Abstract

In this paper, measurements of the optical properties (diffuse reflectance, total and collimated transmittance) of brain tissues in healthy rats and rats with C6-glioma were performed in the spectral range from 350 to 1800 nm. Using these measurements, characteristic tissue optical parameters, such as absorption coefficient, scattering coefficient, reduced scattering coefficient, and scattering anisotropy factor were reconstructed. It was obtained that the 10-day development of glioma led to increase of absorption coefficient, which was associated with the water content elevation in the tumor. However, further development of the tumor (formation of the necrotic core) led to decrease in the water content. The dependence of the scattering properties on the different stages of model glioma development was more complex. Light penetration depth into the healthy and tumor brain was evaluated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of in vivo brain glioma in a mouse model using continuous-wave terahertz reflection imaging

Limin Wu, Degang Xu, Yuye Wang, Bin Liao, Zhinan Jiang, Lu Zhao, Zhongcheng Sun, Nan Wu, Tunan Chen, Hua Feng, and Jianquan Yao
Biomed. Opt. Express 10(8) 3953-3962 (2019)

Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress

Oren Shaul, Michal Fanrazi-Kahana, Omri Meitav, Gad A. Pinhasi, and David Abookasis
Appl. Opt. 56(32) 8880-8886 (2017)

Measurements of the optical properties of tissue in conjunction with photodynamic therapy

Annika M. K. Nilsson, Roger Berg, and Stefan Andersson-Engels
Appl. Opt. 34(21) 4609-4619 (1995)

References

  • View by:
  • |
  • |
  • |

  1. J. Raizer and A. Parsa, eds. Current Understanding and Treatment of Gliomas (Springer, 2015)
  2. P. Y. Wen and S. Kesari, “Malignant gliomas in adults,” N. Engl. J. Med. 359(5), 492–507 (2008).
    [Crossref]
  3. C.J. Fisher and L. Lilge, “Photodynamic therapy in the treatment of intracranial gliomas: a review of current practice and considerations for future clinical directions,” J. Innovative Opt. Health Sci. 08(01), 1530005 (2015).
    [Crossref]
  4. J. C. Buckner, P. D. Brown, B. P. O’Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, “Central nervous system tumors,” Mayo Clin. Proc. 82(10), 1271–1286 (2007).
    [Crossref]
  5. D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
    [Crossref]
  6. S. P. Ferris, J. W. Hofmann, D. A. Solomon, and A. Perry, “Characterization of gliomas: from morphology to molecules,” Virchows Arch. 471(2), 257–269 (2017).
    [Crossref]
  7. M. Wong, A. Kaye, and C. Hovens, “Targeting malignant glioma survival signalling to improve clinical outcomes,” J. Clin. Neurosci. 14(4), 301–308 (2007).
    [Crossref]
  8. M. Jansen, S. Yip, and D. N. Louis, “Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers,” Lancet Neurol. 9(7), 717–726 (2010).
    [Crossref]
  9. T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
    [Crossref]
  10. K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
    [Crossref]
  11. A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
    [Crossref]
  12. R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
    [Crossref]
  13. I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
    [Crossref]
  14. V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
    [Crossref]
  15. M. Sibai, C. Fisher, I. Veilleux, J.T. Elliott, F. Leblond, D.W. Roberts, and B.C. Wilson, “Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection,” J. Biomed. Opt. 22(7), 076007 (2017).
    [Crossref]
  16. M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
    [Crossref]
  17. P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
    [Crossref]
  18. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
    [Crossref]
  19. S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
    [Crossref]
  20. N. Honda, K. Ishii, Y. Kajimoto, T. Kuroiwa, and K. Awazu, “Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid,” J. Biomed. Opt. 23(07), 1 (2018).
    [Crossref]
  21. H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, and W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4(4), 221–227 (1989).
    [Crossref]
  22. S. J. Madsen, ed. Optical Methods and Instrumentation in Brain Imaging and Therapy (Springer, 2013).
  23. S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophotonics 11(12), e201800141 (2018).
    [Crossref]
  24. H.-J. Schwarzmaier, F. Eickmeyer, V. U. Fiedler, and F. Ulrich, “Basic principles of laser induced interstitial thermotherapy in brain tumors,” Medical Laser Application 17(2), 147–158 (2002).
    [Crossref]
  25. L. O. Svaasand and R. Ellingsen, “Optical properties of human brain,” Photochem. Photobiol. 38(3), 293–299 (1983).
    [Crossref]
  26. AANS, Glioblastoma Multiforme – Symptoms, Diagnosis and Treatment Options, https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Glioblastoma-Multiforme .
  27. A. Bradshaw, A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis, and T. Itinteang, “Cancer stem cell hierarchy in glioblastoma multiforme,” Front. Surg. 3, 21 (2016).
    [Crossref]
  28. Y. Rong, D. L. Durden, E. G. Van Meir, and D. J. Brat, “‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis,” J. Neuropathol. Exp. Neurol. 65(6), 529–539 (2006).
    [Crossref]
  29. K. Moore and L. Kim, “Primary brain tumours: characteristics, practical diagnostic and treatment approaches,” Glioblastoma: Molecular Mechanisms of Pathogenesis and Current Therapeutic Strategies, pp. 43–75 (Springer Science & Business Media, LLC, 2009).
  30. E. C. Holland, “Glioblastoma multiforme: the terminator,” Proc. Natl. Acad. Sci. U. S. A. 97(12), 6242–6244 (2000).
    [Crossref]
  31. I. R. Whittle, D. C. MacArthur, G. P. Malcom, M. Li, K. Washington, and J. W. Ironside, “Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumors,” J. Neuro-Oncol. 36(3), 231–242 (1998).
    [Crossref]
  32. B. Grobben, P. P. De Deyn, and H. Slegers, “Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion,” Cell Tissue Res. 310(3), 257–270 (2002).
    [Crossref]
  33. T. I. Khomyakova, O. V. Makarova, A. S. Khalansky, V. V. Fedoseeva, L. P. Mikhaylova, and Yu. N. Khomyakov, “Experimental models of human glioblastoma multiforme,” Clinical and Experimental Morphology 1(13), 60–69 (2015).
  34. S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth, C. Remy, and E. L. Barbier, “Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study,” NMR Biomed. 21(10), 1043–1056 (2008).
    [Crossref]
  35. S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy,” Phys. Med. Biol. 61(18), 6808–6820 (2016).
    [Crossref]
  36. S. Oh, S.-H. Kim, Y. B. Ji, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh, S.-G. Kang, Y.-M. Huh, J.-H. Son, and J.-S. Suh, “Study of freshly excised brain tissues using terahertz imaging,” Biomed. Opt. Express 5(8), 2837–2842 (2014).
    [Crossref]
  37. G. McIntyre, “Cell hydration as the primary factor in carcinogenesis: a unifying concept,” Med. Hypotheses 66(3), 518–526 (2006).
    [Crossref]
  38. T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
    [Crossref]
  39. C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
    [Crossref]
  40. E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
    [Crossref]
  41. International Guiding Principles for Biomedical Research Involving Animals, CIOMS&ICLAS, http://www.cioms.ch/index.php/12-newsflash/227-cioms-and-iclas-release-the-new-international-guiding-principles-for-biomedical-research-involving-animals .
  42. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350-2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
    [Crossref]
  43. A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Yu. Gorodkov, and V. V. Tuchin, “Optical properties of peritoneal biological tissues in the spectral range of 350-2500 nm,” Opt. Spectrosc. 120(1), 1–8 (2016).
    [Crossref]
  44. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [Crossref]
  45. L. Wang, S. L. Jacques, and L. Zheng, “MCML – Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref]
  46. W. H. Press, S. A. Tuekolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, 1992).
  47. N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
    [Crossref]
  48. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 065- to 25-µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
    [Crossref]
  49. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64(8), 1107–1110 (1974).
    [Crossref]
  50. S. Yu. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4(4), 490–503 (1999).
    [Crossref]
  51. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
    [Crossref]
  52. R. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatterers,” J. Mod. Opt. 47(1), 103–120 (2000).
    [Crossref]
  53. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  54. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Tissue Optical Properties,” Handbook of Biomedical Optics, pp. 67–100 (Taylor & Francis Group, LLC, CRC Press, 2011).
  55. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
    [Crossref]
  56. V. V. Tuchin, D. M. Zhestkov, A. N. Bashkatov, and E. A. Genina, “Theoretical study of immersion optical clearing of blood in vessels at local hemolysis,” Opt. Express 12(13), 2966–2971 (2004).
    [Crossref]
  57. T. W. Stief, “Singlet oxygen potentiates thrombolysis,” Clin. Appl. Thromb./Hemostasis 13(3), 259–278 (2007).
    [Crossref]
  58. S. J. Madsen, H. M. Gash, S. J. Hong, F. A. Uzal, Q. Peng, and H. Hirschberg, “Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption,” Lasers Surg. Med. 45(8), 524–532 (2013).
    [Crossref]
  59. O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
    [Crossref]
  60. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics (SPIE Press, 2015).

