Si extrinsic, and type-II superlattice (for LWIR only) material technology. Reprinted with permission from [11]. Copyright 2018 SPIE.
Figure 11.
Figure 11. Temperature fluctuation noise limited detectivity for thermal infrared detectors of different areas plotted (a) as a function of the detector temperature and (b) as a function of the total thermal conductance between the detector and its surroundings. Reprinted with permission from [29]. Copyright 2003 Marcel Dekker.
Figure 12.
Figure 12. BLIP detectivity of a thermal sensor as a function of the sensor temperature for 2 π FOV and ε = 1 .
Figure 13.
Figure 13. (a) Band structure of graphene in the honeycomb lattice. The enlarged picture shows the energy bands close to one of the Dirac points. (b) Schematic of electron σ - and π -orbitals of one carbon atom in graphene.
Figure 14.
Figure 14. Electron mobility in graphene at room temperature in comparison with other material systems.
Figure 15.
Figure 15. Modification of graphene’s bandgap structure: (a) Dirac Fermi cone, (b) substitutional doping, (c) bilayer graphene, and (d) doped bilayers.
Figure 16.
Figure 16. Typical absorption spectrum of doped graphene. Reprinted with permission from Low and Avouris, ACS Nano 8, 1086–1101 (2014) [36]. Copyright 2014 American Chemical Society.
Figure 17.
Figure 17. Separation of electron and hole by an internal electric field.
Figure 18.
Figure 18. Graphene phototransistor: (a) structure of transistor and (b) schematic view of photocurrent generation.
Figure 19.
Figure 19. Photocurrent generation in a graphene p–n junction: (a) profile of carrier concentrations due to light intensity distribution; (b) built-in electric field of p–n junction as well as photothermal electric effect leading to photovoltaic current flowing from the n -type region to the p -type region. © 2013 IEEE. Reprinted, with permission, from Xia et al., Proc. IEEE 101, 1717–1731 (2013) [34].
Figure 20.
Figure 20. Structure of graphene-based photodetectors with (a) electrically induced p-i-n junction and (b) resonance-based detector.
Figure 21.
Figure 21. Schematic of (a) THz CMOS detector and (b) plasma oscillations in a transistor.
Figure 22.
Figure 22. Schematic representation of the detection mechanism in graphene FET THz photodetector.
Figure 23.
Figure 23. Plasma-wave FET terahertz detector: (a) schematics of the THz detection configuration in a FET embedding the optical image of the central area of a bilayer graphene-based FET and (b) 0.3 GHz transmission mode image of a leaf. Reprinted by permission from Macmillan Publishers Ltd.: Vicarelli et al., Nat. Mater. 11, 865–871 (2012) [44]. Copyright 2012.
Figure 24.
Figure 24. Schematic view of graphene bolometers: (a) side view of the bilayer graphene hot-electron bolometer (semitransparent NiCr top gate covers the graphene device and silicon oxide surrounds the graphene); (b) pyroelectric bolometer (conductance of graphene channel is modulated by the pyroelectric substrate and by a floating gate).
Figure 25.
Figure 25. Quantum-dot bolometers: (a) NEP versus temperature at 0.15 THz for 30 nm and 150 nm quantum dots. Reprinted by permission from Macmillan Publishers Ltd.: El Fatimy et al., Nat. Nanotechnol. 11, 335–338 (2016) [52]. Copyright 2016. (b) Responsivity as a function of absorbed power at different wavelength. Inset: NEP as a function of absorbed power at various wavelengths. Reprinted with permission from El Fatimy et al., Nanophotonics 7, 735–740 (2018) [53]. Copyright 2018 De Gruyter.
Figure 26.
Figure 26. Broadband graphene quantum-dot photodetector: (a) device design and (b) slow response to light at 1.47 μm. Reprinted by permission from Macmillan Publishers Ltd.: Zhang et al., Nat. Commun. 4, 1811 (2013) [55]. Copyright 2013.
Figure 27.
Figure 27. Ultrafast and ultrasensitive graphene photodetectors: (a) schematic structure of metal–graphene–metal photodetector, (b) band profile, (c) recombination mechanism, and (d) hybrid graphene/quantum-dot photodetector. Reprinted by permission from Macmillan Publishers Ltd.: Konstantatos et al., Nat. Nanotechnol. 7, 363–368 (2012) [56]. Copyright 2012. (e) Trapping process and (f) dynamic process at the interface of graphene/quantum dots.
Figure 28.
Figure 28. Gain as a function of excitation intensity for hybrid graphene/ZnO quantum-dot detector. The circles are experimental data, and the solid curve is the theoretical plot with best fitting. Guo et al., Small 9, 3031–3036 (2013) [58]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
Figure 29.
Figure 29. Schematic diagram of the concept of SWIR graphene photodetector. Reprinted with permission from Chen et al., ACS Nano 11, 430–437 (2017) [77]. Copyright 2017 American Chemical Society.
Figure 30.
Figure 30. Photoconductive nanostructures based on gold-patched graphene nanostripes: (a) operation principle of the photodetector and (b) optical microscope and scanning electron microscopy (SEM) images for a fabricated photodetector. Reprinted by permission from Macmillan Publishers Ltd.: Cakmakyapan et al., Light: Sci. Appl. 7, 20 (2018) [83]. Copyright 2018.
