Abstract

The field of view of optical coherence tomography angiography (OCTA) images of the retina can be increased by montaging consecutive scans acquired at different retinal regions. Given the dramatic variation in aberrations throughout the entire posterior pole region, it is challenging to achieve seamless merging with apparent capillary continuity across the boundaries between adjacent angiograms. For this purpose, we propose herein a method that performs automated registration of contiguous OCTA images based on invariant features and uses a novel montage algorithm. The invariant features were used to register the overlapping areas between adjacently located scans by estimating the affine transformation matrix needed to accurately stitch them. Then, the flow signal was compensated to homogenize the angiograms with different brightness and the joints were blended to generate a seamless, montaged wide-field angiogram. We evaluated the algorithm on normal and diabetic retinopathy eyes. The proposed method could montage the angiograms seamlessly and provided a wide-field of view of retinal vasculature.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram

Pengxiao Zang, Gangjun Liu, Miao Zhang, Changlei Dongye, Jie Wang, Alex D. Pechauer, Thomas S. Hwang, David J. Wilson, David Huang, Dengwang Li, and Yali Jia
Biomed. Opt. Express 7(7) 2823-2836 (2016)

MEDnet, a neural network for automated detection of avascular area in OCT angiography

Yukun Guo, Acner Camino, Jie Wang, David Huang, Thomas S. Hwang, and Yali Jia
Biomed. Opt. Express 9(11) 5147-5158 (2018)

Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography

Yukun Guo, Acner Camino, Miao Zhang, Jie Wang, David Huang, Thomas Hwang, and Yali Jia
Biomed. Opt. Express 9(9) 4429-4442 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  3. Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
    [Crossref] [PubMed]
  4. Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
    [Crossref] [PubMed]
  5. Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
    [Crossref] [PubMed]
  6. T. Hirano, S. Kakihara, Y. Toriyama, M. G. Nittala, T. Murata, and S. Sadda, “Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy,” Br. J. Ophthalmol. 2017, 311358 (2017).
    [PubMed]
  7. M. Kimura, M. Nozaki, M. Yoshida, and Y. Ogura, “Wide-field optical coherence tomography angiography using extended field imaging technique to evaluate the nonperfusion area in retinal vein occlusion,” Clin. Ophthalmol. 10, 1291–1295 (2016).
    [Crossref] [PubMed]
  8. J. Polans, B. Keller, O. M. Carrasco-Zevallos, F. LaRocca, E. Cole, H. E. Whitson, E. M. Lad, S. Farsiu, and J. A. Izatt, “Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions,” Biomed. Opt. Express 8(1), 16–37 (2016).
    [Crossref] [PubMed]
  9. J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124–134 (2015).
    [Crossref]
  10. A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
    [Crossref]
  11. A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
    [Crossref]
  12. A. Can, C. V. Stewart, and B. Roysam, “Robust hierarchical algorithm for constructing a mosaic from images of the curved human retina,” in Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., (IEEE, 1999)
  13. S. Lee, M. D. Abràmoff, and J. M. Reinhardt, “Validation of retinal image registration algorithms by a projective imaging distortion model,” in Engineering in Medicine and Biology Society,2007. EMBS 2007. 29th Annual International Conference of the IEEE, (IEEE, 2007), 6471–6474.
    [Crossref]
  14. S. Lee, M. D. Abràmoff, and J. M. Reinhardt, “Feature-based pairwise retinal image registration by radial distortion correction,” in Medical Imaging 2007: Image Processing, (International Society for Optics and Photonics, 2007), 651220.
  15. C. V. Stewart, C.-L. Tsai, and B. Roysam, “The dual-bootstrap iterative closest point algorithm with application to retinal image registration,” IEEE Trans. Med. Imaging 22(11), 1379–1394 (2003).
    [Crossref] [PubMed]
  16. J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine, “A partial intensity invariant feature descriptor for multimodal retinal image registration,” IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010).
    [Crossref] [PubMed]
  17. P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
    [Crossref] [PubMed]
  18. P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
    [Crossref] [PubMed]
  19. P. Lukashevich, B. Zalesky, and S. Ablameyko, “Medical image registration based on SURF detector,” Pattern Recognit. Image Anal. 21(3), 519–521 (2011).
    [Crossref]
  20. M. Teke and A. Temizel, “Multi-spectral satellite image registration using scale-restricted SURF,” in Pattern Recognition (ICPR),201020th International Conference on, (IEEE, 2010), 2310–2313.
    [Crossref]
  21. A. Eden, M. Uyttendaele, and R. Szeliski, “Seamless image stitching of scenes with large motions and exposure differences,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, (IEEE, 2006), 2498–2505.
    [Crossref]
  22. A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image stitching in the gradient domain,” in European Conference on Computer Vision, (Springer, 2004), 377–389.
    [Crossref]
  23. L. Juan and G. Oubong, “SURF applied in panorama image stitching,” in Image Processing Theory Tools and Applications (IPTA),20102nd International Conference on, (IEEE, 2010), 495–499.
    [Crossref]
  24. M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
    [Crossref]
  25. R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).
    [Crossref] [PubMed]
  26. R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).
    [Crossref] [PubMed]
  27. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
    [Crossref] [PubMed]
  28. M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
    [Crossref] [PubMed]
  29. J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
    [Crossref] [PubMed]
  30. M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
    [Crossref] [PubMed]
  31. J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
    [Crossref] [PubMed]
  32. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
    [Crossref]
  33. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24(6), 381–395 (1981).
    [Crossref]
  34. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
    [Crossref]
  35. Q. Zhang, C.-L. Chen, Z. Chu, and R. K. Wang, “Wide field OCT angiography by using swept source OCT in living human eye,” in Ophthalmic Technologies XXVII, (International Society for Optics and Photonics, 2017), 100450V.
  36. L. Juan and O. Gwun, “A comparison of sift, pca-sift and surf,” International Journal of Image Processing 3, 143–152 (2009).

