Abstract

Handheld imaging probes are needed to extend the clinical translation of optical elastography to in vivo applications, yet such probes have received little attention. In this paper, we present the first demonstration of optical palpation using a handheld probe. Optical palpation is a variant of optical elastography that uses three-dimensional optical coherence tomography (3D-OCT) to provide maps of stress at the tissue surface under static compression. Using this technique, stiff features present beneath the surface of turbid tissues are identified, providing mechanical contrast complementary to the optical contrast provided by OCT. However, during handheld operation, relative motion between the probe and the tissue can induce motion artifact, causing spatial distortion of 3D-OCT and in turn, optical palpation images. We overcome this issue using a novel, dual-function bi-layer that provides both a fiducial marker for co-registration and a compliant section for estimation of the stress at the tissue surface. Co-registration of digital photographs of the bi-layer laid out over the tissue surface is used to measure and correct for motion in the lateral (xy) plane. We also demonstrate, for the first time, that optical palpation can be used as a method for monitoring pressure applied to the tissue during handheld operation, thus providing a more repeatable and robust imaging technique between different users. Handheld optical palpation is demonstrated on a structured phantom, in vivo human skin and excised human breast tissue. In each case, image quality comparable to bench-top 3D-OCT and optical palpation is achieved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Handheld probe for quantitative micro-elastography

Qi Fang, Brooke Krajancich, Lixin Chin, Renate Zilkens, Andrea Curatolo, Luke Frewer, James D. Anstie, Philip Wijesinghe, Colin Hall, Benjamin F. Dessauvagie, Bruce Latham, Christobel M. Saunders, and Brendan F. Kennedy
Biomed. Opt. Express 10(8) 4034-4049 (2019)

Motion correction of in vivo three-dimensional optical coherence tomography of human skin using a fiducial marker

Yih Miin Liew, Robert A. McLaughlin, Fiona M. Wood, and David D. Sampson
Biomed. Opt. Express 3(8) 1774-1786 (2012)

