Abstract

Polarized reflectance from articular cartilage involves light scattering dependent on surface features, sub-surface optical properties, and collagen birefringence. To understand how surface roughness, zonal collagen microstructure, and chondrocyte organization contribute to polarized reflectance signals, experiments were conducted on bovine cartilage explants and osteochondral cores to compare polarized reflectance texture with split lines and relate these signals to cartilage zonal features and chondrocyte distribution. Texture parameter sensitivity to articular surface damage was determined from polarized reflectance maps and optimized to detect surface damage. Results indicate that polarized reflectance texture predominantly derives from the superficial zone collagen network, while the parameter average value also depends on surface roughness and total cartilage thickness.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal nonlinear optical microscopy reveals critical role of kinesin-1 in cartilage development

Sicong He, Wenqian Xue, Zhigang Duan, Qiqi Sun, Xuesong Li, Huiyan Gan, Jiandong Huang, and Jianan Y. Qu
Biomed. Opt. Express 8(3) 1771-1782 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. Klika, E. A. Gaffney, Y. C. Chen, and C. P. Brown, “An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology,” J. Mech. Behav. Biomed. Mater. 62, 139–157 (2016).
    [Crossref]
  2. R. M. Aspden and D. W. L. Hukins, “Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function,” Proc. R. Soc. Lond. B 212(1188), 299–304 (1981).
    [Crossref]
  3. M. J. Askew and V. C. Mow, “The Biomechanical Function of the Collagen Fibril Ultrastructure of Articular Cartilage,” J. Biomech. Eng. 100(3), 105–115 (1978).
    [Crossref]
  4. C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12(5), 051703 (2007).
    [Crossref]
  5. D. Bear, “Optical Coherence Tomography Grading Correlates with MRI T2 Mapping and Extracellular Matrix Content,” J. Orthop. Res. 28(4), 546–552 (2009).
    [Crossref]
  6. N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
    [Crossref]
  7. S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys. 105(10), 102041 (2009).
    [Crossref]
  8. T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus,” J. Biomed. Opt. 11(6), 064001 (2006).
    [Crossref]
  9. N. Ugryumova, D. P. Attenburrow, C. P. Winlove, and S. J. Matcher, “The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2612–2619 (2005).
    [Crossref]
  10. C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415 (2012).
    [Crossref]
  11. C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
    [Crossref]
  12. X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
    [Crossref]
  13. M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1 (2017).
    [Crossref]
  14. Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347 (2015).
    [Crossref]
  15. L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
    [Crossref]
  16. Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843 (2014).
    [Crossref]
  17. A. Benninghoff, “Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion,” Anat. Embryol. 76(1-3), 43–63 (1925).
    [Crossref]
  18. J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).
  19. A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
    [Crossref]
  20. N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
    [Crossref]
  21. S. P. Grogan, S. F. Duffy, C. Pauli, J. A. Koziol, A. I. Su, D. D. D’Lima, and M. K. Lotz, “Zone-specific gene expression patterns in articular cartilage,” Arthritis Rheum. 65(2), 418–428 (2013).
    [Crossref]
  22. S. Ikegawa, M. Sano, Y. Koshizuka, and Y. Nakamura, “Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes,” Cytogenet. Genome Res. 90(3-4), 291–297 (2000).
    [Crossref]
  23. B. L. Schumacher, C. E. Hughes, K. E. Kuettner, B. Caterson, and M. B. Aydelotte, “Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints,” J. Orthop. Res. 17(1), 110–120 (1999).
    [Crossref]
  24. C. R. Flannery, C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson, “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochem. Biophys. Res. Commun. 254(3), 535–541 (1999).
    [Crossref]
  25. W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
    [Crossref]
  26. K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
    [Crossref]
  27. Q. Meng, S. An, R. A. Damion, Z. Jin, R. Wilcox, J. Fisher, and A. Jones, “The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage,” J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017).
    [Crossref]
  28. A. Thambyah and N. Broom, “Micro-anatomical response of cartilage-on-bone to compression: Mechanisms of deformation within and beyond the directly loaded matrix,” J. Anat. 209(5), 611–622 (2006).
    [Crossref]
  29. M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
    [Crossref]
  30. H. E. Panula, M. M. Hyttinen, J. P. A. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
    [Crossref]
  31. S. Saarakkala, P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen, “Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics,” Osteoarthr. Cartil. 18(1), 73–81 (2010).
    [Crossref]
  32. X. Bi, X. Yang, M. P. G. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta, Biomembr. 1758(7), 934–941 (2006).
    [Crossref]
  33. G. Meachim and I. H. Emery, “Quantitative aspects of patello femoral cartilage fibrillation in Liverpool necropsies,” Ann. Rheum. Dis. 33(1), 39–47 (1974).
    [Crossref]
  34. T. K. Långsjö, J. Rieppo, A. Pelttari, N. Oksala, V. Kovanen, and H. J. Helminen, “Collagenase-induced changes in articular cartilage as detected by electron-microscopic stereology, quantitative polarized light microscopy and biochemical assays,” Cells Tissues Organs 172(4), 265–275 (2002).
    [Crossref]
  35. C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading,” J. Biomech. Eng. 131(3), 031008 (2009).
    [Crossref]
  36. J. P. Wu, T. B. Kirk, and M. H. Zheng, “Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique,” J. Orthop. Surg. Res. 3(1), 1–11 (2008).
    [Crossref]
  37. W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).
  38. H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Jt. Surg. 53(3), 523–537 (1971).
    [Crossref]
  39. K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
    [Crossref]
  40. M. Rutgers, M. J. P. Van Pelt, W. J. A. Dhert, L. B. Creemers, and D. B. F. Saris, “Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage,” Osteoarthr. Cartil. 18(1), 12–23 (2010).
    [Crossref]
  41. A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
    [Crossref]
  42. A. Changoor, N. Tran-Khanh, S. Méthot, M. Garon, M. B. Hurtig, M. S. Shive, and M. D. Buschmann, “A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair,” Osteoarthr. Cartil. 19(1), 126–135 (2011).
    [Crossref]
  43. C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
    [Crossref]
  44. R. N. Huynh, G. Nehmetallah, and C. B. Raub, “Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy,” J. Biomed. Opt. 22(6), 065001 (2017).
    [Crossref]
  45. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329 (2002).
    [Crossref]
  46. J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
    [Crossref]
  47. J. Cabrera, “Texture Analyzer,” https://imagej.nih.gov/ij/plugins/texture.html .
  48. R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Trans. Syst., Man, Cybern. SMC-3(6), 610–621 (1973).
    [Crossref]
  49. R. F. Walker, P. Jackway, and I. D. Longstaff, “Improving Co-occurrence Matrix Feature Discrimination,” in DICTA ‘95, 3rd Conference on Digital Image Computing: Techniques and Application (1995), pp. 643–648.
  50. H. Schneeweiss and H. Mathes, “Factor Analysis and Principal Components,” J. Multivar. Anal. 55(1), 105–124 (1995).
    [Crossref]
  51. I. T. Jolliffe, “Principal Component Analysis and Factor Analysis,” Stat. Methods Med. Res. 1(1), 69–95 (1992).
    [Crossref]
  52. J. K. Ford, R. C. MacCallum, and M. Tait, “The Application of Exploratory Factor Analysis in Applied Psychology: A Critical Review and Analysis,” Pers. Psychol. 39(2), 291–314 (1986).
    [Crossref]
  53. S. Below, S. P. Arnoczky, J. Dodds, C. Kooima, and N. Walter, “The split-line pattern of the distal femur: A consideration in the orientation of autologous cartilage grafts,” Arthroscopy 18(6), 613–617 (2002).
    [Crossref]
  54. S. Akizuki, V. C. Mow, F. Muller, J. C. Pita, D. S. Howell, and D. H. Manicourt, “Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus,” J. Orthop. Res. 4(4), 379–392 (1986).
    [Crossref]
  55. S.L-Y. Woo, W. H. Akeson, and G. F. Jemmott, “Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension,” J. Biomech. 9(12), 785–791 (1976).
    [Crossref]
  56. V. Roth and V. C. Mow, “The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age,” J. Bone Jt. Surg. 62(7), 1102–1117 (1980).
    [Crossref]
  57. B. M. Leo, M. A. Turner, and D. R. Diduch, “Split-line pattern and histologic analysis of a human osteochondral plug graft,” Arthrosc. - J. Arthrosc. Relat. Surg. 20(6), 39–45 (2004).
    [Crossref]
  58. L. Bisson, V. Brahmabhatt, and J. Marzo, “Split-line orientation of the talar dome articular cartilage,” Arthrosc. - J. Arthrosc. Relat. Surg. 21(5), 570–573 (2005).
    [Crossref]
  59. P. BÖttcher, M. Zeissler, J. Maierl, V. Grevel, and G. Oechtering, “Mapping of split-line pattern and cartilage thickness of selected donor and recipient sites for autologous osteochondral transplantation in the canine stifle joint,” Vet. Surg. 38(6), 696–704 (2009).
    [Crossref]
  60. T. J. Klein, J. Malda, R. L. Sah, and D. W. Hutmacher, “Tissue engineering of articular cartilage with biomimetic zones,” Tissue Eng., Part B 15(2), 143–157 (2009).
    [Crossref]
  61. D. Dare and S. Rodeo, “Mechanisms of Post-traumatic Osteoarthritis After ACL Injury,” Curr. Rheumatol. Rep. 16(10), 448 (2014).
    [Crossref]
  62. T. A. Germer and C. C. Asmail, “Polarization of light scattered by microrough surfaces and subsurface defects,” J. Opt. Soc. Am. A 16(6), 1326 (1999).
    [Crossref]
  63. B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
    [Crossref]
  64. D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
    [Crossref]
  65. K. D. Novakofski, S. L. Pownder, M. F. Koff, R. M. Williams, H. G. Potter, and L. A. Fortier, “High-Resolution Methods for Diagnosing Cartilage Damage In Vivo,” Cartilage 7(1), 39–51 (2016).
    [Crossref]
  66. N. Hafezi-Nejad, S. Demehri, A. Guermazi, and J. A. Carrino, “Osteoarthritis year in review 2017: updates on imaging advancements,” Osteoarthr. Cartil. 26(3), 341–349 (2018).
    [Crossref]
  67. S.-Z. Wang, Y.-P. Huang, Q. Wang, Y.-P. Zheng, and Y.-H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
    [Crossref]
  68. R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
    [Crossref]
  69. M. B. Nagarajan, P. Coan, M. B. Huber, P. C. Diemoz, C. Glaser, and A. Wismuller, “Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features,” J. Digit. Imaging 27(1), 98–107 (2014).
    [Crossref]
  70. Z. Lu, D. Kasaragod, and S. J. Matcher, “Conical scan polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(3), 752–762 (2014).
    [Crossref]
  71. S. L. Jacques, S. Roussel, and R. Samatham, “Polarized light imaging specifies the anisotropy of light scattering in the superficial layer of a tissue,” J. Biomed. Opt. 21(7), 071115 (2016).
    [Crossref]
  72. P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
    [Crossref]
  73. S. L. Jacques and J. C. Ramella-Roman, “Propagation of polarized light beams through biological tissues,” Proc. SPIE 3914, 345 (2000).
    [Crossref]