2019 (1)

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

2018 (4)

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

N. Honda, K. Ishii, Y. Kajimoto, T. Kuroiwa, and K. Awazu, “Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophotonics 11(12), e201800141 (2018).
[Crossref]

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

2017 (5)

O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
[Crossref]

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref]

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

M. Sibai, C. Fisher, I. Veilleux, J.T. Elliott, F. Leblond, D.W. Roberts, and B.C. Wilson, “Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection,” J. Biomed. Opt. 22(7), 076007 (2017).
[Crossref]

S. P. Ferris, J. W. Hofmann, D. A. Solomon, and A. Perry, “Characterization of gliomas: from morphology to molecules,” Virchows Arch. 471(2), 257–269 (2017).
[Crossref]

2016 (5)

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy,” Phys. Med. Biol. 61(18), 6808–6820 (2016).
[Crossref]

A. Bradshaw, A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis, and T. Itinteang, “Cancer stem cell hierarchy in glioblastoma multiforme,” Front. Surg. 3, 21 (2016).
[Crossref]

A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Yu. Gorodkov, and V. V. Tuchin, “Optical properties of peritoneal biological tissues in the spectral range of 350-2500 nm,” Opt. Spectrosc. 120(1), 1–8 (2016).
[Crossref]

2015 (3)

C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

T. I. Khomyakova, O. V. Makarova, A. S. Khalansky, V. V. Fedoseeva, L. P. Mikhaylova, and Yu. N. Khomyakov, “Experimental models of human glioblastoma multiforme,” Clinical and Experimental Morphology 1(13), 60–69 (2015).

C.J. Fisher and L. Lilge, “Photodynamic therapy in the treatment of intracranial gliomas: a review of current practice and considerations for future clinical directions,” J. Innovative Opt. Health Sci. 08(01), 1530005 (2015).
[Crossref]

2014 (4)

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

S. Oh, S.-H. Kim, Y. B. Ji, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh, S.-G. Kang, Y.-M. Huh, J.-H. Son, and J.-S. Suh, “Study of freshly excised brain tissues using terahertz imaging,” Biomed. Opt. Express 5(8), 2837–2842 (2014).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350-2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

2013 (1)

S. J. Madsen, H. M. Gash, S. J. Hong, F. A. Uzal, Q. Peng, and H. Hirschberg, “Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption,” Lasers Surg. Med. 45(8), 524–532 (2013).
[Crossref]

2012 (1)

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

2011 (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

2010 (1)

M. Jansen, S. Yip, and D. N. Louis, “Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers,” Lancet Neurol. 9(7), 717–726 (2010).
[Crossref]

2008 (2)

P. Y. Wen and S. Kesari, “Malignant gliomas in adults,” N. Engl. J. Med. 359(5), 492–507 (2008).
[Crossref]

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth, C. Remy, and E. L. Barbier, “Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study,” NMR Biomed. 21(10), 1043–1056 (2008).
[Crossref]

2007 (3)

J. C. Buckner, P. D. Brown, B. P. O’Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, “Central nervous system tumors,” Mayo Clin. Proc. 82(10), 1271–1286 (2007).
[Crossref]

M. Wong, A. Kaye, and C. Hovens, “Targeting malignant glioma survival signalling to improve clinical outcomes,” J. Clin. Neurosci. 14(4), 301–308 (2007).
[Crossref]

T. W. Stief, “Singlet oxygen potentiates thrombolysis,” Clin. Appl. Thromb./Hemostasis 13(3), 259–278 (2007).
[Crossref]

2006 (3)

S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
[Crossref]

G. McIntyre, “Cell hydration as the primary factor in carcinogenesis: a unifying concept,” Med. Hypotheses 66(3), 518–526 (2006).
[Crossref]

Y. Rong, D. L. Durden, E. G. Van Meir, and D. J. Brat, “‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis,” J. Neuropathol. Exp. Neurol. 65(6), 529–539 (2006).
[Crossref]

2005 (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

2004 (1)

2002 (4)

H.-J. Schwarzmaier, F. Eickmeyer, V. U. Fiedler, and F. Ulrich, “Basic principles of laser induced interstitial thermotherapy in brain tumors,” Medical Laser Application 17(2), 147–158 (2002).
[Crossref]

B. Grobben, P. P. De Deyn, and H. Slegers, “Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion,” Cell Tissue Res. 310(3), 257–270 (2002).
[Crossref]

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref]

2000 (2)

E. C. Holland, “Glioblastoma multiforme: the terminator,” Proc. Natl. Acad. Sci. U. S. A. 97(12), 6242–6244 (2000).
[Crossref]

R. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatterers,” J. Mod. Opt. 47(1), 103–120 (2000).
[Crossref]

1999 (1)

S. Yu. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4(4), 490–503 (1999).
[Crossref]

1998 (2)

J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
[Crossref]

I. R. Whittle, D. C. MacArthur, G. P. Malcom, M. Li, K. Washington, and J. W. Ironside, “Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumors,” J. Neuro-Oncol. 36(3), 231–242 (1998).
[Crossref]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML – Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref]

1993 (3)

1989 (1)

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, and W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4(4), 221–227 (1989).
[Crossref]

1983 (1)

L. O. Svaasand and R. Ellingsen, “Optical properties of human brain,” Photochem. Photobiol. 38(3), 293–299 (1983).
[Crossref]

1974 (1)

Aalders, M. C. G.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Aleksandrova, P. V.