Finger-mounted quantitative micro-elastography

Rowan W. Sanderson, Andrea Curatolo, Philip Wijesinghe, Lixin Chin, and Brendan F. Kennedy
Biomed. Opt. Express 10(4) 1760-1773 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
    [Crossref]
  2. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
    [Crossref] [PubMed]
  3. R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
    [Crossref] [PubMed]
  4. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
    [Crossref] [PubMed]
  5. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
    [Crossref] [PubMed]
  6. W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
    [Crossref] [PubMed]
  7. C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
    [Crossref] [PubMed]
  8. S. Es’haghian, P. Gong, K. Kennedy, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. Kennedy, “In vivo optical elastography: Stress and strain imaging of human skin lesions,” Proc. SPIE 9327, 93270C (2015).
  9. S. Es’haghian, K. M. Kennedy, P. Gong, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “Optical palpation in vivo: imaging human skin lesions using mechanical contrast,” J. Biomed. Opt. 20(1), 016013 (2015).
    [Crossref] [PubMed]
  10. S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
    [Crossref] [PubMed]
  11. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
    [Crossref] [PubMed]
  12. K. Chino, R. Akagi, M. Dohi, S. Fukashiro, and H. Takahashi, “Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography,” PLoS One 7(9), e45764 (2012).
    [Crossref] [PubMed]
  13. S. Wojcinski, J. Dupont, W. Schmidt, M. Cassel, and P. Hillemanns, “Real-time ultrasound elastography in 180 axillary lymph nodes: elasticity distribution in healthy lymph nodes and prediction of breast cancer metastases,” BMC Med. Imaging 12(1), 35 (2012).
    [Crossref] [PubMed]
  14. A. Kuzmin, A. M. Zakrzewski, B. W. Anthony, and V. Lempitsky, “Multi-frame elastography using a handheld force-controlled ultrasound probe,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(8), 1486–1500 (2015).
    [Crossref] [PubMed]
  15. A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
    [Crossref]
  16. A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
    [Crossref]
  17. K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
    [Crossref] [PubMed]
  18. X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics 2(11), 643–655 (2009).
    [Crossref] [PubMed]
  19. W. M. Allen, P. Wijesinghe, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Optical palpation for the visualization of tumor in human breast tissue,” J. Biophotonics 0(0), e201800180 (2018).
    [Crossref] [PubMed]
  20. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
    [Crossref] [PubMed]
  21. B. Antony, M. D. Abràmoff, L. Tang, W. D. Ramdas, J. R. Vingerling, N. M. Jansonius, K. Lee, Y. H. Kwon, M. Sonka, and M. K. Garvin, “Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images,” Biomed. Opt. Express 2(8), 2403–2416 (2011).
    [Crossref] [PubMed]
  22. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in Ophthalmic Technologies XVII (International Society for Optics and Photonics, 2007), 6426, p. 642607.
  23. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [Crossref] [PubMed]
  24. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
    [Crossref] [PubMed]
  25. M. F. Kraus, J. J. Liu, J. Schottenhamml, C.-L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J. Schuman, J. S. Duker, J. G. Fujimoto, and J. Hornegger, “Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization,” Biomed. Opt. Express 5(8), 2591–2613 (2014).
    [Crossref] [PubMed]
  26. F. LaRocca, D. Nankivil, S. Farsiu, and J. A. Izatt, “Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system,” Biomed. Opt. Express 4(11), 2307–2321 (2013).
    [Crossref] [PubMed]
  27. Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Motion correction of in vivo three-dimensional optical coherence tomography of human skin using a fiducial marker,” Biomed. Opt. Express 3(8), 1774–1786 (2012).
    [Crossref] [PubMed]
  28. G. A. Holloway, C. H. Daly, D. Kennedy, and J. Chimoskey, “Effects of external pressure loading on human skin blood flow measured by 133Xe clearance,” J. Appl. Physiol. 40(4), 597–600 (1976).
    [Crossref] [PubMed]
  29. W. J. Choi, H. Wang, and R. K. Wang, “Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
    [Crossref] [PubMed]
  30. G. Pickering, D. Jourdan, A. Eschalier, and C. Dubray, “Impact of age, gender and cognitive functioning on pain perception,” Gerontology 48(2), 112–118 (2002).
    [Crossref] [PubMed]
  31. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
    [Crossref] [PubMed]
  32. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
    [Crossref] [PubMed]
  33. Thorlabs, “NRT series motorized translation stage user guide,” (2014).
  34. C. Boudoux, “Field curvature,” in Fundamentals of Biomedical Optics: From Light Interactions with Cells to Complex Imaging Systems, 1st ed. (Blurb, Incorporated, 2017), pp. 304–305.
  35. W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
    [Crossref] [PubMed]
  36. P. Wijesinghe, D. D. Sampson, and B. F. Kennedy, “Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor,” J. R. Soc. Interface 14(128), 20160878 (2017).
    [Crossref] [PubMed]
  37. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
    [Crossref] [PubMed]
  38. R. W. Kirk, B. F. Kennedy, D. D. Sampson, and R. A. McLaughlin, “Near video-rate optical coherence elastography by acceleration with a graphics processing unit,” J. Lit. Technol. 33(16), 3481–3485 (2015).
    [Crossref]

2018 (4)

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

W. M. Allen, P. Wijesinghe, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Optical palpation for the visualization of tumor in human breast tissue,” J. Biophotonics 0(0), e201800180 (2018).
[Crossref] [PubMed]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

2017 (3)

P. Wijesinghe, D. D. Sampson, and B. F. Kennedy, “Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor,” J. R. Soc. Interface 14(128), 20160878 (2017).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

2016 (1)

2015 (7)

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

S. Es’haghian, P. Gong, K. Kennedy, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. Kennedy, “In vivo optical elastography: Stress and strain imaging of human skin lesions,” Proc. SPIE 9327, 93270C (2015).