2017 (4)

T. Hirano, S. Kakihara, Y. Toriyama, M. G. Nittala, T. Murata, and S. Sadda, “Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy,” Br. J. Ophthalmol. 2017, 311358 (2017).
[PubMed]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (6)

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).
[Crossref] [PubMed]

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).
[Crossref] [PubMed]

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124–134 (2015).
[Crossref]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

2012 (2)

2011 (1)

P. Lukashevich, B. Zalesky, and S. Ablameyko, “Medical image registration based on SURF detector,” Pattern Recognit. Image Anal. 21(3), 519–521 (2011).
[Crossref]

2010 (1)

J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine, “A partial intensity invariant feature descriptor for multimodal retinal image registration,” IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010).
[Crossref] [PubMed]

2009 (1)

L. Juan and O. Gwun, “A comparison of sift, pca-sift and surf,” International Journal of Image Processing 3, 143–152 (2009).

2008 (1)

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[Crossref]

2007 (1)

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

2004 (1)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

2003 (1)

C. V. Stewart, C.-L. Tsai, and B. Roysam, “The dual-bootstrap iterative closest point algorithm with application to retinal image registration,” IEEE Trans. Med. Imaging 22(11), 1379–1394 (2003).
[Crossref] [PubMed]

2002 (2)

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1981 (1)

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24(6), 381–395 (1981).
[Crossref]

Ablameyko, S.

P. Lukashevich, B. Zalesky, and S. Ablameyko, “Medical image registration based on SURF detector,” Pattern Recognit. Image Anal. 21(3), 519–521 (2011).
[Crossref]

An, L.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Artal, P.

Bailey, S. T.

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Baumann, B.

Bay, H.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[Crossref]

Bock, R.

Bolles, R. C.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24(6), 381–395 (1981).
[Crossref]

Brown, M.

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

Campbell, J. P.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref] [PubMed]

Can, A.

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]

Carrasco-Zevallos, O. M.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chao, J.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Chen, C.-L.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Chen, J.

J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine, “A partial intensity invariant feature descriptor for multimodal retinal image registration,” IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010).
[Crossref] [PubMed]

Cole, E.

Dongye, C.

Ess, A.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[Crossref]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Farsiu, S.

Fischler, M. A.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24(6), 381–395 (1981).
[Crossref]

Flaxel, C. J.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Gao, S. S.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gwun, O.