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Awazu, K.

N. Honda, K. Ishii, Y. Kajimoto, T. Kuroiwa, and K. Awazu, “Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]

Barbier, E. L.

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth, C. Remy, and E. L. Barbier, “Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study,” NMR Biomed. 21(10), 1043–1056 (2008).
[Crossref]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Yu. Gorodkov, and V. V. Tuchin, “Optical properties of peritoneal biological tissues in the spectral range of 350-2500 nm,” Opt. Spectrosc. 120(1), 1–8 (2016).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350-2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

V. V. Tuchin, D. M. Zhestkov, A. N. Bashkatov, and E. A. Genina, “Theoretical study of immersion optical clearing of blood in vessels at local hemolysis,” Opt. Express 12(13), 2966–2971 (2004).
[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Tissue Optical Properties,” Handbook of Biomedical Optics, pp. 67–100 (Taylor & Francis Group, LLC, CRC Press, 2011).

Beaumont, M.

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth, C. Remy, and E. L. Barbier, “Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study,” NMR Biomed. 21(10), 1043–1056 (2008).
[Crossref]

Beshplav, Sh.-I. T.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Bosschaart, N.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Bradshaw, A.

A. Bradshaw, A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis, and T. Itinteang, “Cancer stem cell hierarchy in glioblastoma multiforme,” Front. Surg. 3, 21 (2016).
[Crossref]

Bragina, O. A.

O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
[Crossref]

Brat, D. J.

Y. Rong, D. L. Durden, E. G. Van Meir, and D. J. Brat, “‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis,” J. Neuropathol. Exp. Neurol. 65(6), 529–539 (2006).
[Crossref]

Brennan, C. W.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Brown, P. D.

J. C. Buckner, P. D. Brown, B. P. O’Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, “Central nervous system tumors,” Mayo Clin. Proc. 82(10), 1271–1286 (2007).
[Crossref]

Buckner, J. C.

J. C. Buckner, P. D. Brown, B. P. O’Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, “Central nervous system tumors,” Mayo Clin. Proc. 82(10), 1271–1286 (2007).
[Crossref]

Campos, C.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Cavenee, W. K.

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

Chaichana, K. L.

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref]

C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Chen, T.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Chen, T.-N.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Cherkasova, O. P.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Chernomyrdin, N. V.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Chylek, P.

Dallenbach, F. E.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Datsenko, O. I.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophotonics 11(12), e201800141 (2018).
[Crossref]

Davis, P. F.

A. Bradshaw, A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis, and T. Itinteang, “Cancer stem cell hierarchy in glioblastoma multiforme,” Front. Surg. 3, 21 (2016).
[Crossref]

De Deyn, P. P.

B. Grobben, P. P. De Deyn, and H. Slegers, “Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion,” Cell Tissue Res. 310(3), 257–270 (2002).
[Crossref]

de la Zerda, A.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Delpy, D. T.

P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
[Crossref]

Dolganova, I. N.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Dudenkova, V. V.

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Durden, D. L.

Y. Rong, D. L. Durden, E. G. Van Meir, and D. J. Brat, “‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis,” J. Neuropathol. Exp. Neurol. 65(6), 529–539 (2006).
[Crossref]

Edelman, G. J.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Eickmeyer, F.

H.-J. Schwarzmaier, F. Eickmeyer, V. U. Fiedler, and F. Ulrich, “Basic principles of laser induced interstitial thermotherapy in brain tumors,” Medical Laser Application 17(2), 147–158 (2002).
[Crossref]

Elagin, V. V.

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Ellingsen, R.

L. O. Svaasand and R. Ellingsen, “Optical properties of human brain,” Photochem. Photobiol. 38(3), 293–299 (1983).
[Crossref]

Elliott, J.T.

M. Sibai, C. Fisher, I. Veilleux, J.T. Elliott, F. Leblond, D.W. Roberts, and B.C. Wilson, “Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection,” J. Biomed. Opt. 22(7), 076007 (2017).
[Crossref]

Ellison, D. W.

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

Essenpreis, M.

P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
[Crossref]

Faber, D. J.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Farion, R.

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth, C. Remy, and E. L. Barbier, “Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study,” NMR Biomed. 21(10), 1043–1056 (2008).
[Crossref]

Fedoseeva, V. V.

T. I. Khomyakova, O. V. Makarova, A. S. Khalansky, V. V. Fedoseeva, L. P. Mikhaylova, and Yu. N. Khomyakov, “Experimental models of human glioblastoma multiforme,” Clinical and Experimental Morphology 1(13), 60–69 (2015).

Feng, H.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Ferris, S. P.

S. P. Ferris, J. W. Hofmann, D. A. Solomon, and A. Perry, “Characterization of gliomas: from morphology to molecules,” Virchows Arch. 471(2), 257–269 (2017).
[Crossref]

Fiedler, V. U.

H.-J. Schwarzmaier, F. Eickmeyer, V. U. Fiedler, and F. Ulrich, “Basic principles of laser induced interstitial thermotherapy in brain tumors,” Medical Laser Application 17(2), 147–158 (2002).
[Crossref]

Figarella-Branger, D.

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

Fischer, H.-P.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Fisher, C.

M. Sibai, C. Fisher, I. Veilleux, J.T. Elliott, F. Leblond, D.W. Roberts, and B.C. Wilson, “Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection,” J. Biomed. Opt. 22(7), 076007 (2017).
[Crossref]

Fisher, C.J.

C.J. Fisher and L. Lilge, “Photodynamic therapy in the treatment of intracranial gliomas: a review of current practice and considerations for future clinical directions,” J. Innovative Opt. Health Sci. 08(01), 1530005 (2015).
[Crossref]

Flannery, B. P.

W. H. Press, S. A. Tuekolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, 1992).

Fukushi, Y.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy,” Phys. Med. Biol. 61(18), 6808–6820 (2016).
[Crossref]

Galli, R.

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

Gambhir, S. S.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Garzon-Muvdi, T.

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref]

Gash, H. M.

S. J. Madsen, H. M. Gash, S. J. Hong, F. A. Uzal, Q. Peng, and H. Hirschberg, “Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption,” Lasers Surg. Med. 45(8), 524–532 (2013).
[Crossref]

Gavdush, A. A.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Gebhart, S. C.