S. Es’haghian, K. M. Kennedy, P. Gong, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “Optical palpation in vivo: imaging human skin lesions using mechanical contrast,” J. Biomed. Opt. 20(1), 016013 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

A. Kuzmin, A. M. Zakrzewski, B. W. Anthony, and V. Lempitsky, “Multi-frame elastography using a handheld force-controlled ultrasound probe,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(8), 1486–1500 (2015).
[Crossref] [PubMed]

R. W. Kirk, B. F. Kennedy, D. D. Sampson, and R. A. McLaughlin, “Near video-rate optical coherence elastography by acceleration with a graphics processing unit,” J. Lit. Technol. 33(16), 3481–3485 (2015).
[Crossref]

2014 (4)

2013 (1)

2012 (7)

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Motion correction of in vivo three-dimensional optical coherence tomography of human skin using a fiducial marker,” Biomed. Opt. Express 3(8), 1774–1786 (2012).
[Crossref] [PubMed]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref] [PubMed]

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[Crossref] [PubMed]

K. Chino, R. Akagi, M. Dohi, S. Fukashiro, and H. Takahashi, “Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography,” PLoS One 7(9), e45764 (2012).
[Crossref] [PubMed]

S. Wojcinski, J. Dupont, W. Schmidt, M. Cassel, and P. Hillemanns, “Real-time ultrasound elastography in 180 axillary lymph nodes: elasticity distribution in healthy lymph nodes and prediction of breast cancer metastases,” BMC Med. Imaging 12(1), 35 (2012).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (2)

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics 2(11), 643–655 (2009).
[Crossref] [PubMed]

2008 (2)

2002 (1)

G. Pickering, D. Jourdan, A. Eschalier, and C. Dubray, “Impact of age, gender and cognitive functioning on pain perception,” Gerontology 48(2), 112–118 (2002).
[Crossref] [PubMed]

1976 (1)

G. A. Holloway, C. H. Daly, D. Kennedy, and J. Chimoskey, “Effects of external pressure loading on human skin blood flow measured by 133Xe clearance,” J. Appl. Physiol. 40(4), 597–600 (1976).
[Crossref] [PubMed]

Abràmoff, M. D.

Adie, S. G.

Aglyamov, S. R.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

Akagi, R.

K. Chino, R. Akagi, M. Dohi, S. Fukashiro, and H. Takahashi, “Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography,” PLoS One 7(9), e45764 (2012).
[Crossref] [PubMed]

Allen, W. M.

Anthony, B. W.

A. Kuzmin, A. M. Zakrzewski, B. W. Anthony, and V. Lempitsky, “Multi-frame elastography using a handheld force-controlled ultrasound probe,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(8), 1486–1500 (2015).
[Crossref] [PubMed]

Antony, B.

Baumann, B.

Bisaillon, C.-E.

Bock, R.

Boppart, S. A.

Branchini, L.

Budai, A.

Cable, A.

Campbell, G.

Cassel, M.

S. Wojcinski, J. Dupont, W. Schmidt, M. Cassel, and P. Hillemanns, “Real-time ultrasound elastography in 180 axillary lymph nodes: elasticity distribution in healthy lymph nodes and prediction of breast cancer metastases,” BMC Med. Imaging 12(1), 35 (2012).
[Crossref] [PubMed]

Chaney, E. J.

Chen, C.-L.

Chen, Y.

Chimoskey, J.

G. A. Holloway, C. H. Daly, D. Kennedy, and J. Chimoskey, “Effects of external pressure loading on human skin blood flow measured by 133Xe clearance,” J. Appl. Physiol. 40(4), 597–600 (1976).
[Crossref] [PubMed]

Chin, L.

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

Chin, S. L.

Chino, K.

K. Chino, R. Akagi, M. Dohi, S. Fukashiro, and H. Takahashi, “Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography,” PLoS One 7(9), e45764 (2012).
[Crossref] [PubMed]

Choi, W. J.

W. J. Choi, H. Wang, and R. K. Wang, “Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
[Crossref] [PubMed]

Crecea, V.

Curatolo, A.

Daly, C. H.

G. A. Holloway, C. H. Daly, D. Kennedy, and J. Chimoskey, “Effects of external pressure loading on human skin blood flow measured by 133Xe clearance,” J. Appl. Physiol. 40(4), 597–600 (1976).
[Crossref] [PubMed]

Dessauvagie, B. F.

W. M. Allen, P. Wijesinghe, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Optical palpation for the visualization of tumor in human breast tissue,” J. Biophotonics 0(0), e201800180 (2018).
[Crossref] [PubMed]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

Dohi, M.