L. Juan and O. Gwun, “A comparison of sift, pca-sift and surf,” International Journal of Image Processing 3, 143–152 (2009).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hirano, T.

T. Hirano, S. Kakihara, Y. Toriyama, M. G. Nittala, T. Murata, and S. Sadda, “Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy,” Br. J. Ophthalmol. 2017, 311358 (2017).
[PubMed]

Hornegger, J.

Huang, D.

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
[Crossref] [PubMed]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Hwang, T. S.

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
[Crossref] [PubMed]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref] [PubMed]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Izatt, J. A.

Jaeken, B.

Jia, Y.

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref] [PubMed]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Johnstone, M.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Jonas, J. B.

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).
[Crossref] [PubMed]

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).
[Crossref] [PubMed]

Jonas, R. A.

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).
[Crossref] [PubMed]

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).
[Crossref] [PubMed]

Juan, L.

L. Juan and O. Gwun, “A comparison of sift, pca-sift and surf,” International Journal of Image Processing 3, 143–152 (2009).

Kakihara, S.

T. Hirano, S. Kakihara, Y. Toriyama, M. G. Nittala, T. Murata, and S. Sadda, “Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy,” Br. J. Ophthalmol. 2017, 311358 (2017).
[PubMed]

Keller, B.

Kimura, M.

M. Kimura, M. Nozaki, M. Yoshida, and Y. Ogura, “Wide-field optical coherence tomography angiography using extended field imaging technique to evaluate the nonperfusion area in retinal vein occlusion,” Clin. Ophthalmol. 10, 1291–1295 (2016).
[Crossref] [PubMed]

Kinyoun, J.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Kraus, M. F.

Kubach, S.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Lad, E. M.

Laine, A. F.

J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine, “A partial intensity invariant feature descriptor for multimodal retinal image registration,” IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010).
[Crossref] [PubMed]

LaRocca, F.

Laron, M.

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Lauer, A. K.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Lee, C. S.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Lee, N.

J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine, “A partial intensity invariant feature descriptor for multimodal retinal image registration,” IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010).
[Crossref] [PubMed]

Levin, A.

A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image stitching in the gradient domain,” in European Conference on Computer Vision, (Springer, 2004), 377–389.
[Crossref]

Li, D.

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref] [PubMed]

Li, J. J.

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).
[Crossref] [PubMed]

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, G.

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref] [PubMed]

Liu, J.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Liu, J. J.

Liu, L.

Lowe, D. G.

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

Lukashevich, P.

P. Lukashevich, B. Zalesky, and S. Ablameyko, “Medical image registration based on SURF detector,” Pattern Recognit. Image Anal. 21(3), 519–521 (2011).
[Crossref]

Mayer, M. A.

McClintic, S. M.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

McNabb, R. P.

Munsen, R.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Murata, T.

T. Hirano, S. Kakihara, Y. Toriyama, M. G. Nittala, T. Murata, and S. Sadda, “Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy,” Br. J. Ophthalmol. 2017, 311358 (2017).
[PubMed]

Nittala, M. G.

T. Hirano, S. Kakihara, Y. Toriyama, M. G. Nittala, T. Murata, and S. Sadda, “Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy,” Br. J. Ophthalmol. 2017, 311358 (2017).
[PubMed]

Nozaki, M.

M. Kimura, M. Nozaki, M. Yoshida, and Y. Ogura, “Wide-field optical coherence tomography angiography using extended field imaging technique to evaluate the nonperfusion area in retinal vein occlusion,” Clin. Ophthalmol. 10, 1291–1295 (2016).
[Crossref] [PubMed]

Ogura, Y.

M. Kimura, M. Nozaki, M. Yoshida, and Y. Ogura, “Wide-field optical coherence tomography angiography using extended field imaging technique to evaluate the nonperfusion area in retinal vein occlusion,” Clin. Ophthalmol. 10, 1291–1295 (2016).
[Crossref] [PubMed]

Panda-Jonas, S.

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).
[Crossref] [PubMed]

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).
[Crossref] [PubMed]

Pechauer, A. D.

Peleg, S.

A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image stitching in the gradient domain,” in European Conference on Computer Vision, (Springer, 2004), 377–389.
[Crossref]

Pennesi, M. E.