2018 (1)

N. Hafezi-Nejad, S. Demehri, A. Guermazi, and J. A. Carrino, “Osteoarthritis year in review 2017: updates on imaging advancements,” Osteoarthr. Cartil. 26(3), 341–349 (2018).
[Crossref]

2017 (4)

R. N. Huynh, G. Nehmetallah, and C. B. Raub, “Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy,” J. Biomed. Opt. 22(6), 065001 (2017).
[Crossref]

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

Q. Meng, S. An, R. A. Damion, Z. Jin, R. Wilcox, J. Fisher, and A. Jones, “The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage,” J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017).
[Crossref]

2016 (5)

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref]

V. Klika, E. A. Gaffney, Y. C. Chen, and C. P. Brown, “An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology,” J. Mech. Behav. Biomed. Mater. 62, 139–157 (2016).
[Crossref]

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref]

K. D. Novakofski, S. L. Pownder, M. F. Koff, R. M. Williams, H. G. Potter, and L. A. Fortier, “High-Resolution Methods for Diagnosing Cartilage Damage In Vivo,” Cartilage 7(1), 39–51 (2016).
[Crossref]

S. L. Jacques, S. Roussel, and R. Samatham, “Polarized light imaging specifies the anisotropy of light scattering in the superficial layer of a tissue,” J. Biomed. Opt. 21(7), 071115 (2016).
[Crossref]

2015 (1)

2014 (6)

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843 (2014).
[Crossref]

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

M. B. Nagarajan, P. Coan, M. B. Huber, P. C. Diemoz, C. Glaser, and A. Wismuller, “Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features,” J. Digit. Imaging 27(1), 98–107 (2014).
[Crossref]

Z. Lu, D. Kasaragod, and S. J. Matcher, “Conical scan polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(3), 752–762 (2014).
[Crossref]

D. Dare and S. Rodeo, “Mechanisms of Post-traumatic Osteoarthritis After ACL Injury,” Curr. Rheumatol. Rep. 16(10), 448 (2014).
[Crossref]

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref]

2013 (2)

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
[Crossref]

S. P. Grogan, S. F. Duffy, C. Pauli, J. A. Koziol, A. I. Su, D. D. D’Lima, and M. K. Lotz, “Zone-specific gene expression patterns in articular cartilage,” Arthritis Rheum. 65(2), 418–428 (2013).
[Crossref]

2012 (3)

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415 (2012).
[Crossref]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

2011 (2)

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

A. Changoor, N. Tran-Khanh, S. Méthot, M. Garon, M. B. Hurtig, M. S. Shive, and M. D. Buschmann, “A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair,” Osteoarthr. Cartil. 19(1), 126–135 (2011).
[Crossref]

2010 (4)

M. Rutgers, M. J. P. Van Pelt, W. J. A. Dhert, L. B. Creemers, and D. B. F. Saris, “Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage,” Osteoarthr. Cartil. 18(1), 12–23 (2010).
[Crossref]

S. Saarakkala, P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen, “Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics,” Osteoarthr. Cartil. 18(1), 73–81 (2010).
[Crossref]

S.-Z. Wang, Y.-P. Huang, Q. Wang, Y.-P. Zheng, and Y.-H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[Crossref]

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref]

2009 (6)

P. BÖttcher, M. Zeissler, J. Maierl, V. Grevel, and G. Oechtering, “Mapping of split-line pattern and cartilage thickness of selected donor and recipient sites for autologous osteochondral transplantation in the canine stifle joint,” Vet. Surg. 38(6), 696–704 (2009).
[Crossref]

T. J. Klein, J. Malda, R. L. Sah, and D. W. Hutmacher, “Tissue engineering of articular cartilage with biomimetic zones,” Tissue Eng., Part B 15(2), 143–157 (2009).
[Crossref]

S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys. 105(10), 102041 (2009).
[Crossref]

D. Bear, “Optical Coherence Tomography Grading Correlates with MRI T2 Mapping and Extracellular Matrix Content,” J. Orthop. Res. 28(4), 546–552 (2009).
[Crossref]

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
[Crossref]

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref]

2008 (3)

J. P. Wu, T. B. Kirk, and M. H. Zheng, “Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique,” J. Orthop. Surg. Res. 3(1), 1–11 (2008).
[Crossref]

W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
[Crossref]

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref]

2007 (1)

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12(5), 051703 (2007).
[Crossref]

2006 (4)

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus,” J. Biomed. Opt. 11(6), 064001 (2006).
[Crossref]

A. Thambyah and N. Broom, “Micro-anatomical response of cartilage-on-bone to compression: Mechanisms of deformation within and beyond the directly loaded matrix,” J. Anat. 209(5), 611–622 (2006).
[Crossref]

X. Bi, X. Yang, M. P. G. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta, Biomembr. 1758(7), 934–941 (2006).
[Crossref]

K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
[Crossref]

2005 (2)

L. Bisson, V. Brahmabhatt, and J. Marzo, “Split-line orientation of the talar dome articular cartilage,” Arthrosc. - J. Arthrosc. Relat. Surg. 21(5), 570–573 (2005).
[Crossref]

N. Ugryumova, D. P. Attenburrow, C. P. Winlove, and S. J. Matcher, “The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2612–2619 (2005).
[Crossref]

2004 (1)

B. M. Leo, M. A. Turner, and D. R. Diduch, “Split-line pattern and histologic analysis of a human osteochondral plug graft,” Arthrosc. - J. Arthrosc. Relat. Surg. 20(6), 39–45 (2004).
[Crossref]

2002 (3)

T. K. Långsjö, J. Rieppo, A. Pelttari, N. Oksala, V. Kovanen, and H. J. Helminen, “Collagenase-induced changes in articular cartilage as detected by electron-microscopic stereology, quantitative polarized light microscopy and biochemical assays,” Cells Tissues Organs 172(4), 265–275 (2002).
[Crossref]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329 (2002).
[Crossref]

S. Below, S. P. Arnoczky, J. Dodds, C. Kooima, and N. Walter, “The split-line pattern of the distal femur: A consideration in the orientation of autologous cartilage grafts,” Arthroscopy 18(6), 613–617 (2002).
[Crossref]

2001 (3)

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[Crossref]

2000 (2)

S. Ikegawa, M. Sano, Y. Koshizuka, and Y. Nakamura, “Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes,” Cytogenet. Genome Res. 90(3-4), 291–297 (2000).
[Crossref]

S. L. Jacques and J. C. Ramella-Roman, “Propagation of polarized light beams through biological tissues,” Proc. SPIE 3914, 345 (2000).
[Crossref]

1999 (3)

T. A. Germer and C. C. Asmail, “Polarization of light scattered by microrough surfaces and subsurface defects,” J. Opt. Soc. Am. A 16(6), 1326 (1999).
[Crossref]

B. L. Schumacher, C. E. Hughes, K. E. Kuettner, B. Caterson, and M. B. Aydelotte, “Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints,” J. Orthop. Res. 17(1), 110–120 (1999).
[Crossref]

C. R. Flannery, C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson, “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochem. Biophys. Res. Commun. 254(3), 535–541 (1999).
[Crossref]

1998 (2)

K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
[Crossref]

H. E. Panula, M. M. Hyttinen, J. P. A. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref]

1995 (1)

H. Schneeweiss and H. Mathes, “Factor Analysis and Principal Components,” J. Multivar. Anal. 55(1), 105–124 (1995).
[Crossref]

1992 (1)

I. T. Jolliffe, “Principal Component Analysis and Factor Analysis,” Stat. Methods Med. Res. 1(1), 69–95 (1992).
[Crossref]

1990 (1)

J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).

1986 (2)

J. K. Ford, R. C. MacCallum, and M. Tait, “The Application of Exploratory Factor Analysis in Applied Psychology: A Critical Review and Analysis,” Pers. Psychol. 39(2), 291–314 (1986).
[Crossref]

S. Akizuki, V. C. Mow, F. Muller, J. C. Pita, D. S. Howell, and D. H. Manicourt, “Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus,” J. Orthop. Res. 4(4), 379–392 (1986).
[Crossref]

1981 (1)

R. M. Aspden and D. W. L. Hukins, “Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function,” Proc. R. Soc. Lond. B 212(1188), 299–304 (1981).
[Crossref]

1980 (1)

V. Roth and V. C. Mow, “The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age,” J. Bone Jt. Surg. 62(7), 1102–1117 (1980).
[Crossref]

1978 (1)

M. J. Askew and V. C. Mow, “The Biomechanical Function of the Collagen Fibril Ultrastructure of Articular Cartilage,” J. Biomech. Eng. 100(3), 105–115 (1978).
[Crossref]

1976 (1)

S.L-Y. Woo, W. H. Akeson, and G. F. Jemmott, “Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension,” J. Biomech. 9(12), 785–791 (1976).
[Crossref]

1974 (1)

G. Meachim and I. H. Emery, “Quantitative aspects of patello femoral cartilage fibrillation in Liverpool necropsies,” Ann. Rheum. Dis. 33(1), 39–47 (1974).
[Crossref]

1973 (1)

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Trans. Syst., Man, Cybern. SMC-3(6), 610–621 (1973).
[Crossref]

1971 (1)

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Jt. Surg. 53(3), 523–537 (1971).
[Crossref]

1925 (1)

A. Benninghoff, “Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion,” Anat. Embryol. 76(1-3), 43–63 (1925).
[Crossref]

Akeson, W. H.