K. Chino, R. Akagi, M. Dohi, S. Fukashiro, and H. Takahashi, “Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography,” PLoS One 7(9), e45764 (2012).
[Crossref] [PubMed]

Dubray, C.

G. Pickering, D. Jourdan, A. Eschalier, and C. Dubray, “Impact of age, gender and cognitive functioning on pain perception,” Gerontology 48(2), 112–118 (2002).
[Crossref] [PubMed]

Duker, J. S.

Dupont, J.

S. Wojcinski, J. Dupont, W. Schmidt, M. Cassel, and P. Hillemanns, “Real-time ultrasound elastography in 180 axillary lymph nodes: elasticity distribution in healthy lymph nodes and prediction of breast cancer metastases,” BMC Med. Imaging 12(1), 35 (2012).
[Crossref] [PubMed]

Emelianov, S. Y.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

Es’haghian, S.

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

S. Es’haghian, P. Gong, K. Kennedy, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. Kennedy, “In vivo optical elastography: Stress and strain imaging of human skin lesions,” Proc. SPIE 9327, 93270C (2015).

S. Es’haghian, K. M. Kennedy, P. Gong, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “Optical palpation in vivo: imaging human skin lesions using mechanical contrast,” J. Biomed. Opt. 20(1), 016013 (2015).
[Crossref] [PubMed]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref] [PubMed]

Eschalier, A.

G. Pickering, D. Jourdan, A. Eschalier, and C. Dubray, “Impact of age, gender and cognitive functioning on pain perception,” Gerontology 48(2), 112–118 (2002).
[Crossref] [PubMed]

Fang, Q.

Farsiu, S.

Fujimoto, J. G.

Fukashiro, S.

K. Chino, R. Akagi, M. Dohi, S. Fukashiro, and H. Takahashi, “Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography,” PLoS One 7(9), e45764 (2012).
[Crossref] [PubMed]

Garvin, M. K.

Gelikonov, G. V.

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

Gerstmann, D. K.

Gong, P.

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “Optical palpation in vivo: imaging human skin lesions using mechanical contrast,” J. Biomed. Opt. 20(1), 016013 (2015).
[Crossref] [PubMed]

S. Es’haghian, P. Gong, K. Kennedy, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. Kennedy, “In vivo optical elastography: Stress and strain imaging of human skin lesions,” Proc. SPIE 9327, 93270C (2015).

Gorczynska, I.

Graf, B. W.

X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics 2(11), 643–655 (2009).
[Crossref] [PubMed]

Guan, G.

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

Hillemanns, P.

S. Wojcinski, J. Dupont, W. Schmidt, M. Cassel, and P. Hillemanns, “Real-time ultrasound elastography in 180 axillary lymph nodes: elasticity distribution in healthy lymph nodes and prediction of breast cancer metastases,” BMC Med. Imaging 12(1), 35 (2012).
[Crossref] [PubMed]

Hillman, T. R.

Holloway, G. A.

G. A. Holloway, C. H. Daly, D. Kennedy, and J. Chimoskey, “Effects of external pressure loading on human skin blood flow measured by 133Xe clearance,” J. Appl. Physiol. 40(4), 597–600 (1976).
[Crossref] [PubMed]

Hornegger, J.

Hsu, Y.-T.

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

Huang, J. T.-J.

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

Huang, Z.

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

Ishikawa, H.

Izatt, J. A.

Jansonius, N. M.

Jiang, J.

Jourdan, D.

G. Pickering, D. Jourdan, A. Eschalier, and C. Dubray, “Impact of age, gender and cognitive functioning on pain perception,” Gerontology 48(2), 112–118 (2002).
[Crossref] [PubMed]

Kennedy, B.

S. Es’haghian, P. Gong, K. Kennedy, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. Kennedy, “In vivo optical elastography: Stress and strain imaging of human skin lesions,” Proc. SPIE 9327, 93270C (2015).

Kennedy, B. F.