S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
[Crossref]

Gekalyuk, A. S.

O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
[Crossref]

Gelikonov, G. V.

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Yu. Gorodkov, and V. V. Tuchin, “Optical properties of peritoneal biological tissues in the spectral range of 350-2500 nm,” Opt. Spectrosc. 120(1), 1–8 (2016).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350-2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

V. V. Tuchin, D. M. Zhestkov, A. N. Bashkatov, and E. A. Genina, “Theoretical study of immersion optical clearing of blood in vessels at local hemolysis,” Opt. Express 12(13), 2966–2971 (2004).
[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Tissue Optical Properties,” Handbook of Biomedical Optics, pp. 67–100 (Taylor & Francis Group, LLC, CRC Press, 2011).

Gladkova, N. D.

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Golovynska, I.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophotonics 11(12), e201800141 (2018).
[Crossref]

Golovynskyi, S.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophotonics 11(12), e201800141 (2018).
[Crossref]

Goltsov, A.

O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
[Crossref]

Gorodkov, S. Yu.

A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Yu. Gorodkov, and V. V. Tuchin, “Optical properties of peritoneal biological tissues in the spectral range of 350-2500 nm,” Opt. Spectrosc. 120(1), 1–8 (2016).
[Crossref]

Grobben, B.

B. Grobben, P. P. De Deyn, and H. Slegers, “Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion,” Cell Tissue Res. 310(3), 257–270 (2002).
[Crossref]

Gubarkova, E. V.

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Habte, F.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Hirschberg, H.

S. J. Madsen, H. M. Gash, S. J. Hong, F. A. Uzal, Q. Peng, and H. Hirschberg, “Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption,” Lasers Surg. Med. 45(8), 524–532 (2013).
[Crossref]

Höfler, H.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Hofmann, J. W.

S. P. Ferris, J. W. Hofmann, D. A. Solomon, and A. Perry, “Characterization of gliomas: from morphology to molecules,” Virchows Arch. 471(2), 257–269 (2017).
[Crossref]

Hogervorst, W.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, and W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4(4), 221–227 (1989).
[Crossref]

Holland, E. C.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

E. C. Holland, “Glioblastoma multiforme: the terminator,” Proc. Natl. Acad. Sci. U. S. A. 97(12), 6242–6244 (2000).
[Crossref]

Honda, N.

N. Honda, K. Ishii, Y. Kajimoto, T. Kuroiwa, and K. Awazu, “Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]

Hong, S. J.

S. J. Madsen, H. M. Gash, S. J. Hong, F. A. Uzal, Q. Peng, and H. Hirschberg, “Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption,” Lasers Surg. Med. 45(8), 524–532 (2013).
[Crossref]

Hovens, C.

M. Wong, A. Kaye, and C. Hovens, “Targeting malignant glioma survival signalling to improve clinical outcomes,” J. Clin. Neurosci. 14(4), 301–308 (2007).
[Crossref]

Huang, R.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Huh, Y.-M.

Ironside, J. W.

I. R. Whittle, D. C. MacArthur, G. P. Malcom, M. Li, K. Washington, and J. W. Ironside, “Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumors,” J. Neuro-Oncol. 36(3), 231–242 (1998).
[Crossref]

Ishii, K.

N. Honda, K. Ishii, Y. Kajimoto, T. Kuroiwa, and K. Awazu, “Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]

Itinteang, T.

A. Bradshaw, A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis, and T. Itinteang, “Cancer stem cell hierarchy in glioblastoma multiforme,” Front. Surg. 3, 21 (2016).
[Crossref]

Itsuji, T.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy,” Phys. Med. Biol. 61(18), 6808–6820 (2016).
[Crossref]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML – Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref]

Jansen, M.

M. Jansen, S. Yip, and D. N. Louis, “Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers,” Lancet Neurol. 9(7), 717–726 (2010).
[Crossref]

Jeong, K.

Ji, Y. B.

Jokerst, J. V.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Kajimoto, Y.

N. Honda, K. Ishii, Y. Kajimoto, T. Kuroiwa, and K. Awazu, “Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]

Kamphorst, W.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, and W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4(4), 221–227 (1989).
[Crossref]

Kang, S.-G.

Karabut, M. M.

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Karasik, V. E.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Karyakin, N. N.

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

Katyba, G. M.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Kaye, A.

M. Wong, A. Kaye, and C. Hovens, “Targeting malignant glioma survival signalling to improve clinical outcomes,” J. Clin. Neurosci. 14(4), 301–308 (2007).
[Crossref]

Kempen, P. J.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Kesari, S.

P. Y. Wen and S. Kesari, “Malignant gliomas in adults,” N. Engl. J. Med. 359(5), 492–507 (2008).
[Crossref]

Khalansky, A. S.

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

T. I. Khomyakova, O. V. Makarova, A. S. Khalansky, V. V. Fedoseeva, L. P. Mikhaylova, and Yu. N. Khomyakov, “Experimental models of human glioblastoma multiforme,” Clinical and Experimental Morphology 1(13), 60–69 (2015).

Khomyakov, Yu. N.

T. I. Khomyakova, O. V. Makarova, A. S. Khalansky, V. V. Fedoseeva, L. P. Mikhaylova, and Yu. N. Khomyakov, “Experimental models of human glioblastoma multiforme,” Clinical and Experimental Morphology 1(13), 60–69 (2015).

Khomyakova, T. I.

T. I. Khomyakova, O. V. Makarova, A. S. Khalansky, V. V. Fedoseeva, L. P. Mikhaylova, and Yu. N. Khomyakov, “Experimental models of human glioblastoma multiforme,” Clinical and Experimental Morphology 1(13), 60–69 (2015).

Kim, L.

K. Moore and L. Kim, “Primary brain tumours: characteristics, practical diagnostic and treatment approaches,” Glioblastoma: Molecular Mechanisms of Pathogenesis and Current Therapeutic Strategies, pp. 43–75 (Springer Science & Business Media, LLC, 2009).

Kim, S.-H.

Kircher, M.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Kirsch, M.

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

Kiseleva, E. B.

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Kleihues, P.

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

Koch, E.

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

Kochubei, V. I.

A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Yu. Gorodkov, and V. V. Tuchin, “Optical properties of peritoneal biological tissues in the spectral range of 350-2500 nm,” Opt. Spectrosc. 120(1), 1–8 (2016).
[Crossref]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350-2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Kolesnikova, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350-2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Komandin, G. A.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Kosyrkova, A. V.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Kou, L.

Kozintseva, M. D.

A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Yu. Gorodkov, and V. V. Tuchin, “Optical properties of peritoneal biological tissues in the spectral range of 350-2500 nm,” Opt. Spectrosc. 120(1), 1–8 (2016).
[Crossref]

Kravets, L. Ya.

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Kreipe, H.-H.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Kubota, O.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy,” Phys. Med. Biol. 61(18), 6808–6820 (2016).
[Crossref]

Kumar, G.