S.L-Y. Woo, W. H. Akeson, and G. F. Jemmott, “Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension,” J. Biomech. 9(12), 785–791 (1976).
[Crossref]

Akizuki, S.

S. Akizuki, V. C. Mow, F. Muller, J. C. Pita, D. S. Howell, and D. H. Manicourt, “Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus,” J. Orthop. Res. 4(4), 379–392 (1986).
[Crossref]

An, S.

Q. Meng, S. An, R. A. Damion, Z. Jin, R. Wilcox, J. Fisher, and A. Jones, “The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage,” J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017).
[Crossref]

Antonacci, J. M.

W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
[Crossref]

Arkill, K. P.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref]

Arnoczky, S. P.

S. Below, S. P. Arnoczky, J. Dodds, C. Kooima, and N. Walter, “The split-line pattern of the distal femur: A consideration in the orientation of autologous cartilage grafts,” Arthroscopy 18(6), 613–617 (2002).
[Crossref]

Arokoski, J. A.

K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
[Crossref]

Arokoski, J. P. A.

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

H. E. Panula, M. M. Hyttinen, J. P. A. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref]

Askew, M. J.

M. J. Askew and V. C. Mow, “The Biomechanical Function of the Collagen Fibril Ultrastructure of Articular Cartilage,” J. Biomech. Eng. 100(3), 105–115 (1978).
[Crossref]

Asmail, C. C.

Aspden, R. M.

R. M. Aspden and D. W. L. Hukins, “Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function,” Proc. R. Soc. Lond. B 212(1188), 299–304 (1981).
[Crossref]

Attenburrow, D. P.

N. Ugryumova, D. P. Attenburrow, C. P. Winlove, and S. J. Matcher, “The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2612–2619 (2005).
[Crossref]

Aydelotte, M. B.

B. L. Schumacher, C. E. Hughes, K. E. Kuettner, B. Caterson, and M. B. Aydelotte, “Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints,” J. Orthop. Res. 17(1), 110–120 (1999).
[Crossref]

C. R. Flannery, C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson, “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochem. Biophys. Res. Commun. 254(3), 535–541 (1999).
[Crossref]

Azinfar, L.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

Bae, W. C.

W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
[Crossref]

Barrett, R.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref]

Bear, D.

D. Bear, “Optical Coherence Tomography Grading Correlates with MRI T2 Mapping and Extracellular Matrix Content,” J. Orthop. Res. 28(4), 546–552 (2009).
[Crossref]

Bear, D. M.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref]

Bedi, A.

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
[Crossref]

Below, S.

S. Below, S. P. Arnoczky, J. Dodds, C. Kooima, and N. Walter, “The split-line pattern of the distal femur: A consideration in the orientation of autologous cartilage grafts,” Arthroscopy 18(6), 613–617 (2002).
[Crossref]

Benninghoff, A.

A. Benninghoff, “Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion,” Anat. Embryol. 76(1-3), 43–63 (1925).
[Crossref]

Bi, X.

X. Bi, X. Yang, M. P. G. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta, Biomembr. 1758(7), 934–941 (2006).
[Crossref]

Bisson, L.

L. Bisson, V. Brahmabhatt, and J. Marzo, “Split-line orientation of the talar dome articular cartilage,” Arthrosc. - J. Arthrosc. Relat. Surg. 21(5), 570–573 (2005).
[Crossref]

Bleuet, P.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref]

Blewis, M. E.

W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
[Crossref]

Boisvert, M. E.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

Bostrom, M. P. G.

X. Bi, X. Yang, M. P. G. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta, Biomembr. 1758(7), 934–941 (2006).
[Crossref]

BÖttcher, P.

P. BÖttcher, M. Zeissler, J. Maierl, V. Grevel, and G. Oechtering, “Mapping of split-line pattern and cartilage thickness of selected donor and recipient sites for autologous osteochondral transplantation in the canine stifle joint,” Vet. Surg. 38(6), 696–704 (2009).
[Crossref]

Bozynski, C. C.

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

Brahmabhatt, V.

L. Bisson, V. Brahmabhatt, and J. Marzo, “Split-line orientation of the talar dome articular cartilage,” Arthrosc. - J. Arthrosc. Relat. Surg. 21(5), 570–573 (2005).
[Crossref]

Brezinski, M. E.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Brill, N.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref]

Broom, N.

A. Thambyah and N. Broom, “Micro-anatomical response of cartilage-on-bone to compression: Mechanisms of deformation within and beyond the directly loaded matrix,” J. Anat. 209(5), 611–622 (2006).
[Crossref]

Brown, C. P.

V. Klika, E. A. Gaffney, Y. C. Chen, and C. P. Brown, “An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology,” J. Mech. Behav. Biomed. Mater. 62, 139–157 (2016).
[Crossref]

Buschmann, M. D.

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

A. Changoor, N. Tran-Khanh, S. Méthot, M. Garon, M. B. Hurtig, M. S. Shive, and M. D. Buschmann, “A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair,” Osteoarthr. Cartil. 19(1), 126–135 (2011).
[Crossref]

Cabrera, J.

J. Cabrera, “Texture Analyzer,” https://imagej.nih.gov/ij/plugins/texture.html .

Calixto, N.

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

Camacho, N. P.

X. Bi, X. Yang, M. P. G. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta, Biomembr. 1758(7), 934–941 (2006).
[Crossref]

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[Crossref]

Carrino, J. A.

N. Hafezi-Nejad, S. Demehri, A. Guermazi, and J. A. Carrino, “Osteoarthritis year in review 2017: updates on imaging advancements,” Osteoarthr. Cartil. 26(3), 341–349 (2018).
[Crossref]

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref]

Caterson, B.

C. R. Flannery, C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson, “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochem. Biophys. Res. Commun. 254(3), 535–541 (1999).
[Crossref]

B. L. Schumacher, C. E. Hughes, K. E. Kuettner, B. Caterson, and M. B. Aydelotte, “Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints,” J. Orthop. Res. 17(1), 110–120 (1999).
[Crossref]

Chan, E. F.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
[Crossref]

Changoor, A.

A. Changoor, N. Tran-Khanh, S. Méthot, M. Garon, M. B. Hurtig, M. S. Shive, and M. D. Buschmann, “A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair,” Osteoarthr. Cartil. 19(1), 126–135 (2011).
[Crossref]

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

Chen, A. C.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
[Crossref]

Chen, Y. C.

V. Klika, E. A. Gaffney, Y. C. Chen, and C. P. Brown, “An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology,” J. Mech. Behav. Biomed. Mater. 62, 139–157 (2016).
[Crossref]

Chen, Z.

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus,” J. Biomed. Opt. 11(6), 064001 (2006).
[Crossref]

Chevrier, A.

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

Chnari, E.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
[Crossref]

Chu, C. R.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref]

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12(5), 051703 (2007).
[Crossref]

Clark, J. M.

J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).

Coan, P.

M. B. Nagarajan, P. Coan, M. B. Huber, P. C. Diemoz, C. Glaser, and A. Wismuller, “Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features,” J. Digit. Imaging 27(1), 98–107 (2014).
[Crossref]

Coyle, C. H.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref]

Creemers, L. B.

M. Rutgers, M. J. P. Van Pelt, W. J. A. Dhert, L. B. Creemers, and D. B. F. Saris, “Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage,” Osteoarthr. Cartil. 18(1), 12–23 (2010).
[Crossref]

D’Lima, D. D.

S. P. Grogan, S. F. Duffy, C. Pauli, J. A. Koziol, A. I. Su, D. D. D’Lima, and M. K. Lotz, “Zone-specific gene expression patterns in articular cartilage,” Arthritis Rheum. 65(2), 418–428 (2013).
[Crossref]

Damion, R. A.

Q. Meng, S. An, R. A. Damion, Z. Jin, R. Wilcox, J. Fisher, and A. Jones, “The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage,” J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017).
[Crossref]

Dare, D.

D. Dare and S. Rodeo, “Mechanisms of Post-traumatic Osteoarthritis After ACL Injury,” Curr. Rheumatol. Rep. 16(10), 448 (2014).
[Crossref]

Demehri, S.

N. Hafezi-Nejad, S. Demehri, A. Guermazi, and J. A. Carrino, “Osteoarthritis year in review 2017: updates on imaging advancements,” Osteoarthr. Cartil. 26(3), 341–349 (2018).
[Crossref]

Dhert, W. J. A.

M. Rutgers, M. J. P. Van Pelt, W. J. A. Dhert, L. B. Creemers, and D. B. F. Saris, “Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage,” Osteoarthr. Cartil. 18(1), 12–23 (2010).
[Crossref]

Diduch, D. R.

B. M. Leo, M. A. Turner, and D. R. Diduch, “Split-line pattern and histologic analysis of a human osteochondral plug graft,” Arthrosc. - J. Arthrosc. Relat. Surg. 20(6), 39–45 (2004).
[Crossref]

Diemoz, P. C.

M. B. Nagarajan, P. Coan, M. B. Huber, P. C. Diemoz, C. Glaser, and A. Wismuller, “Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features,” J. Digit. Imaging 27(1), 98–107 (2014).
[Crossref]

Dinstein, I.

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Trans. Syst., Man, Cybern. SMC-3(6), 610–621 (1973).
[Crossref]

Dodds, J.