W. M. Allen, P. Wijesinghe, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Optical palpation for the visualization of tumor in human breast tissue,” J. Biophotonics 0(0), e201800180 (2018).
[Crossref] [PubMed]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

P. Wijesinghe, D. D. Sampson, and B. F. Kennedy, “Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor,” J. R. Soc. Interface 14(128), 20160878 (2017).
[Crossref] [PubMed]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “Optical palpation in vivo: imaging human skin lesions using mechanical contrast,” J. Biomed. Opt. 20(1), 016013 (2015).
[Crossref] [PubMed]

R. W. Kirk, B. F. Kennedy, D. D. Sampson, and R. A. McLaughlin, “Near video-rate optical coherence elastography by acceleration with a graphics processing unit,” J. Lit. Technol. 33(16), 3481–3485 (2015).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

Kennedy, D.

G. A. Holloway, C. H. Daly, D. Kennedy, and J. Chimoskey, “Effects of external pressure loading on human skin blood flow measured by 133Xe clearance,” J. Appl. Physiol. 40(4), 597–600 (1976).
[Crossref] [PubMed]

Kennedy, K.

S. Es’haghian, P. Gong, K. Kennedy, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. Kennedy, “In vivo optical elastography: Stress and strain imaging of human skin lesions,” Proc. SPIE 9327, 93270C (2015).

Kennedy, K. M.

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “Optical palpation in vivo: imaging human skin lesions using mechanical contrast,” J. Biomed. Opt. 20(1), 016013 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref] [PubMed]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref] [PubMed]

Kirk, R. W.

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

R. W. Kirk, B. F. Kennedy, D. D. Sampson, and R. A. McLaughlin, “Near video-rate optical coherence elastography by acceleration with a graphics processing unit,” J. Lit. Technol. 33(16), 3481–3485 (2015).
[Crossref]

Ko, T.

Kraus, M. F.

Kuzmin, A.

A. Kuzmin, A. M. Zakrzewski, B. W. Anthony, and V. Lempitsky, “Multi-frame elastography using a handheld force-controlled ultrasound probe,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(8), 1486–1500 (2015).
[Crossref] [PubMed]

Kwon, Y. H.

Lamouche, G.

Lang, S.

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

Larin, K. V.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

LaRocca, F.

Latham, B.

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

W. M. Allen, P. Wijesinghe, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Optical palpation for the visualization of tumor in human breast tissue,” J. Biophotonics 0(0), e201800180 (2018).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

Lee, K.

Lempitsky, V.

A. Kuzmin, A. M. Zakrzewski, B. W. Anthony, and V. Lempitsky, “Multi-frame elastography using a handheld force-controlled ultrasound probe,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(8), 1486–1500 (2015).
[Crossref] [PubMed]

Li, C.

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

Li, J.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

Li, Q.

Liang, X.

Liew, Y. M.

Ling, Y.

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

Liu, J. J.

Manapuram, R. K.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

Mashiatulla, M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

Matveev, L. A.

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Matveyev, A. L.

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

Mayer, M. A.

McLaughlin, R. A.

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

S. Es’haghian, P. Gong, K. Kennedy, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. Kennedy, “In vivo optical elastography: Stress and strain imaging of human skin lesions,” Proc. SPIE 9327, 93270C (2015).

S. Es’haghian, K. M. Kennedy, P. Gong, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “Optical palpation in vivo: imaging human skin lesions using mechanical contrast,” J. Biomed. Opt. 20(1), 016013 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

R. W. Kirk, B. F. Kennedy, D. D. Sampson, and R. A. McLaughlin, “Near video-rate optical coherence elastography by acceleration with a graphics processing unit,” J. Lit. Technol. 33(16), 3481–3485 (2015).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref] [PubMed]

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Motion correction of in vivo three-dimensional optical coherence tomography of human skin using a fiducial marker,” Biomed. Opt. Express 3(8), 1774–1786 (2012).
[Crossref] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

Moiseev, A. A.

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

Monediado, F. M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

Nabi, G.

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

Nankivil, D.

Oldenburg, A. L.

Pazos, V.

Pickering, G.

G. Pickering, D. Jourdan, A. Eschalier, and C. Dubray, “Impact of age, gender and cognitive functioning on pain perception,” Gerontology 48(2), 112–118 (2002).
[Crossref] [PubMed]

Podoleanu, A. G.

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[Crossref] [PubMed]

Potsaid, B.

Quirk, B. C.

Ramdas, W. D.