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Pepple, K. L.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Polans, J.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rezaei, K.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Roysam, B.

C. V. Stewart, C.-L. Tsai, and B. Roysam, “The dual-bootstrap iterative closest point algorithm with application to retinal image registration,” IEEE Trans. Med. Imaging 22(11), 1379–1394 (2003).
[Crossref] [PubMed]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]

Sadda, S.

T. Hirano, S. Kakihara, Y. Toriyama, M. G. Nittala, T. Murata, and S. Sadda, “Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy,” Br. J. Ophthalmol. 2017, 311358 (2017).
[PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sharma, U.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Smith, R. T.

J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine, “A partial intensity invariant feature descriptor for multimodal retinal image registration,” IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010).
[Crossref] [PubMed]

Stewart, C. V.

C. V. Stewart, C.-L. Tsai, and B. Roysam, “The dual-bootstrap iterative closest point algorithm with application to retinal image registration,” IEEE Trans. Med. Imaging 22(11), 1379–1394 (2003).
[Crossref] [PubMed]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Subhash, H.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tan, O.

Tanenbaum, H. L.

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]

Tian, J.

J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine, “A partial intensity invariant feature descriptor for multimodal retinal image registration,” IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010).
[Crossref] [PubMed]

Tokayer, J.

Toriyama, Y.

T. Hirano, S. Kakihara, Y. Toriyama, M. G. Nittala, T. Murata, and S. Sadda, “Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy,” Br. J. Ophthalmol. 2017, 311358 (2017).
[PubMed]

Tsai, C.-L.

C. V. Stewart, C.-L. Tsai, and B. Roysam, “The dual-bootstrap iterative closest point algorithm with application to retinal image registration,” IEEE Trans. Med. Imaging 22(11), 1379–1394 (2003).
[Crossref] [PubMed]

Tuytelaars, T.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[Crossref]

Van Gelder, R. N.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Van Gool, L.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[Crossref]

Wang, J.

Wang, R. K.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Wang, Y.

Wang, Y. X.

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).
[Crossref] [PubMed]

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).
[Crossref] [PubMed]

Weiss, Y.

A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image stitching in the gradient domain,” in European Conference on Computer Vision, (Springer, 2004), 377–389.
[Crossref]

Whitson, H. E.

Wilson, D. J.

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Xu, L.

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).
[Crossref] [PubMed]

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).
[Crossref] [PubMed]

Yang, H.

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).
[Crossref] [PubMed]

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).
[Crossref] [PubMed]

Yoshida, M.

M. Kimura, M. Nozaki, M. Yoshida, and Y. Ogura, “Wide-field optical coherence tomography angiography using extended field imaging technique to evaluate the nonperfusion area in retinal vein occlusion,” Clin. Ophthalmol. 10, 1291–1295 (2016).
[Crossref] [PubMed]

Zalesky, B.

P. Lukashevich, B. Zalesky, and S. Ablameyko, “Medical image registration based on SURF detector,” Pattern Recognit. Image Anal. 21(3), 519–521 (2011).
[Crossref]

Zang, P.

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref] [PubMed]

Zhang, A.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Zhang, M.

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref] [PubMed]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Zhang, T.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Zheng, J.

J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine, “A partial intensity invariant feature descriptor for multimodal retinal image registration,” IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010).
[Crossref] [PubMed]

Zomet, A.

A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image stitching in the gradient domain,” in European Conference on Computer Vision, (Springer, 2004), 377–389.
[Crossref]

Biomed. Opt. Express (6)

J. Polans, B. Keller, O. M. Carrasco-Zevallos, F. LaRocca, E. Cole, H. E. Whitson, E. M. Lad, S. Farsiu, and J. A. Izatt, “Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions,” Biomed. Opt. Express 8(1), 16–37 (2016).
[Crossref] [PubMed]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref] [PubMed]

M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular diseases,” Biomed. Opt. Express 6(12), 4661–4675 (2015).
[Crossref] [PubMed]

J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536–1548 (2017).
[Crossref] [PubMed]

M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816–828 (2016).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

T. Hirano, S. Kakihara, Y. Toriyama, M. G. Nittala, T. Murata, and S. Sadda, “Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy,” Br. J. Ophthalmol. 2017, 311358 (2017).
[PubMed]

