B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[Crossref]
[PubMed]
B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref]
[PubMed]
V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[Crossref]
[PubMed]
R. W. Knighton, X.-R. Huang, and L. A. Cavuoto, “Corneal birefringence mapped by scanning laser polarimetry,” Opt. Express 16(18), 13738–13751 (2008).
[Crossref]
[PubMed]
K. M. Katika and L. Pilon, “Feasibility analysis of an epidermal glucose sensor based on time-resolved fluorescence,” Appl. Opt. 46(16), 3359–3368 (2007).
[Crossref]
[PubMed]
R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref]
[PubMed]
G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
[Crossref]
[PubMed]
L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[Crossref]
[PubMed]
C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
[PubMed]
V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]
A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref]
[PubMed]
R. A. Farrell, D. Rouseff, and R. L. McCally, “Propagation of polarized light through two- and three-layer anisotropic stacks,” J. Opt. Soc. Am. A 22(9), 1981–1992 (2005).
[Crossref]
[PubMed]
R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[Crossref]
[PubMed]
R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
[Crossref]
[PubMed]
E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
[Crossref]
N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[Crossref]
[PubMed]
J. W. Jaronski and H. T. Kasprzak, “Linear birefringence measurements of the in vitro human cornea,” Ophthalmic Physiol. Opt. 23(4), 361–369 (2003).
[Crossref]
[PubMed]
Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref]
[PubMed]
J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]
R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002).
[PubMed]
K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref]
[PubMed]
R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[Crossref]
[PubMed]
A. M. Helwig, M. A. Arnold, and G. W. Small, “Evaluation of Kromoscopy: resolution of glucose and urea,” Appl. Opt. 39(25), 4715–4720 (2000).
[Crossref]
[PubMed]
J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[Crossref]
[PubMed]
B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref]
[PubMed]
H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
[Crossref]
[PubMed]
V. V. Tuchin, “Light scattering study of tissues,” Phys.-Usp. 40(5), 495–515 (1997).
[Crossref]
B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[Crossref]
[PubMed]
G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Anal. Bioanal. Chem. 355(3-4), 327–328 (1996).
[Crossref]
[PubMed]
T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]
G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
[Crossref]
[PubMed]
D. Maurice, “The Charles Prentice award lecture 1989: the physiology of tears,” Optom. Vis. Sci. 67(6), 391–399 (1990).
[Crossref]
[PubMed]
B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
[Crossref]
[PubMed]
W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
[Crossref]
[PubMed]
L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21(9), 1413–1421 (1981).
[Crossref]
[PubMed]
T. J. Y. Wang and F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. Comp. Physiol. 51(11A), 89–94 (1975).
[Crossref]
[PubMed]
S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).
A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–163 (1953).
A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34(4), 201–211 (1950).
[Crossref]
[PubMed]
D. Brewster, “Experiments on the Depolarisation of Light as Exhibited by Various Mineral, Animal, and Vegetable Bodies, with a Reference of the Phenomena to the General Principles of Polarisation,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 105(0), 29–53 (1815).
[Crossref]
W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
[Crossref]
[PubMed]
B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
[Crossref]
[PubMed]
R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[Crossref]
[PubMed]
J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[Crossref]
[PubMed]
A. M. Helwig, M. A. Arnold, and G. W. Small, “Evaluation of Kromoscopy: resolution of glucose and urea,” Appl. Opt. 39(25), 4715–4720 (2000).
[Crossref]
[PubMed]
Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref]
[PubMed]
B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref]
[PubMed]
T. J. Y. Wang and F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. Comp. Physiol. 51(11A), 89–94 (1975).
[Crossref]
[PubMed]
N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[Crossref]
[PubMed]
R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[Crossref]
[PubMed]
J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]
L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21(9), 1413–1421 (1981).
[Crossref]
[PubMed]
D. Brewster, “Experiments on the Depolarisation of Light as Exhibited by Various Mineral, Animal, and Vegetable Bodies, with a Reference of the Phenomena to the General Principles of Polarisation,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 105(0), 29–53 (1815).
[Crossref]
J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[Crossref]
[PubMed]
B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref]
[PubMed]
B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref]
[PubMed]
B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[Crossref]
[PubMed]
V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[Crossref]
[PubMed]
V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]
B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[Crossref]
[PubMed]
B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref]
[PubMed]
B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref]
[PubMed]
B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref]
[PubMed]
T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]
G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
[Crossref]
[PubMed]
B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[Crossref]
[PubMed]
Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref]
[PubMed]
L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[Crossref]
[PubMed]
K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref]
[PubMed]
A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref]
[PubMed]
V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[Crossref]
[PubMed]
V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]
R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[Crossref]
[PubMed]
N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[Crossref]
[PubMed]
R. A. Farrell, D. Rouseff, and R. L. McCally, “Propagation of polarized light through two- and three-layer anisotropic stacks,” J. Opt. Soc. Am. A 22(9), 1981–1992 (2005).