Ronald, M.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

Sampson, D. D.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

P. Wijesinghe, D. D. Sampson, and B. F. Kennedy, “Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor,” J. R. Soc. Interface 14(128), 20160878 (2017).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

R. W. Kirk, B. F. Kennedy, D. D. Sampson, and R. A. McLaughlin, “Near video-rate optical coherence elastography by acceleration with a graphics processing unit,” J. Lit. Technol. 33(16), 3481–3485 (2015).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

S. Es’haghian, P. Gong, K. Kennedy, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. Kennedy, “In vivo optical elastography: Stress and strain imaging of human skin lesions,” Proc. SPIE 9327, 93270C (2015).

S. Es’haghian, K. M. Kennedy, P. Gong, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “Optical palpation in vivo: imaging human skin lesions using mechanical contrast,” J. Biomed. Opt. 20(1), 016013 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett. 39(10), 3014–3017 (2014).
[Crossref] [PubMed]

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Motion correction of in vivo three-dimensional optical coherence tomography of human skin using a fiducial marker,” Biomed. Opt. Express 3(8), 1774–1786 (2012).
[Crossref] [PubMed]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

Saunders, C. M.

W. M. Allen, P. Wijesinghe, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Optical palpation for the visualization of tumor in human breast tissue,” J. Biophotonics 0(0), e201800180 (2018).
[Crossref] [PubMed]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

Schmidt, W.

S. Wojcinski, J. Dupont, W. Schmidt, M. Cassel, and P. Hillemanns, “Real-time ultrasound elastography in 180 axillary lymph nodes: elasticity distribution in healthy lymph nodes and prediction of breast cancer metastases,” BMC Med. Imaging 12(1), 35 (2012).
[Crossref] [PubMed]

Schottenhamml, J.

Schuman, J.

Shabanov, D. V.

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Song, S.

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

Sonka, M.

Sovetsky, A. A.

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Srinivasan, V. J.

Takahashi, H.

K. Chino, R. Akagi, M. Dohi, S. Fukashiro, and H. Takahashi, “Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography,” PLoS One 7(9), e45764 (2012).
[Crossref] [PubMed]

Tang, L.

Tien, A.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

Vingerling, J. R.

Wang, H.

W. J. Choi, H. Wang, and R. K. Wang, “Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
[Crossref] [PubMed]

Wang, R. K.

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

W. J. Choi, H. Wang, and R. K. Wang, “Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
[Crossref] [PubMed]

Watts, L.

Wijesinghe, P.

W. M. Allen, P. Wijesinghe, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Optical palpation for the visualization of tumor in human breast tissue,” J. Biophotonics 0(0), e201800180 (2018).
[Crossref] [PubMed]

P. Wijesinghe, D. D. Sampson, and B. F. Kennedy, “Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor,” J. R. Soc. Interface 14(128), 20160878 (2017).
[Crossref] [PubMed]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

S. Es’haghian, P. Gong, K. Kennedy, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. Kennedy, “In vivo optical elastography: Stress and strain imaging of human skin lesions,” Proc. SPIE 9327, 93270C (2015).

Wojcinski, S.

S. Wojcinski, J. Dupont, W. Schmidt, M. Cassel, and P. Hillemanns, “Real-time ultrasound elastography in 180 axillary lymph nodes: elasticity distribution in healthy lymph nodes and prediction of breast cancer metastases,” BMC Med. Imaging 12(1), 35 (2012).
[Crossref] [PubMed]

Wollstein, G.

Wood, F. M.

Zaitsev, V. Y.

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

Zakrzewski, A. M.

A. Kuzmin, A. M. Zakrzewski, B. W. Anthony, and V. Lempitsky, “Multi-frame elastography using a handheld force-controlled ultrasound probe,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(8), 1486–1500 (2015).
[Crossref] [PubMed]

Zilkens, R.

