Abstract

We propose a snapshot hyperspectral imaging system and methods for skin morphological feature analysis and real-time monitoring of skin activities. The analysis method includes a strategy using weighted subtractions between sub-channel images to extract absorption information due to specific chromophores within skin tissue, for example hemoglobin and melanin. Based on morphological analysis results, we carry out real-time monitoring of the skin features to verify the ability of this method to provide temporal responses of the skin tissue activities, which is experimentally shown to be useful in the measurement of heartrate, monitoring of the tissue recovery after a body exercise, and studying of the tissue response due to a vascular occlusion. Compared to conventional multispectral imaging system, the proposed system improves the device simplicity and is immune to motion artifacts. Coupled with the extraction algorithms, the hyperspectral imaging promises a robust skin assessment tool with abilities for qualitative visualization and potentially quantitative analysis of skin features, useful in the applications of cosmetics and clinical dermatology.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light

Xinlin Chen, Weihao Lin, Chenge Wang, Shaoheng Chen, Jing Sheng, Bixin Zeng, and M. Xu
Biomed. Opt. Express 8(12) 5468-5482 (2017)

Data-driven imaging of tissue inflammation using RGB-based hyperspectral reconstruction toward personal monitoring of dermatologic health

Taehoon Kim, Michelle A. Visbal-Onufrak, Raymond L. Konger, and Young L. Kim
Biomed. Opt. Express 8(11) 5282-5296 (2017)

Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope

Dimitrios Kapsokalyvas, Nicola Bruscino, Domenico Alfieri, Vincenzo de Giorgi, Giovanni Cannarozzo, Riccardo Cicchi, Daniela Massi, Nicola Pimpinelli, and Francesco S. Pavone
Opt. Express 21(4) 4826-4840 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. Kim, S. H. Lee, C. J. Yoon, Y. S. Gho, G. O. Ahn, and K. H. Kim, “In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy,” Biomed. Opt. Express 6(7), 2512–2521 (2015).
    [Crossref]
  2. R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
    [Crossref]
  3. F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
    [Crossref]
  4. S. C. Kellett and D. J. Gawkrodger, “The psychological and emotional impact of acne and the effect of treatment with isotretinoin,” Br. J. Dermatol. 140(2), 273–282 (1999).
    [Crossref]
  5. F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis,” Sci. Rep. 4(1), 4924 (2015).
    [Crossref]
  6. A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
    [Crossref]
  7. C. F. Rosen, S. L. Jacques, M. E. Stuart, and R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of action spectrum,” Photochem. Photobiol. 51(5), 583–588 (1990).
    [Crossref]
  8. F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
    [Crossref]
  9. A. J. Deegan and R. K. Wang, “Microvascular imaging of the skin,” Phys. Med. Biol. 64(7), 07TR01 (2019).
    [Crossref]
  10. P. Ghassemi, T. E. Travis, L. T. Moffatt, J. W. Shupp, and J. C. Ramella-Roman, “A polarized multispectral imaging system for quantitative assessment of hypertrophic scars,” Biomed. Opt. Express 5(10), 3337–3354 (2014).
    [Crossref]
  11. A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express 18(4), 3244–3257 (2010).
    [Crossref]
  12. S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, D. L. Farkas, and J. Y. Hwang, “Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis,” Biomed. Opt. Express 7(12), 5294–5307 (2016).
    [Crossref]
  13. J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
    [Crossref]
  14. I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).
    [Crossref]
  15. I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, and J. Spigulis, “Clinical evaluation of melanomas and common nevi by spectral imaging,” Biomed. Opt. Express 3(3), 467–472 (2012).
    [Crossref]
  16. J. Spigulis, “Multispectral, fluorescent and photoplethysmographic imaging for remote skin assessment,” Sensors 17(5), 1165 (2017).
    [Crossref]
  17. Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).
  18. D. Kapsokalyvas, N. Bruscino, D. Alfieri, V. de Giorgi, G. Cannarozzo, R. Cicchi, D. Massi, N. Pimpinelli, and F. S. Pavone, “Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope,” Opt. Express 21(4), 4826–4840 (2013).
    [Crossref]
  19. J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
    [Crossref]
  20. L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
    [Crossref]
  21. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  22. N. T. Clancy, S. Arya, D. Stoyanov, M. Singh, G. B. Hanna, and D. S. Elson, “Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope,” Biomed. Opt. Express 6(10), 4179–4190 (2015).
    [Crossref]
  23. D. Jakovels and J. Spigulis, “2-D mapping of skin chromophores in the spectral range 500–700 nm,” J. Biophotonics 3(3), 125–129 (2010).
    [Crossref]
  24. X. Chen, W. Lin, C. Wang, S. Chen, J. Sheng, B. Zeng, and M. Xu, “In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light,” Biomed. Opt. Express 8(12), 5468–5482 (2017).
    [Crossref]
  25. G. Zonios, J. Bykowski, and N. Kollias, “Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance Spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
    [Crossref]
  26. T. Sheng-Hao, B. Paulo, D. Anthony, and K. Nikiforos, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
    [Crossref]
  27. M. Fujiwara, S. Shun, P. K. W. Abeygunawardhana, S. Suzuki, A. Nishiyama, K. Wada, and I. Ishimaru, “Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement,” in (Optical Society of America, 953714.
  28. G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” J. Biomed. Opt. 12(5), 051603 (2007).
    [Crossref]
  29. A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol. 121(2), 259–266 (2003).
    [Crossref]
  30. P. U. Dugel and C. N. Zimmer, “Imaging of melanin disruption in age-related macular degeneration using multispectral imaging,” Ophthalmic Surg Lasers Imaging Retina 47(2), 134–141 (2016).
    [Crossref]
  31. T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
    [Crossref]
  32. J. Achten and A. E. Jeukendrup, “Heart rate monitoring,” Sports Med. 33(7), 517–538 (2003).
    [Crossref]
  33. M. P. Barbosa, N. T. da Silva, F. M. de Azevedo, C. M. Pastre, and L. C. Vanderlei, “Comparison of Polar RS 800G heart rate monitor with P olar S810 and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest,” Clin. Physiol. Funct. Imaging 36(2), 112–117 (2016).
    [Crossref]
  34. S. Benedetto, C. Caldato, E. Bazzan, D. C. Greenwood, V. Pensabene, and P. Actis, “Assessment of the Fitbit Charge 2 for monitoring heart rate,” PLoS One 13(2), e0192691 (2018).
    [Crossref]
  35. K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
    [Crossref]
  36. J. Rehak and M. Rehak, “Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities,” Curr. Eye Res. 33(2), 111–131 (2008).
    [Crossref]
  37. T. C. Pearson, “Hemorheologic considerations in the pathogenesis of vascular occlusive events in polycythemia vera,” in (Thieme Medical Publishers, Inc., 1997), pp. 433–439.
  38. R.-L. Zhang, M. Chopp, H. Chen, and J. H. Garcia, “Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat,” J. Neurol. Sci. 125(1), 3–10 (1994).
    [Crossref]
  39. J. E. Jackson, A. O. Mansfield, and D. J. Allison, “Treatment of high-flow vascular malformations by venous embolization aided by flow occlusion techniques,” Cardiovasc. Intervent. Radiol. 19(5), 323–328 (1996).
    [Crossref]
  40. P. N. Manson, K. K. Narayan, M. J. Im, G. B. Bulkley, and J. E. Hoopes, “Improved survival in free skin flap transfers in rats,” Surgery 99(2), 211–215 (1986).
  41. P. A. Magnin, E. I. McNamara, R. W. Bowden, and R. J. Solomon, “Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions,” (Google Patents, 2016).
  42. R. Hata, G. Mies, C. Wiessner, K. Fritze, D. Hesselbarth, G. Brinker, and K.-A. Hossmann, “A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging,” J. Cereb. Blood Flow Metab. 18(4), 367–375 (1998).
    [Crossref]
  43. C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
    [Crossref]

2019 (2)

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

A. J. Deegan and R. K. Wang, “Microvascular imaging of the skin,” Phys. Med. Biol. 64(7), 07TR01 (2019).
[Crossref]

2018 (2)

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

S. Benedetto, C. Caldato, E. Bazzan, D. C. Greenwood, V. Pensabene, and P. Actis, “Assessment of the Fitbit Charge 2 for monitoring heart rate,” PLoS One 13(2), e0192691 (2018).
[Crossref]

2017 (3)

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

X. Chen, W. Lin, C. Wang, S. Chen, J. Sheng, B. Zeng, and M. Xu, “In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light,” Biomed. Opt. Express 8(12), 5468–5482 (2017).
[Crossref]

J. Spigulis, “Multispectral, fluorescent and photoplethysmographic imaging for remote skin assessment,” Sensors 17(5), 1165 (2017).
[Crossref]

2016 (3)

S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, D. L. Farkas, and J. Y. Hwang, “Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis,” Biomed. Opt. Express 7(12), 5294–5307 (2016).
[Crossref]