[Crossref]
[PubMed]
D. J. Donohue, B. J. Stoyanov, R. L. McCally, and R. A. Farrell, “Numerical modeling of the cornea’s lamellar structure and birefringence properties,” J. Opt. Soc. Am. A 12(7), 1425–1438 (1995).
[Crossref]
[PubMed]
A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref]
[PubMed]
G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
[Crossref]
[PubMed]
K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[Crossref]
[PubMed]
T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]
E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
[Crossref]
B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref]
[PubMed]
C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
[PubMed]
C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
[PubMed]
K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref]
[PubMed]
R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002).
[PubMed]
A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref]
[PubMed]
J. W. Jaronski and H. T. Kasprzak, “Linear birefringence measurements of the in vitro human cornea,” Ophthalmic Physiol. Opt. 23(4), 361–369 (2003).
[Crossref]
[PubMed]
J. W. Jaronski and H. T. Kasprzak, “Linear birefringence measurements of the in vitro human cornea,” Ophthalmic Physiol. Opt. 23(4), 361–369 (2003).
[Crossref]
[PubMed]
T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]
R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
[Crossref]
[PubMed]
E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
[Crossref]
V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[Crossref]
[PubMed]
V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]
L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[Crossref]
[PubMed]
J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]
Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref]
[PubMed]
L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[Crossref]
[PubMed]
L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21(9), 1413–1421 (1981).
[Crossref]
[PubMed]
B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref]
[PubMed]
B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[Crossref]
[PubMed]
W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
[Crossref]
[PubMed]
B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
[Crossref]
[PubMed]
D. Maurice, “The Charles Prentice award lecture 1989: the physiology of tears,” Optom. Vis. Sci. 67(6), 391–399 (1990).
[Crossref]
[PubMed]
R. A. Farrell, D. Rouseff, and R. L. McCally, “Propagation of polarized light through two- and three-layer anisotropic stacks,” J. Opt. Soc. Am. A 22(9), 1981–1992 (2005).
[Crossref]
[PubMed]
D. J. Donohue, B. J. Stoyanov, R. L. McCally, and R. A. Farrell, “Numerical modeling of the cornea’s lamellar structure and birefringence properties,” J. Opt. Soc. Am. A 12(7), 1425–1438 (1995).
[Crossref]
[PubMed]
L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[Crossref]
[PubMed]
T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]
K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
[Crossref]
[PubMed]
J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]
A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–163 (1953).
A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34(4), 201–211 (1950).
[Crossref]
[PubMed]
L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[Crossref]
[PubMed]
G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Anal. Bioanal. Chem. 355(3-4), 327–328 (1996).
[Crossref]
[PubMed]
G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
[Crossref]
[PubMed]
A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref]
[PubMed]
N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[Crossref]
[PubMed]
C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
[PubMed]
S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).
V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]
V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[Crossref]
[PubMed]
B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
[Crossref]
[PubMed]
W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
[Crossref]
[PubMed]
R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
[Crossref]
[PubMed]
R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref]
[PubMed]
N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[Crossref]
[PubMed]
R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[Crossref]
[PubMed]
V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[Crossref]
[PubMed]
V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]
A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref]
[PubMed]
B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref]
[PubMed]
A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref]
[PubMed]
Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref]
[PubMed]
A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref]
[PubMed]
R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref]
[PubMed]
J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]
J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[Crossref]
[PubMed]
A. M. Helwig, M. A. Arnold, and G. W. Small, “Evaluation of Kromoscopy: resolution of glucose and urea,” Appl. Opt. 39(25), 4715–4720 (2000).
[Crossref]
[PubMed]
E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
[Crossref]
G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Anal. Bioanal. Chem. 355(3-4), 327–328 (1996).
[Crossref]
[PubMed]
A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–163 (1953).
A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34(4), 201–211 (1950).
[Crossref]
[PubMed]
R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
[Crossref]
[PubMed]
Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref]
[PubMed]
V. V. Tuchin, “Light scattering study of tissues,” Phys.-Usp. 40(5), 495–515 (1997).
[Crossref]
T. J. Y. Wang and F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. Comp. Physiol. 51(11A), 89–94 (1975).
[Crossref]
[PubMed]
R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref]
[PubMed]
L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[Crossref]
[PubMed]
R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref]
[PubMed]
S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).