Biomed. Opt. Express (10)

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref] [PubMed]

M. F. Kraus, J. J. Liu, J. Schottenhamml, C.-L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J. Schuman, J. S. Duker, J. G. Fujimoto, and J. Hornegger, “Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization,” Biomed. Opt. Express 5(8), 2591–2613 (2014).
[Crossref] [PubMed]

F. LaRocca, D. Nankivil, S. Farsiu, and J. A. Izatt, “Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system,” Biomed. Opt. Express 4(11), 2307–2321 (2013).
[Crossref] [PubMed]

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Motion correction of in vivo three-dimensional optical coherence tomography of human skin using a fiducial marker,” Biomed. Opt. Express 3(8), 1774–1786 (2012).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

B. Antony, M. D. Abràmoff, L. Tang, W. D. Ramdas, J. R. Vingerling, N. M. Jansonius, K. Lee, Y. H. Kwon, M. Sonka, and M. K. Garvin, “Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images,” Biomed. Opt. Express 2(8), 2403–2416 (2011).
[Crossref] [PubMed]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref] [PubMed]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

BMC Med. Imaging (1)

S. Wojcinski, J. Dupont, W. Schmidt, M. Cassel, and P. Hillemanns, “Real-time ultrasound elastography in 180 axillary lymph nodes: elasticity distribution in healthy lymph nodes and prediction of breast cancer metastases,” BMC Med. Imaging 12(1), 35 (2012).
[Crossref] [PubMed]

Cancer Lett. (1)

C. Li, G. Guan, Y. Ling, Y.-T. Hsu, S. Song, J. T.-J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref] [PubMed]

Cancer Res. (1)

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

Gerontology (1)

G. Pickering, D. Jourdan, A. Eschalier, and C. Dubray, “Impact of age, gender and cognitive functioning on pain perception,” Gerontology 48(2), 112–118 (2002).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. Kuzmin, A. M. Zakrzewski, B. W. Anthony, and V. Lempitsky, “Multi-frame elastography using a handheld force-controlled ultrasound probe,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(8), 1486–1500 (2015).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

G. A. Holloway, C. H. Daly, D. Kennedy, and J. Chimoskey, “Effects of external pressure loading on human skin blood flow measured by 133Xe clearance,” J. Appl. Physiol. 40(4), 597–600 (1976).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

W. J. Choi, H. Wang, and R. K. Wang, “Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “Optical palpation in vivo: imaging human skin lesions using mechanical contrast,” J. Biomed. Opt. 20(1), 016013 (2015).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 100501 (2012).
[Crossref] [PubMed]

J. Biophotonics (2)

X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics 2(11), 643–655 (2009).
[Crossref] [PubMed]

W. M. Allen, P. Wijesinghe, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Optical palpation for the visualization of tumor in human breast tissue,” J. Biophotonics 0(0), e201800180 (2018).
[Crossref] [PubMed]

J. Lit. Technol. (1)

R. W. Kirk, B. F. Kennedy, D. D. Sampson, and R. A. McLaughlin, “Near video-rate optical coherence elastography by acceleration with a graphics processing unit,” J. Lit. Technol. 33(16), 3481–3485 (2015).
[Crossref]

J. Microsc. (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

P. Wijesinghe, D. D. Sampson, and B. F. Kennedy, “Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor,” J. R. Soc. Interface 14(128), 20160878 (2017).
[Crossref] [PubMed]

Laser Phys. Lett. (2)

A. A. Sovetsky, A. L. Matveyev, L. A. Matveev, D. V. Shabanov, and V. Y. Zaitsev, “Manually-operated compressional optical coherence elastography with effective aperiodic averaging: demonstrations for corneal and cartilaginous tissues,” Laser Phys. Lett. 15(8), 085602 (2018).
[Crossref]

A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, G. V. Gelikonov, A. A. Moiseev, and V. Y. Zaitsev, “Vector method for strain estimation in phase-sensitive optical coherence elastography,” Laser Phys. Lett. 15(6), 065603 (2018).
[Crossref]

Nat. Photonics (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

PLoS One (1)

K. Chino, R. Akagi, M. Dohi, S. Fukashiro, and H. Takahashi, “Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography,” PLoS One 7(9), e45764 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

S. Es’haghian, P. Gong, K. Kennedy, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. Kennedy, “In vivo optical elastography: Stress and strain imaging of human skin lesions,” Proc. SPIE 9327, 93270C (2015).

Sci. Rep. (1)

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

Other (3)

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in Ophthalmic Technologies XVII (International Society for Optics and Photonics, 2007), 6426, p. 642607.

Thorlabs, “NRT series motorized translation stage user guide,” (2014).