P. U. Dugel and C. N. Zimmer, “Imaging of melanin disruption in age-related macular degeneration using multispectral imaging,” Ophthalmic Surg Lasers Imaging Retina 47(2), 134–141 (2016).
[Crossref]

M. P. Barbosa, N. T. da Silva, F. M. de Azevedo, C. M. Pastre, and L. C. Vanderlei, “Comparison of Polar RS 800G heart rate monitor with P olar S810 and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest,” Clin. Physiol. Funct. Imaging 36(2), 112–117 (2016).
[Crossref]

2015 (4)

K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
[Crossref]

N. T. Clancy, S. Arya, D. Stoyanov, M. Singh, G. B. Hanna, and D. S. Elson, “Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope,” Biomed. Opt. Express 6(10), 4179–4190 (2015).
[Crossref]

B. Kim, S. H. Lee, C. J. Yoon, Y. S. Gho, G. O. Ahn, and K. H. Kim, “In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy,” Biomed. Opt. Express 6(7), 2512–2521 (2015).
[Crossref]

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis,” Sci. Rep. 4(1), 4924 (2015).
[Crossref]

2014 (1)

2013 (2)

F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
[Crossref]

D. Kapsokalyvas, N. Bruscino, D. Alfieri, V. de Giorgi, G. Cannarozzo, R. Cicchi, D. Massi, N. Pimpinelli, and F. S. Pavone, “Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope,” Opt. Express 21(4), 4826–4840 (2013).
[Crossref]

2012 (2)

2011 (3)

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref]

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).
[Crossref]

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

2010 (4)

A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express 18(4), 3244–3257 (2010).
[Crossref]

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

D. Jakovels and J. Spigulis, “2-D mapping of skin chromophores in the spectral range 500–700 nm,” J. Biophotonics 3(3), 125–129 (2010).
[Crossref]

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

2009 (1)

2008 (1)

J. Rehak and M. Rehak, “Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities,” Curr. Eye Res. 33(2), 111–131 (2008).
[Crossref]

2007 (1)

G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” J. Biomed. Opt. 12(5), 051603 (2007).
[Crossref]

2004 (1)

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

2003 (2)

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol. 121(2), 259–266 (2003).
[Crossref]

J. Achten and A. E. Jeukendrup, “Heart rate monitoring,” Sports Med. 33(7), 517–538 (2003).
[Crossref]

2001 (1)

G. Zonios, J. Bykowski, and N. Kollias, “Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance Spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref]

1999 (1)

S. C. Kellett and D. J. Gawkrodger, “The psychological and emotional impact of acne and the effect of treatment with isotretinoin,” Br. J. Dermatol. 140(2), 273–282 (1999).
[Crossref]

1998 (1)

R. Hata, G. Mies, C. Wiessner, K. Fritze, D. Hesselbarth, G. Brinker, and K.-A. Hossmann, “A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging,” J. Cereb. Blood Flow Metab. 18(4), 367–375 (1998).
[Crossref]

1996 (1)

J. E. Jackson, A. O. Mansfield, and D. J. Allison, “Treatment of high-flow vascular malformations by venous embolization aided by flow occlusion techniques,” Cardiovasc. Intervent. Radiol. 19(5), 323–328 (1996).
[Crossref]

1994 (1)

R.-L. Zhang, M. Chopp, H. Chen, and J. H. Garcia, “Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat,” J. Neurol. Sci. 125(1), 3–10 (1994).
[Crossref]

1990 (2)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

C. F. Rosen, S. L. Jacques, M. E. Stuart, and R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of action spectrum,” Photochem. Photobiol. 51(5), 583–588 (1990).
[Crossref]

1986 (1)

P. N. Manson, K. K. Narayan, M. J. Im, G. B. Bulkley, and J. E. Hoopes, “Improved survival in free skin flap transfers in rats,” Surgery 99(2), 211–215 (1986).

Abeygunawardhana, P. K. W.

M. Fujiwara, S. Shun, P. K. W. Abeygunawardhana, S. Suzuki, A. Nishiyama, K. Wada, and I. Ishimaru, “Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement,” in (Optical Society of America, 953714.

Achten, J.

J. Achten and A. E. Jeukendrup, “Heart rate monitoring,” Sports Med. 33(7), 517–538 (2003).
[Crossref]

Actis, P.