Kurlov, V. N.

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Kuroiwa, T.

N. Honda, K. Ishii, Y. Kajimoto, T. Kuroiwa, and K. Awazu, “Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]

Kut, C.

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref]

C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Kuznetsov, S. S.

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Labrie, D.

Leblond, F.

M. Sibai, C. Fisher, I. Veilleux, J.T. Elliott, F. Leblond, D.W. Roberts, and B.C. Wilson, “Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection,” J. Biomed. Opt. 22(7), 076007 (2017).
[Crossref]

Leipnitz, E.

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

Lemasson, B.

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth, C. Remy, and E. L. Barbier, “Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study,” NMR Biomed. 21(10), 1043–1056 (2008).
[Crossref]

Li, F.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Li, M.

I. R. Whittle, D. C. MacArthur, G. P. Malcom, M. Li, K. Washington, and J. W. Ironside, “Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumors,” J. Neuro-Oncol. 36(3), 231–242 (1998).
[Crossref]

Li, X.

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref]

C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Li, Z.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Li, Z.-R.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Lilge, L.

C.J. Fisher and L. Lilge, “Photodynamic therapy in the treatment of intracranial gliomas: a review of current practice and considerations for future clinical directions,” J. Innovative Opt. Health Sci. 08(01), 1530005 (2015).
[Crossref]

Lin, W.-C.

S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
[Crossref]

Liu, L.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophotonics 11(12), e201800141 (2018).
[Crossref]

Liu, Q.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Louis, D. N.

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

M. Jansen, S. Yip, and D. N. Louis, “Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers,” Lancet Neurol. 9(7), 717–726 (2010).
[Crossref]

MacArthur, D. C.

I. R. Whittle, D. C. MacArthur, G. P. Malcom, M. Li, K. Washington, and J. W. Ironside, “Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumors,” J. Neuro-Oncol. 36(3), 231–242 (1998).
[Crossref]

Madsen, S. J.

S. J. Madsen, H. M. Gash, S. J. Hong, F. A. Uzal, Q. Peng, and H. Hirschberg, “Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption,” Lasers Surg. Med. 45(8), 524–532 (2013).
[Crossref]

Mahadevan-Jansen, A.

S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
[Crossref]

Makarova, O. V.

T. I. Khomyakova, O. V. Makarova, A. S. Khalansky, V. V. Fedoseeva, L. P. Mikhaylova, and Yu. N. Khomyakov, “Experimental models of human glioblastoma multiforme,” Clinical and Experimental Morphology 1(13), 60–69 (2015).

Malakhov, K. M.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Malcom, G. P.

I. R. Whittle, D. C. MacArthur, G. P. Malcom, M. Li, K. Washington, and J. W. Ironside, “Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumors,” J. Neuro-Oncol. 36(3), 231–242 (1998).
[Crossref]

McIntyre, G.

G. McIntyre, “Cell hydration as the primary factor in carcinogenesis: a unifying concept,” Med. Hypotheses 66(3), 518–526 (2006).
[Crossref]

McVeigh, E. R.

C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Medyanik, I. A.

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Meinhardt, M.

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

Mellinghoff, I. K.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Meng, K.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Mengel, M.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Meyer, F. B.

J. C. Buckner, P. D. Brown, B. P. O’Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, “Central nervous system tumors,” Mayo Clin. Proc. 82(10), 1271–1286 (2007).
[Crossref]

Mikhaylova, L. P.

T. I. Khomyakova, O. V. Makarova, A. S. Khalansky, V. V. Fedoseeva, L. P. Mikhaylova, and Yu. N. Khomyakov, “Experimental models of human glioblastoma multiforme,” Clinical and Experimental Morphology 1(13), 60–69 (2015).

Mittra, E.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Moiseev, A. A.

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

Moore, K.

K. Moore and L. Kim, “Primary brain tumours: characteristics, practical diagnostic and treatment approaches,” Glioblastoma: Molecular Mechanisms of Pathogenesis and Current Therapeutic Strategies, pp. 43–75 (Springer Science & Business Media, LLC, 2009).

Müller-Hermelink, H. K.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Musina, G. R.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Nikitin, P. V.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

Nizze, H.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Noh, S. K.

O’Neill, B. P.

J. C. Buckner, P. D. Brown, B. P. O’Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, “Central nervous system tumors,” Mayo Clin. Proc. 82(10), 1271–1286 (2007).
[Crossref]

Oh, S.

Ohgaki, H.

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

Ohulchanskyy, T. Y.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophotonics 11(12), e201800141 (2018).
[Crossref]

Ouchi, T.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy,” Phys. Med. Biol. 61(18), 6808–6820 (2016).
[Crossref]

Palmer, K. F.

Park, D. W.

Park, Y.

Pavlova, N. P.

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Peng, L.

A. Bradshaw, A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis, and T. Itinteang, “Cancer stem cell hierarchy in glioblastoma multiforme,” Front. Surg. 3, 21 (2016).
[Crossref]

Peng, Q.

S. J. Madsen, H. M. Gash, S. J. Hong, F. A. Uzal, Q. Peng, and H. Hirschberg, “Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption,” Lasers Surg. Med. 45(8), 524–532 (2013).
[Crossref]

Perry, A.

S. P. Ferris, J. W. Hofmann, D. A. Solomon, and A. Perry, “Characterization of gliomas: from morphology to molecules,” Virchows Arch. 471(2), 257–269 (2017).
[Crossref]

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

Pfeifer, U.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Pitter, K.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Potapov, A. A.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Prahl, S. A.

Press, W. H.

W. H. Press, S. A. Tuekolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, 1992).

Qu, J.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophotonics 11(12), e201800141 (2018).
[Crossref]

Quiñones-Hinojosa, A.

C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Rafailov, E. U.

O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
[Crossref]

Raza, S. M.

C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Reifenberger, G.

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

Remy, C.

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth, C. Remy, and E. L. Barbier, “Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study,” NMR Biomed. 21(10), 1043–1056 (2008).
[Crossref]

Reshetov, I. V.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Roberts, D.W.

M. Sibai, C. Fisher, I. Veilleux, J.T. Elliott, F. Leblond, D.W. Roberts, and B.C. Wilson, “Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection,” J. Biomed. Opt. 22(7), 076007 (2017).
[Crossref]

Rodriguez, F. J.

C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Rong, Y.

Y. Rong, D. L. Durden, E. G. Van Meir, and D. J. Brat, “‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis,” J. Neuropathol. Exp. Neurol. 65(6), 529–539 (2006).
[Crossref]

Rubtsov, V. S.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350-2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Rüdiger, T.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Saranceva, E. I.

O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
[Crossref]

Schackert, G.

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

Schmitt, J. M.

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref]

Schwarzmaier, H.-J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref]

H.-J. Schwarzmaier, F. Eickmeyer, V. U. Fiedler, and F. Ulrich, “Basic principles of laser induced interstitial thermotherapy in brain tumors,” Medical Laser Application 17(2), 147–158 (2002).
[Crossref]

Segebarth, C.