Clin. Ophthalmol. (1)

M. Kimura, M. Nozaki, M. Yoshida, and Y. Ogura, “Wide-field optical coherence tomography angiography using extended field imaging technique to evaluate the nonperfusion area in retinal vein occlusion,” Clin. Ophthalmol. 10, 1291–1295 (2016).
[Crossref] [PubMed]

Commun. ACM (1)

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24(6), 381–395 (1981).
[Crossref]

Comput. Vis. Image Underst. (1)

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine, “A partial intensity invariant feature descriptor for multimodal retinal image registration,” IEEE Trans. Biomed. Eng. 57(7), 1707–1718 (2010).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

C. V. Stewart, C.-L. Tsai, and B. Roysam, “The dual-bootstrap iterative closest point algorithm with application to retinal image registration,” IEEE Trans. Med. Imaging 22(11), 1379–1394 (2003).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]

Int. J. Comput. Vis. (2)

M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007).
[Crossref]

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]

International Journal of Image Processing (1)

L. Juan and O. Gwun, “A comparison of sift, pca-sift and surf,” International Journal of Image Processing 3, 143–152 (2009).

J. Biomed. Opt. (2)

P. Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography,” J. Biomed. Opt. 22(2), 26001 (2017).
[Crossref] [PubMed]

Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking,” J. Biomed. Opt. 20(6), 066008 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Optica (1)

Pattern Recognit. Image Anal. (1)

P. Lukashevich, B. Zalesky, and S. Ablameyko, “Medical image registration based on SURF detector,” Pattern Recognit. Image Anal. 21(3), 519–521 (2011).
[Crossref]

PLoS One (2)

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).
[Crossref] [PubMed]

R. A. Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Jia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J. Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395–E2402 (2015).
[Crossref] [PubMed]

Sci. Rep. (2)

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref] [PubMed]

J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (8)

M. Teke and A. Temizel, “Multi-spectral satellite image registration using scale-restricted SURF,” in Pattern Recognition (ICPR),201020th International Conference on, (IEEE, 2010), 2310–2313.
[Crossref]

A. Eden, M. Uyttendaele, and R. Szeliski, “Seamless image stitching of scenes with large motions and exposure differences,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, (IEEE, 2006), 2498–2505.
[Crossref]

A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image stitching in the gradient domain,” in European Conference on Computer Vision, (Springer, 2004), 377–389.
[Crossref]

L. Juan and G. Oubong, “SURF applied in panorama image stitching,” in Image Processing Theory Tools and Applications (IPTA),20102nd International Conference on, (IEEE, 2010), 495–499.
[Crossref]

A. Can, C. V. Stewart, and B. Roysam, “Robust hierarchical algorithm for constructing a mosaic from images of the curved human retina,” in Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., (IEEE, 1999)

S. Lee, M. D. Abràmoff, and J. M. Reinhardt, “Validation of retinal image registration algorithms by a projective imaging distortion model,” in Engineering in Medicine and Biology Society,2007. EMBS 2007. 29th Annual International Conference of the IEEE, (IEEE, 2007), 6471–6474.
[Crossref]

S. Lee, M. D. Abràmoff, and J. M. Reinhardt, “Feature-based pairwise retinal image registration by radial distortion correction,” in Medical Imaging 2007: Image Processing, (International Society for Optics and Photonics, 2007), 651220.