S. Benedetto, C. Caldato, E. Bazzan, D. C. Greenwood, V. Pensabene, and P. Actis, “Assessment of the Fitbit Charge 2 for monitoring heart rate,” PLoS One 13(2), e0192691 (2018).
[Crossref]

Ahn, G. O.

Alfieri, D.

Allison, D. J.

J. E. Jackson, A. O. Mansfield, and D. J. Allison, “Treatment of high-flow vascular malformations by venous embolization aided by flow occlusion techniques,” Cardiovasc. Intervent. Radiol. 19(5), 323–328 (1996).
[Crossref]

Amyot, F.

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

Anderson, R. R.

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol. 121(2), 259–266 (2003).
[Crossref]

Anthony, D.

Aoki, H.

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

Arya, S.

Asahi, K.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Asai, J.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Barbosa, M. P.

M. P. Barbosa, N. T. da Silva, F. M. de Azevedo, C. M. Pastre, and L. C. Vanderlei, “Comparison of Polar RS 800G heart rate monitor with P olar S810 and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest,” Clin. Physiol. Funct. Imaging 36(2), 112–117 (2016).
[Crossref]

Basiri, A.

Bazzan, E.

S. Benedetto, C. Caldato, E. Bazzan, D. C. Greenwood, V. Pensabene, and P. Actis, “Assessment of the Fitbit Charge 2 for monitoring heart rate,” PLoS One 13(2), e0192691 (2018).
[Crossref]

Benedetto, S.

S. Benedetto, C. Caldato, E. Bazzan, D. C. Greenwood, V. Pensabene, and P. Actis, “Assessment of the Fitbit Charge 2 for monitoring heart rate,” PLoS One 13(2), e0192691 (2018).
[Crossref]

Berzina, A.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).
[Crossref]

Bowden, R. W.

P. A. Magnin, E. I. McNamara, R. W. Bowden, and R. J. Solomon, “Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions,” (Google Patents, 2016).

Brinker, G.

R. Hata, G. Mies, C. Wiessner, K. Fritze, D. Hesselbarth, G. Brinker, and K.-A. Hossmann, “A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging,” J. Cereb. Blood Flow Metab. 18(4), 367–375 (1998).
[Crossref]

Bruscino, N.

Bulkley, G. B.

P. N. Manson, K. K. Narayan, M. J. Im, G. B. Bulkley, and J. E. Hoopes, “Improved survival in free skin flap transfers in rats,” Surgery 99(2), 211–215 (1986).

Bykov, A.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

Bykowski, J.

G. Zonios, J. Bykowski, and N. Kollias, “Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance Spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref]

Cadeddu, J. A.

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Caldato, C.

S. Benedetto, C. Caldato, E. Bazzan, D. C. Greenwood, V. Pensabene, and P. Actis, “Assessment of the Fitbit Charge 2 for monitoring heart rate,” PLoS One 13(2), e0192691 (2018).
[Crossref]

Cannarozzo, G.

Chang, M. J.

K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
[Crossref]

Chave, R.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis,” Sci. Rep. 4(1), 4924 (2015).
[Crossref]

Chen, H.

R.-L. Zhang, M. Chopp, H. Chen, and J. H. Garcia, “Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat,” J. Neurol. Sci. 125(1), 3–10 (1994).
[Crossref]

Chen, S.

Chen, X.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Chernomordik, V. V.

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

Cho, D.

Chopp, M.

R.-L. Zhang, M. Chopp, H. Chen, and J. H. Garcia, “Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat,” J. Neurol. Sci. 125(1), 3–10 (1994).
[Crossref]

Cicchi, R.

Clancy, N. T.

da Silva, N. T.

M. P. Barbosa, N. T. da Silva, F. M. de Azevedo, C. M. Pastre, and L. C. Vanderlei, “Comparison of Polar RS 800G heart rate monitor with P olar S810 and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest,” Clin. Physiol. Funct. Imaging 36(2), 112–117 (2016).
[Crossref]

Davidson, K. W.

K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
[Crossref]

de Azevedo, F. M.

M. P. Barbosa, N. T. da Silva, F. M. de Azevedo, C. M. Pastre, and L. C. Vanderlei, “Comparison of Polar RS 800G heart rate monitor with P olar S810 and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest,” Clin. Physiol. Funct. Imaging 36(2), 112–117 (2016).
[Crossref]

de Giorgi, V.

Deegan, A. J.

A. J. Deegan and R. K. Wang, “Microvascular imaging of the skin,” Phys. Med. Biol. 64(7), 07TR01 (2019).
[Crossref]

Degan, S.

Demos, S. G.