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth, C. Remy, and E. L. Barbier, “Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study,” NMR Biomed. 21(10), 1043–1056 (2008).
[Crossref]

Semyachkina-Glushkovskaya, O. V.

O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
[Crossref]

Shchyogolev, S. Yu.

S. Yu. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4(4), 490–503 (1999).
[Crossref]

Sibai, M.

M. Sibai, C. Fisher, I. Veilleux, J.T. Elliott, F. Leblond, D.W. Roberts, and B.C. Wilson, “Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection,” J. Biomed. Opt. 22(7), 076007 (2017).
[Crossref]

Sinclair, R.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Slegers, H.

B. Grobben, P. P. De Deyn, and H. Slegers, “Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion,” Cell Tissue Res. 310(3), 257–270 (2002).
[Crossref]

Snopova, L. B.

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

Sokolovski, S. G.

O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
[Crossref]

Solomon, D. A.

S. P. Ferris, J. W. Hofmann, D. A. Solomon, and A. Perry, “Characterization of gliomas: from morphology to molecules,” Virchows Arch. 471(2), 257–269 (2017).
[Crossref]

Son, J.-H.

Stein, H.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Steiner, G.

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

Stepanova, L. I.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophotonics 11(12), e201800141 (2018).
[Crossref]

Sterenborg, H. J. C. M.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, and W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4(4), 221–227 (1989).
[Crossref]

Stief, T. W.

T. W. Stief, “Singlet oxygen potentiates thrombolysis,” Clin. Appl. Thromb./Hemostasis 13(3), 259–278 (2007).
[Crossref]

Suh, J.-S.

Svaasand, L. O.

L. O. Svaasand and R. Ellingsen, “Optical properties of human brain,” Photochem. Photobiol. 38(3), 293–299 (1983).
[Crossref]

Tan, S. T.

A. Bradshaw, A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis, and T. Itinteang, “Cancer stem cell hierarchy in glioblastoma multiforme,” Front. Surg. 3, 21 (2016).
[Crossref]

Temme, A.

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

Timofeeva, L. B.

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Tuchin, V. V.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
[Crossref]

A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Yu. Gorodkov, and V. V. Tuchin, “Optical properties of peritoneal biological tissues in the spectral range of 350-2500 nm,” Opt. Spectrosc. 120(1), 1–8 (2016).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350-2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

V. V. Tuchin, D. M. Zhestkov, A. N. Bashkatov, and E. A. Genina, “Theoretical study of immersion optical clearing of blood in vessels at local hemolysis,” Opt. Express 12(13), 2966–2971 (2004).
[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Tissue Optical Properties,” Handbook of Biomedical Optics, pp. 67–100 (Taylor & Francis Group, LLC, CRC Press, 2011).

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics (SPIE Press, 2015).

Tuekolsky, S. A.

W. H. Press, S. A. Tuekolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, 1992).

Uckermann, O.

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

Uhm, J. H.

J. C. Buckner, P. D. Brown, B. P. O’Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, “Central nervous system tumors,” Mayo Clin. Proc. 82(10), 1271–1286 (2007).
[Crossref]

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref]

H.-J. Schwarzmaier, F. Eickmeyer, V. U. Fiedler, and F. Ulrich, “Basic principles of laser induced interstitial thermotherapy in brain tumors,” Medical Laser Application 17(2), 147–158 (2002).
[Crossref]

Uzal, F. A.

S. J. Madsen, H. M. Gash, S. J. Hong, F. A. Uzal, Q. Peng, and H. Hirschberg, “Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption,” Lasers Surg. Med. 45(8), 524–532 (2013).
[Crossref]

Valable, S.

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth, C. Remy, and E. L. Barbier, “Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study,” NMR Biomed. 21(10), 1043–1056 (2008).
[Crossref]

van der Zee, P.

P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
[Crossref]

van Gemert, M. J. C.

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
[Crossref]

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, and W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4(4), 221–227 (1989).
[Crossref]

van Leeuwen, T. G.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Van Meir, E. G.

Y. Rong, D. L. Durden, E. G. Van Meir, and D. J. Brat, “‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis,” J. Neuropathol. Exp. Neurol. 65(6), 529–539 (2006).
[Crossref]

Veilleux, I.

M. Sibai, C. Fisher, I. Veilleux, J.T. Elliott, F. Leblond, D.W. Roberts, and B.C. Wilson, “Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection,” J. Biomed. Opt. 22(7), 076007 (2017).
[Crossref]

Vettering, W. T.

W. H. Press, S. A. Tuekolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, 1992).

Vitkin, I. A.

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

von Deimling, A.

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

von Wasielewski, R.

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML – Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref]

Wang, R. K.

R. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatterers,” J. Mod. Opt. 47(1), 103–120 (2000).
[Crossref]

Washington, K.

I. R. Whittle, D. C. MacArthur, G. P. Malcom, M. Li, K. Washington, and J. W. Ironside, “Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumors,” J. Neuro-Oncol. 36(3), 231–242 (1998).
[Crossref]

Welch, A. J.

Wen, P. Y.

P. Y. Wen and S. Kesari, “Malignant gliomas in adults,” N. Engl. J. Med. 359(5), 492–507 (2008).
[Crossref]

Wetmore, C. J.

J. C. Buckner, P. D. Brown, B. P. O’Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, “Central nervous system tumors,” Mayo Clin. Proc. 82(10), 1271–1286 (2007).
[Crossref]

Whittle, I. R.

I. R. Whittle, D. C. MacArthur, G. P. Malcom, M. Li, K. Washington, and J. W. Ironside, “Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumors,” J. Neuro-Oncol. 36(3), 231–242 (1998).
[Crossref]

Wickremsekera, A.

A. Bradshaw, A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis, and T. Itinteang, “Cancer stem cell hierarchy in glioblastoma multiforme,” Front. Surg. 3, 21 (2016).
[Crossref]

Wiestler, O. D.

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

Williams, D.

Wilson, B.C.

M. Sibai, C. Fisher, I. Veilleux, J.T. Elliott, F. Leblond, D.W. Roberts, and B.C. Wilson, “Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection,” J. Biomed. Opt. 22(7), 076007 (2017).
[Crossref]

Wolbers, J. G.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, and W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4(4), 221–227 (1989).
[Crossref]

Wong, M.

M. Wong, A. Kaye, and C. Hovens, “Targeting malignant glioma survival signalling to improve clinical outcomes,” J. Clin. Neurosci. 14(4), 301–308 (2007).
[Crossref]

Yamaguchi, S.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy,” Phys. Med. Biol. 61(18), 6808–6820 (2016).
[Crossref]

Yamamoto, S.

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy,” Phys. Med. Biol. 61(18), 6808–6820 (2016).
[Crossref]

Yang, J.

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref]

Yashin, K. S.