S. Below, S. P. Arnoczky, J. Dodds, C. Kooima, and N. Walter, “The split-line pattern of the distal femur: A consideration in the orientation of autologous cartilage grafts,” Arthroscopy 18(6), 613–617 (2002).
[Crossref]

Dorfman, H.

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Jt. Surg. 53(3), 523–537 (1971).
[Crossref]

Drexler, W.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Duan, D.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref]

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347 (2015).
[Crossref]

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843 (2014).
[Crossref]

Duffy, S. F.

S. P. Grogan, S. F. Duffy, C. Pauli, J. A. Koziol, A. I. Su, D. D. D’Lima, and M. K. Lotz, “Zone-specific gene expression patterns in articular cartilage,” Arthritis Rheum. 65(2), 418–428 (2013).
[Crossref]

Ellis, R. E.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref]

Emery, I. H.

G. Meachim and I. H. Emery, “Quantitative aspects of patello femoral cartilage fibrillation in Liverpool necropsies,” Ann. Rheum. Dis. 33(1), 39–47 (1974).
[Crossref]

Fan, C.

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415 (2012).
[Crossref]

Ferretti, M.

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12(5), 051703 (2007).
[Crossref]

Fisher, J.

Q. Meng, S. An, R. A. Damion, Z. Jin, R. Wilcox, J. Fisher, and A. Jones, “The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage,” J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017).
[Crossref]

Flanagan, K. E.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

Flannery, C. R.

C. R. Flannery, C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson, “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochem. Biophys. Res. Commun. 254(3), 535–541 (1999).
[Crossref]

Ford, J. K.

J. K. Ford, R. C. MacCallum, and M. Tait, “The Application of Exploratory Factor Analysis in Applied Psychology: A Critical Review and Analysis,” Pers. Psychol. 39(2), 291–314 (1986).
[Crossref]

Fortier, L. A.

K. D. Novakofski, S. L. Pownder, M. F. Koff, R. M. Williams, H. G. Potter, and L. A. Fortier, “High-Resolution Methods for Diagnosing Cartilage Damage In Vivo,” Cartilage 7(1), 39–51 (2016).
[Crossref]

Fujimoto, J. G.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Gaffney, E. A.

V. Klika, E. A. Gaffney, Y. C. Chen, and C. P. Brown, “An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology,” J. Mech. Behav. Biomed. Mater. 62, 139–157 (2016).
[Crossref]

Garon, M.

A. Changoor, N. Tran-Khanh, S. Méthot, M. Garon, M. B. Hurtig, M. S. Shive, and M. D. Buschmann, “A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair,” Osteoarthr. Cartil. 19(1), 126–135 (2011).
[Crossref]

Gay, S.

K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
[Crossref]

Germer, T. A.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

T. A. Germer and C. C. Asmail, “Polarization of light scattered by microrough surfaces and subsurface defects,” J. Opt. Soc. Am. A 16(6), 1326 (1999).
[Crossref]

Ghassemi, P.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

Glaser, C.

M. B. Nagarajan, P. Coan, M. B. Huber, P. C. Diemoz, C. Glaser, and A. Wismuller, “Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features,” J. Digit. Imaging 27(1), 98–107 (2014).
[Crossref]

Green, E. M.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref]

Grevel, V.

P. BÖttcher, M. Zeissler, J. Maierl, V. Grevel, and G. Oechtering, “Mapping of split-line pattern and cartilage thickness of selected donor and recipient sites for autologous osteochondral transplantation in the canine stifle joint,” Vet. Surg. 38(6), 696–704 (2009).
[Crossref]

Grogan, S. P.

S. P. Grogan, S. F. Duffy, C. Pauli, J. A. Koziol, A. I. Su, D. D. D’Lima, and M. K. Lotz, “Zone-specific gene expression patterns in articular cartilage,” Arthritis Rheum. 65(2), 418–428 (2013).
[Crossref]

Guermazi, A.

N. Hafezi-Nejad, S. Demehri, A. Guermazi, and J. A. Carrino, “Osteoarthritis year in review 2017: updates on imaging advancements,” Osteoarthr. Cartil. 26(3), 341–349 (2018).
[Crossref]

Guo, S.

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus,” J. Biomed. Opt. 11(6), 064001 (2006).
[Crossref]

Hafezi-Nejad, N.

N. Hafezi-Nejad, S. Demehri, A. Guermazi, and J. A. Carrino, “Osteoarthritis year in review 2017: updates on imaging advancements,” Osteoarthr. Cartil. 26(3), 341–349 (2018).
[Crossref]

Hallikainen, J.

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref]

Haralick, R. M.

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Trans. Syst., Man, Cybern. SMC-3(6), 610–621 (1973).
[Crossref]

He, B.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref]

He, Y.-H.

S.-Z. Wang, Y.-P. Huang, Q. Wang, Y.-P. Zheng, and Y.-H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[Crossref]

Helminen, H. J.

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref]

T. K. Långsjö, J. Rieppo, A. Pelttari, N. Oksala, V. Kovanen, and H. J. Helminen, “Collagenase-induced changes in articular cartilage as detected by electron-microscopic stereology, quantitative polarized light microscopy and biochemical assays,” Cells Tissues Organs 172(4), 265–275 (2002).
[Crossref]

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
[Crossref]

H. E. Panula, M. M. Hyttinen, J. P. A. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref]

Hoemann, C. D.

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

Howell, D. S.

S. Akizuki, V. C. Mow, F. Muller, J. C. Pita, D. S. Howell, and D. H. Manicourt, “Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus,” J. Orthop. Res. 4(4), 379–392 (1986).
[Crossref]

Hsu, S. C.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
[Crossref]

Huang, Y.-P.

S.-Z. Wang, Y.-P. Huang, Q. Wang, Y.-P. Zheng, and Y.-H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[Crossref]

Huber, M. B.

M. B. Nagarajan, P. Coan, M. B. Huber, P. C. Diemoz, C. Glaser, and A. Wismuller, “Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features,” J. Digit. Imaging 27(1), 98–107 (2014).
[Crossref]

Hughes, C. E.

C. R. Flannery, C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson, “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochem. Biophys. Res. Commun. 254(3), 535–541 (1999).
[Crossref]

B. L. Schumacher, C. E. Hughes, K. E. Kuettner, B. Caterson, and M. B. Aydelotte, “Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints,” J. Orthop. Res. 17(1), 110–120 (1999).
[Crossref]

Hukins, D. W. L.

R. M. Aspden and D. W. L. Hukins, “Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function,” Proc. R. Soc. Lond. B 212(1188), 299–304 (1981).
[Crossref]

Hurtig, M. B.

A. Changoor, N. Tran-Khanh, S. Méthot, M. Garon, M. B. Hurtig, M. S. Shive, and M. D. Buschmann, “A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair,” Osteoarthr. Cartil. 19(1), 126–135 (2011).
[Crossref]

Hutmacher, D. W.

T. J. Klein, J. Malda, R. L. Sah, and D. W. Hutmacher, “Tissue engineering of articular cartilage with biomimetic zones,” Tissue Eng., Part B 15(2), 143–157 (2009).
[Crossref]

Huynh, R. N.

R. N. Huynh, G. Nehmetallah, and C. B. Raub, “Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy,” J. Biomed. Opt. 22(6), 065001 (2017).
[Crossref]

Hwang, J.

W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
[Crossref]

Hyttinen, M. M.

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref]

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

H. E. Panula, M. M. Hyttinen, J. P. A. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref]

K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
[Crossref]

Ikegawa, S.

S. Ikegawa, M. Sano, Y. Koshizuka, and Y. Nakamura, “Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes,” Cytogenet. Genome Res. 90(3-4), 291–297 (2000).
[Crossref]

Irrgang, J. J.

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12(5), 051703 (2007).
[Crossref]

Izzo, N. J.

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12(5), 051703 (2007).
[Crossref]

Jackway, P.

R. F. Walker, P. Jackway, and I. D. Longstaff, “Improving Co-occurrence Matrix Feature Discrimination,” in DICTA ‘95, 3rd Conference on Digital Image Computing: Techniques and Application (1995), pp. 643–648.

Jacques, S. L.

S. L. Jacques, S. Roussel, and R. Samatham, “Polarized light imaging specifies the anisotropy of light scattering in the superficial layer of a tissue,” J. Biomed. Opt. 21(7), 071115 (2016).
[Crossref]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329 (2002).
[Crossref]

S. L. Jacques and J. C. Ramella-Roman, “Propagation of polarized light beams through biological tissues,” Proc. SPIE 3914, 345 (2000).
[Crossref]

Jahr, H.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref]

Jemmott, G. F.

S.L-Y. Woo, W. H. Akeson, and G. F. Jemmott, “Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension,” J. Biomech. 9(12), 785–791 (1976).
[Crossref]

Jesser, C.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Jimenez, S. A.

K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
[Crossref]

Jin, Z.

Q. Meng, S. An, R. A. Damion, Z. Jin, R. Wilcox, J. Fisher, and A. Jones, “The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage,” J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017).
[Crossref]

Jolliffe, I. T.

I. T. Jolliffe, “Principal Component Analysis and Factor Analysis,” Stat. Methods Med. Res. 1(1), 69–95 (1992).
[Crossref]

Jones, A.

Q. Meng, S. An, R. A. Damion, Z. Jin, R. Wilcox, J. Fisher, and A. Jones, “The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage,” J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017).
[Crossref]

Jordan, M. H.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

Julkunen, P.

S. Saarakkala, P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen, “Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics,” Osteoarthr. Cartil. 18(1), 73–81 (2010).
[Crossref]

Jurvelin, J. S.

S. Saarakkala, P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen, “Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics,” Osteoarthr. Cartil. 18(1), 73–81 (2010).
[Crossref]

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref]

Kasaragod, D.

Király, K.

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
[Crossref]

Kirk, T. B.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref]

J. P. Wu, T. B. Kirk, and M. H. Zheng, “Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique,” J. Orthop. Surg. Res. 3(1), 1–11 (2008).
[Crossref]

Kiviranta, I.

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref]

H. E. Panula, M. M. Hyttinen, J. P. A. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref]

K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
[Crossref]

Kiviranta, P.