G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Anal. Bioanal. Chem. 355(3-4), 327–328 (1996).
[Crossref]
[PubMed]
C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt. 37(16), 3553–3557 (1998).
[Crossref]
[PubMed]
K. M. Katika and L. Pilon, “Feasibility analysis of an epidermal glucose sensor based on time-resolved fluorescence,” Appl. Opt. 46(16), 3359–3368 (2007).
[Crossref]
[PubMed]
A. M. Helwig, M. A. Arnold, and G. W. Small, “Evaluation of Kromoscopy: resolution of glucose and urea,” Appl. Opt. 39(25), 4715–4720 (2000).
[Crossref]
[PubMed]
A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34(4), 201–211 (1950).
[Crossref]
[PubMed]
C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
[PubMed]
T. J. Y. Wang and F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. Comp. Physiol. 51(11A), 89–94 (1975).
[Crossref]
[PubMed]
B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
[Crossref]
[PubMed]
W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
[Crossref]
[PubMed]
J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[Crossref]
[PubMed]
N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[Crossref]
[PubMed]
R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[Crossref]
[PubMed]
B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref]
[PubMed]
B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref]
[PubMed]
V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]
R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
[Crossref]
[PubMed]
B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[Crossref]
[PubMed]
G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
[Crossref]
[PubMed]
R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002).
[PubMed]
B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref]
[PubMed]
V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[Crossref]
[PubMed]
L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[Crossref]
[PubMed]
A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref]
[PubMed]
B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[Crossref]
[PubMed]
R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[Crossref]
[PubMed]
A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–163 (1953).
G. J. Van Blokland and S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4(1), 82–90 (1987).
[Crossref]
[PubMed]
H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
[Crossref]
[PubMed]
D. J. Donohue, B. J. Stoyanov, R. L. McCally, and R. A. Farrell, “Numerical modeling of the cornea’s lamellar structure and birefringence properties,” J. Opt. Soc. Am. A 12(7), 1425–1438 (1995).
[Crossref]
[PubMed]
R. A. Farrell, D. Rouseff, and R. L. McCally, “Propagation of polarized light through two- and three-layer anisotropic stacks,” J. Opt. Soc. Am. A 22(9), 1981–1992 (2005).
[Crossref]
[PubMed]
J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[Crossref]
G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
[Crossref]
[PubMed]
J. W. Jaronski and H. T. Kasprzak, “Linear birefringence measurements of the in vitro human cornea,” Ophthalmic Physiol. Opt. 23(4), 361–369 (2003).
[Crossref]
[PubMed]
T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]
E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
[Crossref]
D. Maurice, “The Charles Prentice award lecture 1989: the physiology of tears,” Optom. Vis. Sci. 67(6), 391–399 (1990).
[Crossref]
[PubMed]
D. Brewster, “Experiments on the Depolarisation of Light as Exhibited by Various Mineral, Animal, and Vegetable Bodies, with a Reference of the Phenomena to the General Principles of Polarisation,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 105(0), 29–53 (1815).
[Crossref]
Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[Crossref]
[PubMed]
V. V. Tuchin, “Light scattering study of tissues,” Phys.-Usp. 40(5), 495–515 (1997).
[Crossref]
K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21(9), 1413–1421 (1981).
[Crossref]
[PubMed]
D. Atchison, and G. Smith, Optics of the Human Eye (Butterworth Heinemann, Oxford, UK, 2000).
B. D. Cameron, “The application of polarized light to biomedical diagnostics and monitoring,” Ph.D. Dissertation, Texas A&M University, College Station, TX 77843 (2000).
H. A. MacKenzie, H. S. Ashton, Y. C. Shen, J. Lindberg, P. Rae, K. M. Quan, and S. Spiers, “Blood glucose measurements by photoacoustics,” in Biomedical Optical Spectroscopy and Diagnostics / Therapeutic Laser Applications, E. Sevick-Muraca and J. Izatt, eds., Vol. 22 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper BTuC1. http://www.opticsinfobase.org/abstract.cfm?URI=BOSD-1998-BTuC1
M. Born, and E. Wolf, “Form Birefringence,” in Principles of Optics (Cambridge University Press, Cambridge, UK, 1998).
E. Hecht, Optics (Addison Wesley, Reading, MA, 2001).
M. J. Goetz, Jr., “Microdegree Polarimetry for Glucose Detection,” M.S. Thesis, University of Connecticut, Storrs, CT 06269 (1992).