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Ye, X.

C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Yip, S.

M. Jansen, S. Yip, and D. N. Louis, “Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers,” Lancet Neurol. 9(7), 717–726 (2010).
[Crossref]

Zavaleta, C. L.

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

Zaytsev, K. I.

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Zhao, J.-H.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML – Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref]

Zhestkov, D. M.

Zhong, S.-C.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Zhu, L.-Q.

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

Acta Neuropathol. (1)

D. N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. K. Cavenee, H. Ohgaki, O. D. Wiestler, P. Kleihues, and D. W. Ellison, “The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary,” Acta Neuropathol. 131(6), 803–820 (2016).
[Crossref]

Am. J. Surg. Pathol. (1)

T. Rüdiger, H. Höfler, H.-H. Kreipe, H. Nizze, U. Pfeifer, H. Stein, F. E. Dallenbach, H.-P. Fischer, M. Mengel, R. von Wasielewski, and H. K. Müller-Hermelink, “Quality assurance in immunohistochemistry: results of an interlaboratory trial involving 172 pathologists,” Am. J. Surg. Pathol. 26(7), 873–882 (2002).
[Crossref]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Cell Tissue Res. (1)

B. Grobben, P. P. De Deyn, and H. Slegers, “Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion,” Cell Tissue Res. 310(3), 257–270 (2002).
[Crossref]

Clin. Appl. Thromb./Hemostasis (1)

T. W. Stief, “Singlet oxygen potentiates thrombolysis,” Clin. Appl. Thromb./Hemostasis 13(3), 259–278 (2007).
[Crossref]

Clinical and Experimental Morphology (1)

T. I. Khomyakova, O. V. Makarova, A. S. Khalansky, V. V. Fedoseeva, L. P. Mikhaylova, and Yu. N. Khomyakov, “Experimental models of human glioblastoma multiforme,” Clinical and Experimental Morphology 1(13), 60–69 (2015).

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML – Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref]

Front. Surg. (1)

A. Bradshaw, A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis, and T. Itinteang, “Cancer stem cell hierarchy in glioblastoma multiforme,” Front. Surg. 3, 21 (2016).
[Crossref]

Future Oncol. (1)

T. Garzon-Muvdi, C. Kut, X. Li, and K. L. Chaichana, “Intraoperative imaging techniques for glioma surgery,” Future Oncol. 13(19), 1731–1745 (2017).
[Crossref]

J. Biomed. Opt. (6)

S. Yu. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4(4), 490–503 (1999).
[Crossref]

N. Honda, K. Ishii, Y. Kajimoto, T. Kuroiwa, and K. Awazu, “Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid,” J. Biomed. Opt. 23(07), 1 (2018).
[Crossref]

K. Meng, T.-N. Chen, T. Chen, L.-Q. Zhu, Q. Liu, Z. Li, F. Li, S.-C. Zhong, Z.-R. Li, H. Feng, and J.-H. Zhao, “Terahertz pulsed spectroscopy of paraffin-embedded brain glioma,” J. Biomed. Opt. 19(7), 077001 (2014).
[Crossref]

A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, “Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis,” J. Biomed. Opt. 24(02), 1 (2019).
[Crossref]

I. N. Dolganova, N. V. Chernomyrdin, P. V. Aleksandrova, Sh.-I. T. Beshplav, A. A. Potapov, I. V. Reshetov, V. N. Kurlov, V. V. Tuchin, and K. I. Zaytsev, “Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

M. Sibai, C. Fisher, I. Veilleux, J.T. Elliott, F. Leblond, D.W. Roberts, and B.C. Wilson, “Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection,” J. Biomed. Opt. 22(7), 076007 (2017).
[Crossref]

J. Biophotonics (2)

R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, “Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples,” J. Biophotonics 10(3), 404–414 (2017).
[Crossref]

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications,” J. Biophotonics 11(12), e201800141 (2018).
[Crossref]

J. Clin. Neurosci. (1)

M. Wong, A. Kaye, and C. Hovens, “Targeting malignant glioma survival signalling to improve clinical outcomes,” J. Clin. Neurosci. 14(4), 301–308 (2007).
[Crossref]

J. Innovative Opt. Health Sci. (2)

C.J. Fisher and L. Lilge, “Photodynamic therapy in the treatment of intracranial gliomas: a review of current practice and considerations for future clinical directions,” J. Innovative Opt. Health Sci. 08(01), 1530005 (2015).
[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

J. Mod. Opt. (1)

R. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatterers,” J. Mod. Opt. 47(1), 103–120 (2000).
[Crossref]

J. Neuro-Oncol. (1)

I. R. Whittle, D. C. MacArthur, G. P. Malcom, M. Li, K. Washington, and J. W. Ironside, “Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumors,” J. Neuro-Oncol. 36(3), 231–242 (1998).
[Crossref]

J. Neuropathol. Exp. Neurol. (1)

Y. Rong, D. L. Durden, E. G. Van Meir, and D. J. Brat, “‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis,” J. Neuropathol. Exp. Neurol. 65(6), 529–539 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D: Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Lancet Neurol. (1)

M. Jansen, S. Yip, and D. N. Louis, “Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers,” Lancet Neurol. 9(7), 717–726 (2010).
[Crossref]

Lasers Med. Sci. (2)

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, and W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4(4), 221–227 (1989).
[Crossref]

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Lasers Surg. Med. (1)

S. J. Madsen, H. M. Gash, S. J. Hong, F. A. Uzal, Q. Peng, and H. Hirschberg, “Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption,” Lasers Surg. Med. 45(8), 524–532 (2013).
[Crossref]

Mayo Clin. Proc. (1)

J. C. Buckner, P. D. Brown, B. P. O’Neill, F. B. Meyer, C. J. Wetmore, and J. H. Uhm, “Central nervous system tumors,” Mayo Clin. Proc. 82(10), 1271–1286 (2007).
[Crossref]

Med. Hypotheses (1)

G. McIntyre, “Cell hydration as the primary factor in carcinogenesis: a unifying concept,” Med. Hypotheses 66(3), 518–526 (2006).
[Crossref]

Medical Laser Application (1)

H.-J. Schwarzmaier, F. Eickmeyer, V. U. Fiedler, and F. Ulrich, “Basic principles of laser induced interstitial thermotherapy in brain tumors,” Medical Laser Application 17(2), 147–158 (2002).
[Crossref]

N. Engl. J. Med. (1)

P. Y. Wen and S. Kesari, “Malignant gliomas in adults,” N. Engl. J. Med. 359(5), 492–507 (2008).
[Crossref]

Nat. Med. (1)

M. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref]

NMR Biomed. (1)

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth, C. Remy, and E. L. Barbier, “Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study,” NMR Biomed. 21(10), 1043–1056 (2008).
[Crossref]

Opt. Express (1)

Opt. Spectrosc. (1)