Q. Zhang, C.-L. Chen, Z. Chu, and R. K. Wang, “Wide field OCT angiography by using swept source OCT in living human eye,” in Ophthalmic Technologies XXVII, (International Society for Optics and Photonics, 2017), 100450V.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Illustration of retinal layer segmentation and angiogram generation on SVC (inner 80% of the ganglion cell complex (GCC)), ICP (outer 20% of the GCC and inner 50% of the inner nuclear layer (INL)), DCP (outer 50% of the INL and outer plexiform layer (OPL)), and inner retina (between the inner limiting membrane (ILM) and the OPL).
Fig. 2
Fig. 2 Overview of the invariant features-based automated registration and montage algorithm. SURF – Speed-Up Robust Features.
Fig. 3
Fig. 3 SURF features detection on OCTAs. (A) The green crosses are the locations of detected features on the angiogram. (B) Some of the SURF features in A were selected randomly for clear representation of orientation and scale. The scale of features is represented by the radius of the green circles. The direction of features and scale is represented by the green line highlighted with white arrows in C and D. (C-D) Magnified insets correspond to the regions indicated by black and blue boxes in B.
Fig. 4
Fig. 4 Invariant features matching. The paired points were connected using the cyan dashed lines.
Fig. 5
Fig. 5 Illustration of the scale and orientation of paired points. A1, A2 were correctly paired points of interest; their scale and direction were very similar. B1, B2 were mismatched points, for which both direction and scale were very different. C1, C2 were also mismatched points, where the scale is similar but the difference of direction was great. D is the illustration for the scale and direction restriction for feature matching. The scales of A, B C and D are 1.65 × 1.65-mm, 1.3 × 1.3-mm, 1.65 × 1.65-mm and 0.9 × 0.9-mm, separately.
Fig. 6
Fig. 6 Illustration of the pairs reserved for the RANSAC input after local area verification by imposition of the two restrictions described in section 3.2.2.
Fig. 7
Fig. 7 Illustration of the pairs reserved after the last step of mismatch removal using random sample consensus (RANSAC) algorithm.
Fig. 8
Fig. 8 Angiography montage with visible seams
Fig. 9
Fig. 9 Illustration of the seamless blending routine.
Fig. 10
Fig. 10 The montaged seamless angiogram applying flow signal compensation and seamless blending. (B) and (C) represent the detail capillary network within the green and blue rectangles in (A).
Fig. 11
Fig. 11 Illustration of the algorithm evaluation. Green and cyan lines illustrated both sides of the seam between the target and moving images.
Fig. 12
Fig. 12 Grossly montaged wide-field angiogram before matching verification in local area, flow signal compensation and seamless blending. Five pixel mismatch was demonstrated.
Fig. 13
Fig. 13 Automated montaged angiogram on four slabs of PR-OCT angiography (2 scans). (A) Superficial vascular complex. (B) Intermediate capillary plexus. (C) Deep capillary plexus. (D) Choriocapillaris.
Fig. 14
Fig. 14 Ultra wide-field OCTA (15 × 20-mm) of a healthy eye registered and montaged by sixteen 6 × 6-mm OCTA scans.
Fig. 15
Fig. 15 Montaged wide-field OCTA (6 × 15-mm,3 scans) of a diabetic retinopathy case. Three scans centered on disc, fovea, and temporal were montaged using the algorithm described in the text.
Fig. 16
Fig. 16 Montaged OCTA (10 × 25-mm, 4 scans) of the nasal, disc, macula and temporal regions from an image of a diabetic retinopathy case acquired by a prototype OCT angiography system. The white arrow highlights the vitreous neovascularization.

Tables (1)

Tables Icon

Table 1 Evaluation of the performance of the automated montage algorithm on 10 normal eyes by the correlation and mean square errors

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

p 1 =A p 0 ,A=[ a 11 a 12 a 13 a 21 a 22 a 23 0 0 1 ]
det(H)= D xx D yy ( 0.9 D xy ) 2
paired[ P t ( i ), P m ( j ) ]= min j { SSD[ P t ( i ), P m ( j ) ] }
{ ΔO= O m O t ΔS= S m S t
I c l =T[ R( I m l ,ΔO ),Δ S 1 ]
C l =Cor( I c l (k), I t l (k) )
I c(A) = I A Mean( G( I R ) ) G( I R )
e= 1 N [ α I c(m) ( u m )β I c(t) ( u t ) ] 2
{ Diff( k )= G σ(k) (I) G σ(k+1) (I) σ(k+1)=2*σ(k)
{ I b ( k )= W t ×Diff( t k )+ W m ×Diff( m k ) W t + W m =1
I output = k=0 N I b ( k )
{ E( D t , D m )= 1 L i=1 L | M t ( i ) M m ( i ) | Cor( D t , D m )=cor( M t , M m ) M t ( i )= 1 W t j=1 W t ( D t (i,j) ) , M m ( i )= 1 W m j=1 W m ( D m (i,j) )

Metrics