S. Saarakkala, P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen, “Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics,” Osteoarthr. Cartil. 18(1), 73–81 (2010).
[Crossref]

Klein, T. J.

T. J. Klein, J. Malda, R. L. Sah, and D. W. Hutmacher, “Tissue engineering of articular cartilage with biomimetic zones,” Tissue Eng., Part B 15(2), 143–157 (2009).
[Crossref]

Klika, V.

V. Klika, E. A. Gaffney, Y. C. Chen, and C. P. Brown, “An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology,” J. Mech. Behav. Biomed. Mater. 62, 139–157 (2016).
[Crossref]

Koff, M. F.

K. D. Novakofski, S. L. Pownder, M. F. Koff, R. M. Williams, H. G. Potter, and L. A. Fortier, “High-Resolution Methods for Diagnosing Cartilage Damage In Vivo,” Cartilage 7(1), 39–51 (2016).
[Crossref]

Kooima, C.

S. Below, S. P. Arnoczky, J. Dodds, C. Kooima, and N. Walter, “The split-line pattern of the distal femur: A consideration in the orientation of autologous cartilage grafts,” Arthroscopy 18(6), 613–617 (2002).
[Crossref]

Korhonen, R. K.

S. Saarakkala, P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen, “Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics,” Osteoarthr. Cartil. 18(1), 73–81 (2010).
[Crossref]

Koshizuka, Y.

S. Ikegawa, M. Sano, Y. Koshizuka, and Y. Nakamura, “Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes,” Cytogenet. Genome Res. 90(3-4), 291–297 (2000).
[Crossref]

Kovanen, V.

T. K. Långsjö, J. Rieppo, A. Pelttari, N. Oksala, V. Kovanen, and H. J. Helminen, “Collagenase-induced changes in articular cartilage as detected by electron-microscopic stereology, quantitative polarized light microscopy and biochemical assays,” Cells Tissues Organs 172(4), 265–275 (2002).
[Crossref]

Koziol, J. A.

S. P. Grogan, S. F. Duffy, C. Pauli, J. A. Koziol, A. I. Su, D. D. D’Lima, and M. K. Lotz, “Zone-specific gene expression patterns in articular cartilage,” Arthritis Rheum. 65(2), 418–428 (2013).
[Crossref]

Kramer, S.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref]

Kuettner, K. E.

B. L. Schumacher, C. E. Hughes, K. E. Kuettner, B. Caterson, and M. B. Aydelotte, “Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints,” J. Orthop. Res. 17(1), 110–120 (1999).
[Crossref]

C. R. Flannery, C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson, “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochem. Biophys. Res. Commun. 254(3), 535–541 (1999).
[Crossref]

Kumar, D.

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

Lammi, M. J.

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

Långsjö, T. K.

T. K. Långsjö, J. Rieppo, A. Pelttari, N. Oksala, V. Kovanen, and H. J. Helminen, “Collagenase-induced changes in articular cartilage as detected by electron-microscopic stereology, quantitative polarized light microscopy and biochemical assays,” Cells Tissues Organs 172(4), 265–275 (2002).
[Crossref]

H. E. Panula, M. M. Hyttinen, J. P. A. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref]

Lapveteläinen, T.

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
[Crossref]

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329 (2002).
[Crossref]

Lemaillet, P.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

Leo, B. M.

B. M. Leo, M. A. Turner, and D. R. Diduch, “Split-line pattern and histologic analysis of a human osteochondral plug graft,” Arthrosc. - J. Arthrosc. Relat. Surg. 20(6), 39–45 (2004).
[Crossref]

Li, X.

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Link, T. M.

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

Lippiello, L.

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Jt. Surg. 53(3), 523–537 (1971).
[Crossref]

Lodge, M. B.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Longstaff, I. D.

R. F. Walker, P. Jackway, and I. D. Longstaff, “Improving Co-occurrence Matrix Feature Discrimination,” in DICTA ‘95, 3rd Conference on Digital Image Computing: Techniques and Application (1995), pp. 643–648.

Lotz, M. K.

S. P. Grogan, S. F. Duffy, C. Pauli, J. A. Koziol, A. I. Su, D. D. D’Lima, and M. K. Lotz, “Zone-specific gene expression patterns in articular cartilage,” Arthritis Rheum. 65(2), 418–428 (2013).
[Crossref]

Lu, Z.

MacCallum, R. C.

J. K. Ford, R. C. MacCallum, and M. Tait, “The Application of Exploratory Factor Analysis in Applied Psychology: A Critical Review and Analysis,” Pers. Psychol. 39(2), 291–314 (1986).
[Crossref]

Maierl, J.

P. BÖttcher, M. Zeissler, J. Maierl, V. Grevel, and G. Oechtering, “Mapping of split-line pattern and cartilage thickness of selected donor and recipient sites for autologous osteochondral transplantation in the canine stifle joint,” Vet. Surg. 38(6), 696–704 (2009).
[Crossref]

Majumdar, S.

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

Mäkitalo, J.

S. Saarakkala, P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen, “Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics,” Osteoarthr. Cartil. 18(1), 73–81 (2010).
[Crossref]

Malda, J.

T. J. Klein, J. Malda, R. L. Sah, and D. W. Hutmacher, “Tissue engineering of articular cartilage with biomimetic zones,” Tissue Eng., Part B 15(2), 143–157 (2009).
[Crossref]

Manicourt, D. H.

S. Akizuki, V. C. Mow, F. Muller, J. C. Pita, D. S. Howell, and D. H. Manicourt, “Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus,” J. Orthop. Res. 4(4), 379–392 (1986).
[Crossref]

Mankin, H. J.

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Jt. Surg. 53(3), 523–537 (1971).
[Crossref]

Martin, S.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Marzo, J.

L. Bisson, V. Brahmabhatt, and J. Marzo, “Split-line orientation of the talar dome articular cartilage,” Arthrosc. - J. Arthrosc. Relat. Surg. 21(5), 570–573 (2005).
[Crossref]

Matcher, S. J.

Z. Lu, D. Kasaragod, and S. J. Matcher, “Conical scan polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(3), 752–762 (2014).
[Crossref]

S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys. 105(10), 102041 (2009).
[Crossref]

N. Ugryumova, D. P. Attenburrow, C. P. Winlove, and S. J. Matcher, “The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2612–2619 (2005).
[Crossref]

Mathes, H.

H. Schneeweiss and H. Mathes, “Factor Analysis and Principal Components,” J. Multivar. Anal. 55(1), 105–124 (1995).
[Crossref]

Mauranen, K.

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

Meachim, G.

G. Meachim and I. H. Emery, “Quantitative aspects of patello femoral cartilage fibrillation in Liverpool necropsies,” Ann. Rheum. Dis. 33(1), 39–47 (1974).
[Crossref]

Mendelsohn, R.

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[Crossref]

Meng, Q.

Q. Meng, S. An, R. A. Damion, Z. Jin, R. Wilcox, J. Fisher, and A. Jones, “The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage,” J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017).
[Crossref]

Merhof, D.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref]

Méthot, S.

A. Changoor, N. Tran-Khanh, S. Méthot, M. Garon, M. B. Hurtig, M. S. Shive, and M. D. Buschmann, “A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair,” Osteoarthr. Cartil. 19(1), 126–135 (2011).
[Crossref]

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

Moger, C. J.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref]

Mow, V. C.

S. Akizuki, V. C. Mow, F. Muller, J. C. Pita, D. S. Howell, and D. H. Manicourt, “Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus,” J. Orthop. Res. 4(4), 379–392 (1986).
[Crossref]

V. Roth and V. C. Mow, “The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age,” J. Bone Jt. Surg. 62(7), 1102–1117 (1980).
[Crossref]

M. J. Askew and V. C. Mow, “The Biomechanical Function of the Collagen Fibril Ultrastructure of Articular Cartilage,” J. Biomech. Eng. 100(3), 105–115 (1978).
[Crossref]

Muller, F.

S. Akizuki, V. C. Mow, F. Muller, J. C. Pita, D. S. Howell, and D. H. Manicourt, “Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus,” J. Orthop. Res. 4(4), 379–392 (1986).
[Crossref]

Nagarajan, M. B.

M. B. Nagarajan, P. Coan, M. B. Huber, P. C. Diemoz, C. Glaser, and A. Wismuller, “Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features,” J. Digit. Imaging 27(1), 98–107 (2014).
[Crossref]

Nakamura, Y.

S. Ikegawa, M. Sano, Y. Koshizuka, and Y. Nakamura, “Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes,” Cytogenet. Genome Res. 90(3-4), 291–297 (2000).
[Crossref]

Nebelung, S.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref]

Nehmetallah, G.

R. N. Huynh, G. Nehmetallah, and C. B. Raub, “Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy,” J. Biomed. Opt. 22(6), 065001 (2017).
[Crossref]

Nelea, M.

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

Novakofski, K. D.

K. D. Novakofski, S. L. Pownder, M. F. Koff, R. M. Williams, H. G. Potter, and L. A. Fortier, “High-Resolution Methods for Diagnosing Cartilage Damage In Vivo,” Cartilage 7(1), 39–51 (2016).
[Crossref]

Nugent-Derfus, G. E.

W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
[Crossref]

Oechtering, G.

P. BÖttcher, M. Zeissler, J. Maierl, V. Grevel, and G. Oechtering, “Mapping of split-line pattern and cartilage thickness of selected donor and recipient sites for autologous osteochondral transplantation in the canine stifle joint,” Vet. Surg. 38(6), 696–704 (2009).
[Crossref]

Oksala, N.

T. K. Långsjö, J. Rieppo, A. Pelttari, N. Oksala, V. Kovanen, and H. J. Helminen, “Collagenase-induced changes in articular cartilage as detected by electron-microscopic stereology, quantitative polarized light microscopy and biochemical assays,” Cells Tissues Organs 172(4), 265–275 (2002).
[Crossref]

Ostergaard, K.

K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
[Crossref]

Panula, H. E.