C. Boudoux, “Field curvature,” in Fundamentals of Biomedical Optics: From Light Interactions with Cells to Complex Imaging Systems, 1st ed. (Blurb, Incorporated, 2017), pp. 304–305.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Handheld probe used for optical palpation. (a) Photograph of the probe, with overlaid illustration of the six degrees of freedom. The probe body has dimensions 158 × 39 × 107 mm (L × W × H). (b) Schematic layout of the optical path in the handheld probe. SLD, superluminescent diode. PC, polarization controller. FC, fiber coupler. BD, beam dump. S, spectrometer. MEMS, microelectromechanical mirror system. BS, beam splitter. CCD, charge-coupled device. PA, piezoelectric actuator. IW, glass imaging window. OL, objective lens.
Fig. 2
Fig. 2 Transparent silicone layer with embedded fiducial marker. (a) Top-down view photograph. (b) Schematic illustrating the structure and dimensions of the bi-layer.
Fig. 3
Fig. 3 Schematic of photograph capture with respect to B-scan acquisition.
Fig. 4
Fig. 4 Illustration demonstrating the motion correction technique. (a) B-scan 600 is selected to demonstrate transformations applied to motion-correct its position. (b) It is first transformed to its lateral position in Photograph 600, shown in green, then mapped its co-registered position in Photograph 1, shown in purple, using T600. (c) Finally, this is mapped back to its corresponding OCT coordinate location, now motion-corrected. Mapping all B-scans in this way, with their associated co-registration transformation ( T n ), generates the underlying en face OCT scatterplot shown. 2D interpolation and cropping of this scatterplot generates the final output motion-corrected en face OCT image in (d).
Fig. 5
Fig. 5 Testing the accuracy of photograph co-registration. (a) Photograph 250 (green) overlaid on Photograph 1 (purple). (b) Photograph 250 co-registered and overlaid on Photograph 1. The area highlighted in orange shows movement of Photograph 250 from its original to new location. Graphs showing (c) x-translation and (d) y-translation calculated by photograph co-registration, the corresponding least squares line of best fit (blue line) and expected positions based on stage translation speed (red line).
Fig. 6
Fig. 6 Structured phantom. Plots of hand motion in (a) x, (b) y, and (c) roll directions, as measured by co-registering digital photographs captured by the OCT probe during scanning. (d) En face OCT at ∼0.6 mm below the phantom surface, acquired with the handheld probe mounted on the benchtop, for a motion-artifact-free reference. Corresponding en face OCT image acquired in handheld (e) uncorrected, and (f) motion-corrected. (g) Uncorrected and (h) corresponding motion-corrected optical palpograms. The area outside of the fiducial marker has been masked out (in grey). σ ¯ is the average stress in kPa, and equivalently, pressure applied to the tissue during the scan. A, interpolation inaccuracy artifacts. D, field curvature artifact.
Fig. 7
Fig. 7 Human fingertip. (a) Uncorrected en face OCT image at ∼0.4 mm below skin surface and (b) corresponding motion-corrected OCT image. (c) Uncorrected and (d) corresponding motion corrected optical palpograms. The area outside of the fiducial marker has been masked out (in grey). σ ¯ is the average stress in kPa, and equivalently, pressure applied to the tissue during the scan. (e) Photograph of the fingertip with the fiducial marker in place. The inset highlights the region scanned by OCT. A, alignment artifact. C, crease in the skin on the fingertip. E. stress estimation artifacts.
Fig. 8
Fig. 8 Excised human breast tissue. (a) Specimen photograph with the fiducial marker in place. (b) Wide-field OCT image taken with a benchtop scanning head. The position of the fiducial marker has been overlaid (in orange). (c) Histology with the inset highlighting the region scanned by OCT. (d) Motion-corrected en face OCT image at ∼0.1 mm below the tissue surface (e) Motion-corrected optical palpogram. The area outside of the fiducial marker has been masked in grey. σ ¯ is the average stress in kPa, and equivalently, pressure applied to the tissue during the scan. A, interpolation inaccuracy artifact. D, field curvature artifact. E, stress estimation artifacts. F, fibrosis from previous surgery. N, nerve. P, adipose.

Metrics