A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Yu. Gorodkov, and V. V. Tuchin, “Optical properties of peritoneal biological tissues in the spectral range of 350-2500 nm,” Opt. Spectrosc. 120(1), 1–8 (2016).
[Crossref]

Photochem. Photobiol. (1)

L. O. Svaasand and R. Ellingsen, “Optical properties of human brain,” Photochem. Photobiol. 38(3), 293–299 (1983).
[Crossref]

Phys. Med. Biol. (3)

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[Crossref]

S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling,” Phys. Med. Biol. 51(8), 2011–2027 (2006).
[Crossref]

S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, and S. Yamamoto, “Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy,” Phys. Med. Biol. 61(18), 6808–6820 (2016).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

E. C. Holland, “Glioblastoma multiforme: the terminator,” Proc. Natl. Acad. Sci. U. S. A. 97(12), 6242–6244 (2000).
[Crossref]

Proc. SPIE (1)

P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, 454–465 (1993).
[Crossref]

Prog. Quantum Electron. (1)

O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekalyuk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 55, 112–128 (2017).
[Crossref]

Quantum Electron. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350-2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Sci. Transl. Med. (1)

C. Kut, K. L. Chaichana, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Sovrem. Tehnol. Med. (2)

E. B. Kiseleva, K. S. Yashin, A. A. Moiseev, L. B. Snopova, G. V. Gelikonov, I. A. Medyanik, L. Ya. Kravets, N. N. Karyakin, I. A. Vitkin, and N. D. Gladkova, “Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study,” Sovrem. Tehnol. Med. 10(1), 6–13 (2018).
[Crossref]

V. V. Dudenkova, K. S. Yashin, E. B. Kiseleva, S. S. Kuznetsov, L. B. Timofeeva, A. S. Khalansky, V. V. Elagin, E. V. Gubarkova, M. M. Karabut, N. P. Pavlova, I. A. Medyanik, L. Ya. Kravets, and N. D. Gladkova, “Multiphoton tomography and cross-polarization optical coherence tomography for diagnosing brain gliomas: pilot study,” Sovrem. Tehnol. Med. 8(4), 64–75 (2016).
[Crossref]

Virchows Arch. (1)

S. P. Ferris, J. W. Hofmann, D. A. Solomon, and A. Perry, “Characterization of gliomas: from morphology to molecules,” Virchows Arch. 471(2), 257–269 (2017).
[Crossref]

Other (8)

J. Raizer and A. Parsa, eds. Current Understanding and Treatment of Gliomas (Springer, 2015)

K. Moore and L. Kim, “Primary brain tumours: characteristics, practical diagnostic and treatment approaches,” Glioblastoma: Molecular Mechanisms of Pathogenesis and Current Therapeutic Strategies, pp. 43–75 (Springer Science & Business Media, LLC, 2009).

S. J. Madsen, ed. Optical Methods and Instrumentation in Brain Imaging and Therapy (Springer, 2013).

AANS, Glioblastoma Multiforme – Symptoms, Diagnosis and Treatment Options, https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Glioblastoma-Multiforme .

International Guiding Principles for Biomedical Research Involving Animals, CIOMS&ICLAS, http://www.cioms.ch/index.php/12-newsflash/227-cioms-and-iclas-release-the-new-international-guiding-principles-for-biomedical-research-involving-animals .

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Tissue Optical Properties,” Handbook of Biomedical Optics, pp. 67–100 (Taylor & Francis Group, LLC, CRC Press, 2011).

W. H. Press, S. A. Tuekolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, 1992).

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics (SPIE Press, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Device for the collimated transmittance measurement: 1 is the plate; 2 is the pinhole’s holder (6 pcs.); 3 is the pinhole with a diameter 2 mm (6 pcs.); 4 is the plate for fixation of the samples; 5 is the sample clip (2 pcs.), 6 is the tissue sample sandwiched between two glass slides, 7 is the measuring channel, 8 is the reference channel.
Fig. 2.
Fig. 2. The flowchart of the IMC method used for determination of the tissue optical properties.
Fig. 3.
Fig. 3. The wavelength dependences of the absorption coefficient µa (a), scattering coefficient µs (b), reduced scattering coefficient ${{\mu ^{\prime}_\textrm{s}}}$ (c), and scattering anisotropy factor g (d) of the rat healthy brain tissues measured in this paper and presented in Refs. [1720]. In (b-d) approximations of experimental data using presented formulas are shown.
Fig. 4.
Fig. 4. The wavelength dependences of the absorption coefficient µa (a), scattering coefficient µs (b), reduced scattering coefficient ${{\mu ^{\prime}_\textrm{s}}}$ (c), and scattering anisotropy factor g (d) of the healthy rat brain tissues and 7-10-30 days after GCs implantation. In (b-d) approximations of experimental data using presented formulas are showed.
Fig. 5.
Fig. 5. Fraction of total scattering attributed to Mie scattering. The fraction was calculated using the data presented in Fig. 4(b).
Fig. 6.
Fig. 6. The wavelength dependences of the absorption coefficient µa (a), scattering coefficient µs (b), reduced scattering coefficient ${{\mu ^{\prime}_\textrm{s}}}$ (c), and scattering anisotropy factor g (d) of the 10- and 30-day C6-glioma measured in this paper and presented in Refs. [1820,24].
Fig. 7.
Fig. 7. The light penetration depth into the healthy brain tissues and 7-10-30 days after GCs implantation. The solid line corresponds to the averaged experimental data and the vertical lines show the standard deviation values.
Fig. 8.
Fig. 8. Morphological and behaviors signs of glioma progression in rats: A-D – histological imaging of the rat brain before, 7-10-30 days after GCs implantation (magnification 246.4); E-G – macro-photography of the rat brain 10-30 days after GCs implantation vs. the healthy rat brain, respectively; H-K – behavior tests, including: (H) Ledged tapered beam; (I) Cylinder test; (J) Hanging by the tail; and (K) the Reaching Chamber Pellet test, respectively. Results are presented as mean ± sd (n = 7 in each group), P ≤ 0.05: *vs. the control group; • vs. rats 7 days after GCs implantation; Δ - 10 days after GCs implantation. P1, P2, and P3 groups correspond to the rats with 7-, 10-, and 30-day GCs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F ( μ a , μ s , g ) = ( R d exp R d calc ( μ a , μ s , g ) ) 2 + ( T c exp T c calc ( μ a , μ s , g ) ) 2 + ( T t exp T t calc ( μ a , μ s , g ) ) 2 ,
μ s μ a + μ s = { 1 ( 1 4 R d T t 1 T t ) 2 , i f R d 1 T t < 0.1 1 4 9 ( 1 R d T t 1 T t ) 2 , i f R d 1 T t 0.1
( μ a + μ s ) × l = { ln T t ln ( 0.05 ) ln R d , i f R d 0.1 2 1 + 5 ( R d + T t ) , i f R d > 0.1
μ t = ln ( T c ) / ln ( T c ) l l

Metrics