H. E. Panula, M. M. Hyttinen, J. P. A. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref]

Parkkinen, J. J.

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
[Crossref]

Pauli, C.

S. P. Grogan, S. F. Duffy, C. Pauli, J. A. Koziol, A. I. Su, D. D. D’Lima, and M. K. Lotz, “Zone-specific gene expression patterns in articular cartilage,” Arthritis Rheum. 65(2), 418–428 (2013).
[Crossref]

Peavy, G. M.

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus,” J. Biomed. Opt. 11(6), 064001 (2006).
[Crossref]

Pelletier, J. P.

K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
[Crossref]

Pelttari, A.

T. K. Långsjö, J. Rieppo, A. Pelttari, N. Oksala, V. Kovanen, and H. J. Helminen, “Collagenase-induced changes in articular cartilage as detected by electron-microscopic stereology, quantitative polarized light microscopy and biochemical assays,” Cells Tissues Organs 172(4), 265–275 (2002).
[Crossref]

H. E. Panula, M. M. Hyttinen, J. P. A. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref]

Pfeiffer, F. M.

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref]

Pita, J. C.

S. Akizuki, V. C. Mow, F. Muller, J. C. Pita, D. S. Howell, and D. H. Manicourt, “Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus,” J. Orthop. Res. 4(4), 379–392 (1986).
[Crossref]

Pitris, C.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Potter, H. G.

K. D. Novakofski, S. L. Pownder, M. F. Koff, R. M. Williams, H. G. Potter, and L. A. Fortier, “High-Resolution Methods for Diagnosing Cartilage Damage In Vivo,” Cartilage 7(1), 39–51 (2016).
[Crossref]

Pownder, S. L.

K. D. Novakofski, S. L. Pownder, M. F. Koff, R. M. Williams, H. G. Potter, and L. A. Fortier, “High-Resolution Methods for Diagnosing Cartilage Damage In Vivo,” Cartilage 7(1), 39–51 (2016).
[Crossref]

Pritzker, K. P. H.

K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
[Crossref]

Ramella-Roman, J. C.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329 (2002).
[Crossref]

S. L. Jacques and J. C. Ramella-Roman, “Propagation of polarized light beams through biological tissues,” Proc. SPIE 3914, 345 (2000).
[Crossref]

Raub, C. B.

R. N. Huynh, G. Nehmetallah, and C. B. Raub, “Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy,” J. Biomed. Opt. 22(6), 065001 (2017).
[Crossref]

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
[Crossref]

Ravanfar, M.

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref]

Restrepo, A.

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

Revell, K.

K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
[Crossref]

Rieppo, J.

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref]

T. K. Långsjö, J. Rieppo, A. Pelttari, N. Oksala, V. Kovanen, and H. J. Helminen, “Collagenase-induced changes in articular cartilage as detected by electron-microscopic stereology, quantitative polarized light microscopy and biochemical assays,” Cells Tissues Organs 172(4), 265–275 (2002).
[Crossref]

Rodeo, S.

D. Dare and S. Rodeo, “Mechanisms of Post-traumatic Osteoarthritis After ACL Injury,” Curr. Rheumatol. Rep. 16(10), 448 (2014).
[Crossref]

Rodeo, S. A.

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
[Crossref]

Roth, V.

V. Roth and V. C. Mow, “The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age,” J. Bone Jt. Surg. 62(7), 1102–1117 (1980).
[Crossref]

Roussel, S.

S. L. Jacques, S. Roussel, and R. Samatham, “Polarized light imaging specifies the anisotropy of light scattering in the superficial layer of a tissue,” J. Biomed. Opt. 21(7), 071115 (2016).
[Crossref]

Rutgers, M.

M. Rutgers, M. J. P. Van Pelt, W. J. A. Dhert, L. B. Creemers, and D. B. F. Saris, “Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage,” Osteoarthr. Cartil. 18(1), 12–23 (2010).
[Crossref]

Saarakkala, S.

S. Saarakkala, P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen, “Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics,” Osteoarthr. Cartil. 18(1), 73–81 (2010).
[Crossref]

Sah, R. L.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
[Crossref]

T. J. Klein, J. Malda, R. L. Sah, and D. W. Hutmacher, “Tissue engineering of articular cartilage with biomimetic zones,” Tissue Eng., Part B 15(2), 143–157 (2009).
[Crossref]

W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
[Crossref]

Salter, D.

K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
[Crossref]

Samatham, R.

S. L. Jacques, S. Roussel, and R. Samatham, “Polarized light imaging specifies the anisotropy of light scattering in the superficial layer of a tissue,” J. Biomed. Opt. 21(7), 071115 (2016).
[Crossref]

Sano, M.

S. Ikegawa, M. Sano, Y. Koshizuka, and Y. Nakamura, “Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes,” Cytogenet. Genome Res. 90(3-4), 291–297 (2000).
[Crossref]

Saris, D. B. F.

M. Rutgers, M. J. P. Van Pelt, W. J. A. Dhert, L. B. Creemers, and D. B. F. Saris, “Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage,” Osteoarthr. Cartil. 18(1), 12–23 (2010).
[Crossref]

Saunders, K.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Schmitt, R.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref]

Schneeweiss, H.

H. Schneeweiss and H. Mathes, “Factor Analysis and Principal Components,” J. Multivar. Anal. 55(1), 105–124 (1995).
[Crossref]

Schooler, J.

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

Schumacher, B. L.

B. L. Schumacher, C. E. Hughes, K. E. Kuettner, B. Caterson, and M. B. Aydelotte, “Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints,” J. Orthop. Res. 17(1), 110–120 (1999).
[Crossref]

C. R. Flannery, C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson, “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochem. Biophys. Res. Commun. 254(3), 535–541 (1999).
[Crossref]

Semler, E. J.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
[Crossref]

Shanmugam, K.

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Trans. Syst., Man, Cybern. SMC-3(6), 610–621 (1973).
[Crossref]

Shirazi, R.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
[Crossref]

Shive, M. S.

A. Changoor, N. Tran-Khanh, S. Méthot, M. Garon, M. B. Hurtig, M. S. Shive, and M. D. Buschmann, “A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair,” Osteoarthr. Cartil. 19(1), 126–135 (2011).
[Crossref]

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

Shupp, J. W.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

Singh, J.

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

Smolinski, P.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref]

Sophia Fox, A. J.

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
[Crossref]

Souza, R. B.

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

Stamper, D.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Studer, R. K.

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12(5), 051703 (2007).
[Crossref]

Su, A. I.

S. P. Grogan, S. F. Duffy, C. Pauli, J. A. Koziol, A. I. Su, D. D. D’Lima, and M. K. Lotz, “Zone-specific gene expression patterns in articular cartilage,” Arthritis Rheum. 65(2), 418–428 (2013).
[Crossref]

Subburaj, K.

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

Szczodry, M.

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref]

Tait, M.

J. K. Ford, R. C. MacCallum, and M. Tait, “The Application of Exploratory Factor Analysis in Applied Psychology: A Critical Review and Analysis,” Pers. Psychol. 39(2), 291–314 (1986).
[Crossref]

Tammi, M. I.

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

Temple-Wong, M. M.

W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
[Crossref]

Thambyah, A.

A. Thambyah and N. Broom, “Micro-anatomical response of cartilage-on-bone to compression: Mechanisms of deformation within and beyond the directly loaded matrix,” J. Anat. 209(5), 611–622 (2006).
[Crossref]

Tingart, M.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref]

Törrönen, K.

K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
[Crossref]

Torzilli, P. A.

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[Crossref]

Tran-Khanh, N.

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

A. Changoor, N. Tran-Khanh, S. Méthot, M. Garon, M. B. Hurtig, M. S. Shive, and M. D. Buschmann, “A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair,” Osteoarthr. Cartil. 19(1), 126–135 (2011).
[Crossref]

Truhn, D.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref]

Tudor, D.

C. R. Flannery, C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson, “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochem. Biophys. Res. Commun. 254(3), 535–541 (1999).
[Crossref]

Turner, M. A.

B. M. Leo, M. A. Turner, and D. R. Diduch, “Split-line pattern and histologic analysis of a human osteochondral plug graft,” Arthrosc. - J. Arthrosc. Relat. Surg. 20(6), 39–45 (2004).
[Crossref]

Ugryumova, N.

N. Ugryumova, D. P. Attenburrow, C. P. Winlove, and S. J. Matcher, “The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2612–2619 (2005).
[Crossref]

van den Berg, W. B.

K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
[Crossref]

Van Pelt, M. J. P.

M. Rutgers, M. J. P. Van Pelt, W. J. A. Dhert, L. B. Creemers, and D. B. F. Saris, “Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage,” Osteoarthr. Cartil. 18(1), 12–23 (2010).
[Crossref]

Venna, S. S.

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

Walker, R. F.

R. F. Walker, P. Jackway, and I. D. Longstaff, “Improving Co-occurrence Matrix Feature Discrimination,” in DICTA ‘95, 3rd Conference on Digital Image Computing: Techniques and Application (1995), pp. 643–648.

Walter, N.

S. Below, S. P. Arnoczky, J. Dodds, C. Kooima, and N. Walter, “The split-line pattern of the distal femur: A consideration in the orientation of autologous cartilage grafts,” Arthroscopy 18(6), 613–617 (2002).
[Crossref]

Wang, Q.

S.-Z. Wang, Y.-P. Huang, Q. Wang, Y.-P. Zheng, and Y.-H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[Crossref]

Wang, S.-Z.

S.-Z. Wang, Y.-P. Huang, Q. Wang, Y.-P. Zheng, and Y.-H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[Crossref]

Wang, Y.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref]

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347 (2015).
[Crossref]

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843 (2014).
[Crossref]

Wasala, N. B.

West, P.

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[Crossref]

Wilcox, R.

Q. Meng, S. An, R. A. Damion, Z. Jin, R. Wilcox, J. Fisher, and A. Jones, “The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage,” J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017).
[Crossref]

Williams, R. M.