Figure 31.
Figure 31. Responsivity, photoconductive gain, and noise equivalent power (optical chopping above 1 kHz) of the fabricated photodetector at an optical power of 2.5 μW, gate voltage of 22 V, and bias voltage of 20 mV. Reprinted by permission from Macmillan Publishers Ltd.: Cakmakyapan et al., Light: Sci. Appl. 7, 20 (2018) [83]. Copyright 2018.
Figure 32.
Figure 32. Comparison of the responsivity and speed operation for the room-temperature graphene photodetectors reported in the literature. (a) Reprinted with permission from Chen et al., ACS Nano 11, 430–437 (2017) [77]. Copyright 2017 American Chemical Society. (b) Reprinted by permission from Macmillan Publishers Ltd.: Cakmakyapan et al., Light: Sci. Appl. 7, 20 (2018) [83]. Copyright 2018.
Figure 33.
Figure 33. Responsivity against response time for two-dimensional materials in comparison with commercial silicon and InGaAs photodiodes. At the bottom, the bandgaps of the different layered semiconductors and electromagnetic spectrum are shown. The exact bandgap value depends on the number of layers, strain level, and chemical doping. The asterisk indicates that the material’s fundamental bandgap is indirect. FIR, far infrared; MIR, mid infrared; NIR, near infrared; UV, ultraviolet. Reprinted with permission from Buscema et al., Chem. Soc. Rev. 44, 3691–3718 (2015) [84].
Figure 34.
Figure 34. Spectral responsivity of graphene-based photodetectors compared with commercial photodetectors. Dotted line shows 100% quantum efficiency. Red and green colors denote 1 -ns response times, while blue color denotes 1 -s response times. The graphene photodetectors are labeled with their reference as well as a brief description of the photodetector style. The commercial photodiodes are shown in green. The Gr/FGr photodetector in the MWIR range was tested only at temperature of 77 K. Many data are reprinted with permission from Currie, “Applications of graphene to photonics,” NRL/MR/5650-14-9550 (Naval Research Laboratory, 2014) [91].
Figure 35.
Figure 35. Typical spectral detectivity curves of HgCdTe photodiodes and PbSe photoconductor operated at 300 K. BLIP detectivity is calculated for FOV = 2 π . Spectral detectivity curves for the Gr/FGr photodetector and two b-AsP photodetectors are also shown for comparison.
Figure 36.
Figure 36. Spectral dependence of NEP for graphene FET detectors and different photon THz (CMOS-based, Schottky diodes).
Figure 37.
Figure 37. Spectral dependence of NEP for graphene FET detectors and microbolometer THz FPAs.
Figure 38.
Figure 38. Imaging array formats compared with the complexity of silicon microprocessor technology and dynamic access memory (DRAM) as indicated by transistor count and memory bit capacity. The timeline design rule of MOS/CMOS features is shown at the bottom. Reprinted with permission from [97]. Copyright 2003 Marcel Dekker.
Figure 39.
Figure 39. Roadmap of CMOS pixel pitch development. © 2013 IEEE. Reprinted, with permission, from Hirayama, IEEE Asian Solid-State Circuits Conference (2013), pp. 5–8 [100].
Figure 40.
Figure 40. Comparison between the CCD-based and CMOS-based image sensor approaches.
Figure 41.
Figure 41. Detector materials that have the largest interest for infrared detector technology. Reprinted with permission from [101]. Copyright 2016 SPIE.
Figure 42.
Figure 42. Figure 42. Process flow for integrated infrared FPA manufacturing. Reprinted with permission from [11]. Copyright 2018 SPIE.
Figure 43.
Figure 43. Thermal imaging system configuration.
Figure 44.
Figure 44. F λ / d space for infrared system design. Straight lines represent constant NEDT. There are an infinite number of combinations that provide the same range. Reprinted with permission from [104]. Copyright 2014 SPIE.
Figure 45.
Figure 45. System MTF curves illustrating the different regions with the design space for various F λ / d conditions. Spatial frequencies are normalized to the detector cutoff. Reprinted with permission from [114]. Copyright 2013 SPIE.
Figure 46.
Figure 46. NEDT as a function of detectivity. The effects of nonuniformity are included for u = 0.01 % , 0.1%, 0.2%, and 0.5%. Note that for D * > 10 10 cm Hz 1 / 2 / W , detectivity is not the relevant figure of merit. Reprinted with permission from Rogalski et al., J. Appl. Phys. 105, 091101 (2009) [118]. Copyright 2009 AIP Publishing LLC.
Figure 47.
Figure 47. Pixel pitch for (a) HgCdTe photodiodes and (b) amorphous silicon microbolometers has continued to decrease due to technological advancements. Reprinted with permission from Destefanis et al., Proc. SPIE 8012, 801235 (2011) [121]; N. Oda, private communication [122].
Figure 48.
Figure 48. (a) Monolithically integrated graphene quantum-dot photodetector array (courtesy Frank Koppens ICFO/D. Bartolome) [123] and (b) side view of detector and the underlying readout circuit. Reprinted by permission from Macmillan Publishers Ltd.: Goossens et al., Nat. Photonics 11, 366–371 (2017) [124]. Copyright 2017.