K. D. Novakofski, S. L. Pownder, M. F. Koff, R. M. Williams, H. G. Potter, and L. A. Fortier, “High-Resolution Methods for Diagnosing Cartilage Damage In Vivo,” Cartilage 7(1), 39–51 (2016).
[Crossref]

Winlove, C. P.

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref]

N. Ugryumova, D. P. Attenburrow, C. P. Winlove, and S. J. Matcher, “The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2612–2619 (2005).
[Crossref]

Wirtz, M.

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref]

Wismuller, A.

M. B. Nagarajan, P. Coan, M. B. Huber, P. C. Diemoz, C. Glaser, and A. Wismuller, “Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features,” J. Digit. Imaging 27(1), 98–107 (2014).
[Crossref]

Wong, V. W.

W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
[Crossref]

Woo, S.L-Y.

S.L-Y. Woo, W. H. Akeson, and G. F. Jemmott, “Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension,” J. Biomech. 9(12), 785–791 (1976).
[Crossref]

Wu, J. P.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref]

J. P. Wu, T. B. Kirk, and M. H. Zheng, “Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique,” J. Orthop. Surg. Res. 3(1), 1–11 (2008).
[Crossref]

Xiang, C.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref]

Xie, T.

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus,” J. Biomed. Opt. 11(6), 064001 (2006).
[Crossref]

Xu, J.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref]

Yang, X.

X. Bi, X. Yang, M. P. G. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta, Biomembr. 1758(7), 934–941 (2006).
[Crossref]

Yao, G.

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref]

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347 (2015).
[Crossref]

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843 (2014).
[Crossref]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415 (2012).
[Crossref]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

Yao, X.

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref]

Y. Wang, K. Zhang, N. B. Wasala, X. Yao, D. Duan, and G. Yao, “Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography,” Biomed. Opt. Express 5(8), 2843 (2014).
[Crossref]

Zarins, A.

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Jt. Surg. 53(3), 523–537 (1971).
[Crossref]

Zeissler, M.

P. BÖttcher, M. Zeissler, J. Maierl, V. Grevel, and G. Oechtering, “Mapping of split-line pattern and cartilage thickness of selected donor and recipient sites for autologous osteochondral transplantation in the canine stifle joint,” Vet. Surg. 38(6), 696–704 (2009).
[Crossref]

Zhang, J.

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus,” J. Biomed. Opt. 11(6), 064001 (2006).
[Crossref]

Zhang, K.

Zheng, M. H.

J. P. Wu, T. B. Kirk, and M. H. Zheng, “Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique,” J. Orthop. Surg. Res. 3(1), 1–11 (2008).
[Crossref]

Zheng, Y.-P.

S.-Z. Wang, Y.-P. Huang, Q. Wang, Y.-P. Zheng, and Y.-H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[Crossref]

Anat. Embryol. (1)

A. Benninghoff, “Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion,” Anat. Embryol. 76(1-3), 43–63 (1925).
[Crossref]

Anat. Rec. (1)

K. Király, M. M. Hyttinen, J. J. Parkkinen, J. A. Arokoski, T. Lapveteläinen, K. Törrönen, I. Kiviranta, and H. J. Helminen, “Cartilage collagen birefringence is altered concurrent with changes in proteoglycan synthesis during dynamic in vitro loading,” Anat. Rec. 251(1), 28–36 (1998).
[Crossref]

Ann. Rheum. Dis. (2)

H. E. Panula, M. M. Hyttinen, J. P. A. Arokoski, T. K. Långsjö, A. Pelttari, I. Kiviranta, and H. J. Helminen, “Articular cartilage superficial zone collagen birefringence reduced and cartilage thickness increased before surface fibrillation in experimental osteoarthritis,” Ann. Rheum. Dis. 57(4), 237–245 (1998).
[Crossref]

G. Meachim and I. H. Emery, “Quantitative aspects of patello femoral cartilage fibrillation in Liverpool necropsies,” Ann. Rheum. Dis. 33(1), 39–47 (1974).
[Crossref]

Arthritis Res. Ther. (1)

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref]

Arthritis Rheum. (1)

S. P. Grogan, S. F. Duffy, C. Pauli, J. A. Koziol, A. I. Su, D. D. D’Lima, and M. K. Lotz, “Zone-specific gene expression patterns in articular cartilage,” Arthritis Rheum. 65(2), 418–428 (2013).
[Crossref]

Arthrosc. - J. Arthrosc. Relat. Surg. (2)

B. M. Leo, M. A. Turner, and D. R. Diduch, “Split-line pattern and histologic analysis of a human osteochondral plug graft,” Arthrosc. - J. Arthrosc. Relat. Surg. 20(6), 39–45 (2004).
[Crossref]

L. Bisson, V. Brahmabhatt, and J. Marzo, “Split-line orientation of the talar dome articular cartilage,” Arthrosc. - J. Arthrosc. Relat. Surg. 21(5), 570–573 (2005).
[Crossref]

Arthroscopy (1)

S. Below, S. P. Arnoczky, J. Dodds, C. Kooima, and N. Walter, “The split-line pattern of the distal femur: A consideration in the orientation of autologous cartilage grafts,” Arthroscopy 18(6), 613–617 (2002).
[Crossref]

Biochem. Biophys. Res. Commun. (1)

C. R. Flannery, C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson, “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochem. Biophys. Res. Commun. 254(3), 535–541 (1999).
[Crossref]

Biochim. Biophys. Acta, Biomembr. (1)

X. Bi, X. Yang, M. P. G. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta, Biomembr. 1758(7), 934–941 (2006).
[Crossref]

Biomed. Opt. Express (3)

Biopolymers (1)

N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001).
[Crossref]

Cartilage (1)

K. D. Novakofski, S. L. Pownder, M. F. Koff, R. M. Williams, H. G. Potter, and L. A. Fortier, “High-Resolution Methods for Diagnosing Cartilage Damage In Vivo,” Cartilage 7(1), 39–51 (2016).
[Crossref]

Cells Tissues Organs (1)

T. K. Långsjö, J. Rieppo, A. Pelttari, N. Oksala, V. Kovanen, and H. J. Helminen, “Collagenase-induced changes in articular cartilage as detected by electron-microscopic stereology, quantitative polarized light microscopy and biochemical assays,” Cells Tissues Organs 172(4), 265–275 (2002).
[Crossref]

Connect. Tissue Res. (1)

S.-Z. Wang, Y.-P. Huang, Q. Wang, Y.-P. Zheng, and Y.-H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010).
[Crossref]

Curr. Rheumatol. Rep. (1)

D. Dare and S. Rodeo, “Mechanisms of Post-traumatic Osteoarthritis After ACL Injury,” Curr. Rheumatol. Rep. 16(10), 448 (2014).
[Crossref]

Cytogenet. Genome Res. (1)

S. Ikegawa, M. Sano, Y. Koshizuka, and Y. Nakamura, “Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes,” Cytogenet. Genome Res. 90(3-4), 291–297 (2000).
[Crossref]

IEEE Trans. Syst., Man, Cybern. (1)

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Trans. Syst., Man, Cybern. SMC-3(6), 610–621 (1973).
[Crossref]

J. Anat. (2)

A. Thambyah and N. Broom, “Micro-anatomical response of cartilage-on-bone to compression: Mechanisms of deformation within and beyond the directly loaded matrix,” J. Anat. 209(5), 611–622 (2006).
[Crossref]

J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat. 171, 117–130 (1990).

J. Appl. Phys. (1)

S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys. 105(10), 102041 (2009).
[Crossref]

J. Biomech. (1)

S.L-Y. Woo, W. H. Akeson, and G. F. Jemmott, “Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension,” J. Biomech. 9(12), 785–791 (1976).
[Crossref]

J. Biomech. Eng. (2)

M. J. Askew and V. C. Mow, “The Biomechanical Function of the Collagen Fibril Ultrastructure of Articular Cartilage,” J. Biomech. Eng. 100(3), 105–115 (1978).
[Crossref]

C. J. Moger, K. P. Arkill, R. Barrett, P. Bleuet, R. E. Ellis, E. M. Green, and C. P. Winlove, “Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading,” J. Biomech. Eng. 131(3), 031008 (2009).
[Crossref]

J. Biomed. Opt. (10)

C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, “Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,” J. Biomed. Opt. 12(5), 051703 (2007).
[Crossref]

T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus,” J. Biomed. Opt. 11(6), 064001 (2006).
[Crossref]

N. Brill, M. Wirtz, D. Merhof, M. Tingart, H. Jahr, D. Truhn, R. Schmitt, and S. Nebelung, “Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration,” J. Biomed. Opt. 21(7), 076013 (2016).
[Crossref]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

X. Yao, Y. Wang, M. Ravanfar, F. M. Pfeiffer, D. Duan, and G. Yao, “Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography,” J. Biomed. Opt. 21(11), 116004 (2016).
[Crossref]

M. Ravanfar, F. M. Pfeiffer, C. C. Bozynski, Y. Wang, and G. Yao, “Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography,” J. Biomed. Opt. 22(12), 1 (2017).
[Crossref]

R. N. Huynh, G. Nehmetallah, and C. B. Raub, “Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy,” J. Biomed. Opt. 22(6), 065001 (2017).
[Crossref]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329 (2002).
[Crossref]

S. L. Jacques, S. Roussel, and R. Samatham, “Polarized light imaging specifies the anisotropy of light scattering in the superficial layer of a tissue,” J. Biomed. Opt. 21(7), 071115 (2016).
[Crossref]

P. Ghassemi, P. Lemaillet, T. A. Germer, J. W. Shupp, S. S. Venna, M. E. Boisvert, K. E. Flanagan, M. H. Jordan, and J. C. Ramella-Roman, “Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis,” J. Biomed. Opt. 17(7), 0760141 (2012).
[Crossref]

J. Biophotonics (1)

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

J. Bone Jt. Surg. (2)

H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” J. Bone Jt. Surg. 53(3), 523–537 (1971).
[Crossref]

V. Roth and V. C. Mow, “The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age,” J. Bone Jt. Surg. 62(7), 1102–1117 (1980).
[Crossref]