Tables (6)

Tables Icon

Table 1. Photon Detectors a

Tables Icon

Table 2. Thermal Detectors a

Tables Icon

Table 3. General Properties of Thermal Detectors

Tables Icon

Table 4. Responsivity-Enhanced Graphene-Based Detectors

Tables Icon

Table 5. Representative Commercial Uncooled Infrared Bolometer Array

Tables Icon

Table 6. Representative IR Hybrid FPAs Offered by Some Major Manufacturers

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

T max = 300 K λ c [ μm ] .
R v ( λ , f ) = V s ϕ e ( λ ) Δ λ ,
R v ( T , f ) = V s 0 ϕ e ( λ ) d λ ,
NEP = V n R v = I n R i .
D = 1 NEP .
D * = D ( A d Δ f ) 1 / 2 = ( A d Δ f ) 1 / 2 NEP .
D * = ( A d Δ f ) 1 / 2 V n R v = ( A d Δ f ) 1 / 2 I n R i = ( A d Δ f ) 1 / 2 ϕ e ( SNR ) ,
P a = P i ( 1 r ) ( 1 e α x ) .
η ( x ) = ( 1 r ) ( 1 e α x ) ,
D * = λ 2 1 / 2 h c ( G + R ) 1 / 2 ( A o A e ) 1 / 2 η t 1 / 2 ,
D * = 0.31 λ h c k ( α G ) 1 / 2 ,
D BLIP * ( λ , T ) = λ h c k ( η 2 ϕ B ) 1 / 2 ,
ϕ B = sin 2 ( θ / 2 ) 0 λ c ϕ ( λ , T B ) d λ ,
ϕ ( λ , T B ) = 2 π c λ 4 [ exp ( h c / λ k T B ) 1 ] = 1.885 × 10 23 λ 4 [ exp ( 14.388 / λ k T B ) 1 ] .
D BLIP * ( λ , f ) = λ 2 h c ( η ϕ B ) 1 / 2 .
Δ T = ε ϕ o ( G th 2 + ω 2 C th 2 ) 1 / 2 .
τ th = C th G th = C th R th ,
Δ T = ε ϕ o R th ( 1 + ω 2 τ th 2 ) 1 / 2 .
K = Δ V Δ T .
Δ V = K Δ T = K ε ϕ o R th ( 1 + ω 2 τ th 2 ) 1 / 2 .
R v = K ε R th ( 1 + ω 2 τ th 2 ) 1 / 2 .
G R = 1 ( R th ) R = d d T ( A ε σ T 4 ) = 4 A ε σ T 3 .
R v = K 4 σ T 3 A ( 1 + ω 2 τ th 2 ) 1 / 2 .
Δ P th = ( 4 K T 2 G ) 1 / 2 ,
ε NEP = Δ P th = ( 16 A ε σ k T 5 ) 1 / 2
NEP = ( 16 A σ k T 5 ε ) 1 / 2 .
NEP = ( 16 A σ k T 5 ) 1 / 2 = 5.0 × 10 11 W
Δ T 2 ¯ = 4 k T 2 Δ f 1 + ω 2 τ th 2 R th .
V th 2 = K 2 Δ T 2 ¯ = 4 k T 2 Δ f 1 + ω 2 τ th 2 K 2 R th .
V b 2 = 8 k ε σ A ( T d 2 + T b 2 ) 1 + ω 2 τ th 2 K 2 R th 2 ,
D * = K ε R th A 1 / 2 ( 1 + ω 2 τ th 2 ) 1 / 2 ( 4 k T d 2 K 2 R th 1 + ω τ th 2 + 4 k T R + V 1 / f 2 ) 1 / 2 .
D th * = ( ε 2 A 4 k T d 2 G th ) 1 / 2 .
D b * = [ ε 8 k σ ( T d 5 + T b 5 ) ] 1 / 2 .
Range = D Δ x M λ ( F λ d ) ,
NEDT 2 C λ ( η ϕ B 2 π τ int ) ( F λ d ) ,
NEDT = 1 + ( J dark / J ϕ ) N w C ,
J ϕ = q η ϕ B ,
N w = ( J dark + J ϕ ) τ int q ,
NEDT = ( τ C η BLIP N w ) 1 ,
N w = η A d t int ϕ B .
η BLIP = ( N photon 2 N photon 2 + N FPA 2 ) 1 / 2 .
NEDT total = ( N + u 2 N 2 ) 1 / 2 N / T = ( 1 / N + u 2 ) 1 / 2 ( 1 / N ) ( N / T ) ,

Metrics