J. Digit. Imaging (1)

M. B. Nagarajan, P. Coan, M. B. Huber, P. C. Diemoz, C. Glaser, and A. Wismuller, “Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features,” J. Digit. Imaging 27(1), 98–107 (2014).
[Crossref]

J. Mech. Behav. Biomed. Mater. (2)

V. Klika, E. A. Gaffney, Y. C. Chen, and C. P. Brown, “An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology,” J. Mech. Behav. Biomed. Mater. 62, 139–157 (2016).
[Crossref]

Q. Meng, S. An, R. A. Damion, Z. Jin, R. Wilcox, J. Fisher, and A. Jones, “The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage,” J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017).
[Crossref]

J. Multivar. Anal. (1)

H. Schneeweiss and H. Mathes, “Factor Analysis and Principal Components,” J. Multivar. Anal. 55(1), 105–124 (1995).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Orthop. Res. (3)

S. Akizuki, V. C. Mow, F. Muller, J. C. Pita, D. S. Howell, and D. H. Manicourt, “Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus,” J. Orthop. Res. 4(4), 379–392 (1986).
[Crossref]

B. L. Schumacher, C. E. Hughes, K. E. Kuettner, B. Caterson, and M. B. Aydelotte, “Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints,” J. Orthop. Res. 17(1), 110–120 (1999).
[Crossref]

D. Bear, “Optical Coherence Tomography Grading Correlates with MRI T2 Mapping and Extracellular Matrix Content,” J. Orthop. Res. 28(4), 546–552 (2009).
[Crossref]

J. Orthop. Surg. Res. (1)

J. P. Wu, T. B. Kirk, and M. H. Zheng, “Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique,” J. Orthop. Surg. Res. 3(1), 1–11 (2008).
[Crossref]

J. Orthop. Trauma (1)

D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, “Optical coherence tomography detection of subclinical traumatic cartilage injury,” J. Orthop. Trauma 24(9), 577–582 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

N. Ugryumova, D. P. Attenburrow, C. P. Winlove, and S. J. Matcher, “The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2612–2619 (2005).
[Crossref]

J. Rheumatol. (1)

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28(6), 1311–1318 (2001).

Microsc. Res. Tech. (1)

J. Rieppo, J. Hallikainen, J. S. Jurvelin, I. Kiviranta, H. J. Helminen, and M. M. Hyttinen, “Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage,” Microsc. Res. Tech. 71(4), 279–287 (2008).
[Crossref]

Opt. Lett. (1)

Osteoarthr. Cartil. (10)

S. Saarakkala, P. Julkunen, P. Kiviranta, J. Mäkitalo, J. S. Jurvelin, and R. K. Korhonen, “Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics,” Osteoarthr. Cartil. 18(1), 73–81 (2010).
[Crossref]

W. C. Bae, V. W. Wong, J. Hwang, J. M. Antonacci, G. E. Nugent-Derfus, M. E. Blewis, M. M. Temple-Wong, and R. L. Sah, “Wear-lines and split-lines of human patellar cartilage: relation to tensile biomechanical properties,” Osteoarthr. Cartil. 16(7), 841–845 (2008).
[Crossref]

M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen, M. J. Lammi, T. Lapveteläinen, K. Mauranen, K. Király, M. I. Tammi, and H. J. Helminen, “Age matters: Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthr. Cartil. 9(8), 694–701 (2001).
[Crossref]

K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, K. Revell, D. Salter, and W. B. van den Berg, “Osteoarthritis cartilage histopathology: Grading and staging,” Osteoarthr. Cartil. 14(1), 13–29 (2006).
[Crossref]

M. Rutgers, M. J. P. Van Pelt, W. J. A. Dhert, L. B. Creemers, and D. B. F. Saris, “Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage,” Osteoarthr. Cartil. 18(1), 12–23 (2010).
[Crossref]

A. Changoor, M. Nelea, S. Méthot, N. Tran-Khanh, A. Chevrier, A. Restrepo, M. S. Shive, C. D. Hoemann, and M. D. Buschmann, “Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning electron microscopies,” Osteoarthr. Cartil. 19(12), 1458–1468 (2011).
[Crossref]

A. Changoor, N. Tran-Khanh, S. Méthot, M. Garon, M. B. Hurtig, M. S. Shive, and M. D. Buschmann, “A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair,” Osteoarthr. Cartil. 19(1), 126–135 (2011).
[Crossref]

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthr. Cartil. 21(6), 860–868 (2013).
[Crossref]

R. B. Souza, D. Kumar, N. Calixto, J. Singh, J. Schooler, K. Subburaj, X. Li, T. M. Link, and S. Majumdar, “Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis,” Osteoarthr. Cartil. 22(10), 1367–1376 (2014).
[Crossref]

N. Hafezi-Nejad, S. Demehri, A. Guermazi, and J. A. Carrino, “Osteoarthritis year in review 2017: updates on imaging advancements,” Osteoarthr. Cartil. 26(3), 341–349 (2018).
[Crossref]

Pers. Psychol. (1)

J. K. Ford, R. C. MacCallum, and M. Tait, “The Application of Exploratory Factor Analysis in Applied Psychology: A Critical Review and Analysis,” Pers. Psychol. 39(2), 291–314 (1986).
[Crossref]

Proc. R. Soc. Lond. B (1)

R. M. Aspden and D. W. L. Hukins, “Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function,” Proc. R. Soc. Lond. B 212(1188), 299–304 (1981).
[Crossref]

Proc. SPIE (1)

S. L. Jacques and J. C. Ramella-Roman, “Propagation of polarized light beams through biological tissues,” Proc. SPIE 3914, 345 (2000).
[Crossref]

Sports Health (1)

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
[Crossref]

Stat. Methods Med. Res. (1)

I. T. Jolliffe, “Principal Component Analysis and Factor Analysis,” Stat. Methods Med. Res. 1(1), 69–95 (1992).
[Crossref]

Tissue Eng., Part B (1)

T. J. Klein, J. Malda, R. L. Sah, and D. W. Hutmacher, “Tissue engineering of articular cartilage with biomimetic zones,” Tissue Eng., Part B 15(2), 143–157 (2009).
[Crossref]

Vet. Surg. (1)

P. BÖttcher, M. Zeissler, J. Maierl, V. Grevel, and G. Oechtering, “Mapping of split-line pattern and cartilage thickness of selected donor and recipient sites for autologous osteochondral transplantation in the canine stifle joint,” Vet. Surg. 38(6), 696–704 (2009).
[Crossref]

Other (2)

R. F. Walker, P. Jackway, and I. D. Longstaff, “Improving Co-occurrence Matrix Feature Discrimination,” in DICTA ‘95, 3rd Conference on Digital Image Computing: Techniques and Application (1995), pp. 643–648.

J. Cabrera, “Texture Analyzer,” https://imagej.nih.gov/ij/plugins/texture.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of experimental flow.
Fig. 2.
Fig. 2. Split-line and co-registered Pol texture orientation. (A) Representative co-localized split line (A, first row) and Pol images (A, second row), corresponding to locations 1-5 in (B). All OC cores were taken from the indicated regions of lateral (L) and medial (M) femoral condyles with a cylindrical core drillbit, and imaged in the center. (C) Comparison of split line and birefringence texture orientation, n = 30 OC cores, with cores 11-30 from L and M sites, but not in order as cores 1-10.
Fig. 3.
Fig. 3. SZ thickness and Pol correlation regarding to scrape level. Maximum intensity polarization maps derived from explant transverse sections were co-registered with their en face polarized reflectance at various number of scrapes. Correlation plot of SZ thickness and Pol average every 200 µm across explants were generated. (A,B) Representative intact explant’s transverse section and Pol map. (C,D) Larger magnification revealed smooth superficial surface and (E) high correlation between Pol and SZ thickness. (F,G) Representative 5-scraped explant transverse section and Pol map. Magnified sections displayed (H) ruptured or (I) lost superficial zone and (J) the relationship of Pol vs SZ thickness was weakened.
Fig. 4.
Fig. 4. Effects of explant thickness on Pol values. Representative explant Pol map (A) before and (B) after bisection. (C) Mean Pol for n = 14 explants, and (D) bar graph of group averages (Student’s paired t-test, p < 0.001).
Fig. 5.
Fig. 5. Chondrocyte organization in the superficial zone. (A,D) Representative Pol and (B,E) co-registered DAPI epifluorescence micrographs; (C,F) overlay of DAPI on Pol contrast map. Chondrocytes were distributed either in strings (dashed yellow box) or pairs and groups (dashed red circle).
Fig. 6.
Fig. 6. Multiple linear regression of Pol on number of scrapes at 0, 1, and 3 (K); SZ thickness (SZT); and total thickness (TT). (A) Comparison between estimated Pol produced by multiple linear regression versus actual Pol, (B) residual plot estimated from regression, and (C,D) relationship of Pol with SZ thickness and total thickness, including the regression equation (red box).
Fig. 7.
Fig. 7. Image texture analysis using Fourier transforms (FTs). Representative analyses of (A-D) untreated, (E-H) collagenase-treated, and (I-L) scraped explants. (B,F,J) Thresholded FTs were used to calculate (C,G,K) ellipses with identical second-order image moments. (D,H,L) Distributions of eccentricity for control, collagenase-treated and scraped explants (n = 20 explants/group).
Fig. 8.
Fig. 8. GLCM texture parameters for control and scraped explants optimization. (A) representative of normalized difference between control & scraped explants (upper right) across all GLCM parameters and (B,C) each individual parameter.
Fig. 9.
Fig. 9. (A) Predicted scores from factor analysis for scraped (gray circles) vs. collagenase-treated (black diamonds) explants based on 9 parameters derived from Pol maps. (B) The nine parameters (blue circles connected to the origin) and scores were normalized to plot them on the same axes, showing their relative contributions to factors 1 and 2. Normalized prediction scores from all explants are plotted as gray circles.

Tables (1)

Tables Icon

Table 1. Pearson’s correlation and slope of Pol vs SZ thickness varied with scrapes

Metrics