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

Derjabo, A.

Diaz, K. M.

K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
[Crossref]

Diebele, I.

I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, and J. Spigulis, “Clinical evaluation of melanomas and common nevi by spectral imaging,” Biomed. Opt. Express 3(3), 467–472 (2012).
[Crossref]

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).
[Crossref]

Dugel, P. U.

P. U. Dugel and C. N. Zimmer, “Imaging of melanin disruption in age-related macular degeneration using multispectral imaging,” Ophthalmic Surg Lasers Imaging Retina 47(2), 134–141 (2016).
[Crossref]

Durkin, A. J.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis,” Sci. Rep. 4(1), 4924 (2015).
[Crossref]

Ehler, M.

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

Elson, D. S.

Farkas, D. L.

S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, D. L. Farkas, and J. Y. Hwang, “Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis,” Biomed. Opt. Express 7(12), 5294–5307 (2016).
[Crossref]

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis,” Sci. Rep. 4(1), 4924 (2015).
[Crossref]

Fokkens, B. T.

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

Francis, R. P.

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Fritze, K.

R. Hata, G. Mies, C. Wiessner, K. Fritze, D. Hesselbarth, G. Brinker, and K.-A. Hossmann, “A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging,” J. Cereb. Blood Flow Metab. 18(4), 367–375 (1998).
[Crossref]

Fujikado, T.

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

Fujiwara, M.

M. Fujiwara, S. Shun, P. K. W. Abeygunawardhana, S. Suzuki, A. Nishiyama, K. Wada, and I. Ishimaru, “Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement,” in (Optical Society of America, 953714.

Gandjbakhche, A. H.

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

Gange, R. W.

C. F. Rosen, S. L. Jacques, M. E. Stuart, and R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of action spectrum,” Photochem. Photobiol. 51(5), 583–588 (1990).
[Crossref]

Gao, L.

Garcia, J. H.

R.-L. Zhang, M. Chopp, H. Chen, and J. H. Garcia, “Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat,” J. Neurol. Sci. 125(1), 3–10 (1994).
[Crossref]

Gawkrodger, D. J.

S. C. Kellett and D. J. Gawkrodger, “The psychological and emotional impact of acne and the effect of treatment with isotretinoin,” Br. J. Dermatol. 140(2), 273–282 (1999).
[Crossref]

Ghassemi, P.

Gho, Y. S.

Goldsmith, J.

K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
[Crossref]

Graaff, R.

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

Greenwood, D. C.

S. Benedetto, C. Caldato, E. Bazzan, D. C. Greenwood, V. Pensabene, and P. Actis, “Assessment of the Fitbit Charge 2 for monitoring heart rate,” PLoS One 13(2), e0192691 (2018).
[Crossref]

Groah, S.

Gueheunneux, S.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Hanna, G. B.

Hassan, M.

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

Hata, R.

R. Hata, G. Mies, C. Wiessner, K. Fritze, D. Hesselbarth, G. Brinker, and K.-A. Hossmann, “A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging,” J. Cereb. Blood Flow Metab. 18(4), 367–375 (1998).
[Crossref]

Hawkins, D. L.

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Hayashi, Y.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Hesselbarth, D.

R. Hata, G. Mies, C. Wiessner, K. Fritze, D. Hesselbarth, G. Brinker, and K.-A. Hossmann, “A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging,” J. Cereb. Blood Flow Metab. 18(4), 367–375 (1998).
[Crossref]

Hirohara, Y.

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

Hitzenberger, C. K.

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

Hoopes, J. E.

P. N. Manson, K. K. Narayan, M. J. Im, G. B. Bulkley, and J. E. Hoopes, “Improved survival in free skin flap transfers in rats,” Surgery 99(2), 211–215 (1986).

Hossmann, K.-A.

R. Hata, G. Mies, C. Wiessner, K. Fritze, D. Hesselbarth, G. Brinker, and K.-A. Hossmann, “A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging,” J. Cereb. Blood Flow Metab. 18(4), 367–375 (1998).
[Crossref]

Hwang, J. Y.

Im, M. J.

P. N. Manson, K. K. Narayan, M. J. Im, G. B. Bulkley, and J. E. Hoopes, “Improved survival in free skin flap transfers in rats,” Surgery 99(2), 211–215 (1986).

Ishimaru, I.

M. Fujiwara, S. Shun, P. K. W. Abeygunawardhana, S. Suzuki, A. Nishiyama, K. Wada, and I. Ishimaru, “Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement,” in (Optical Society of America, 953714.

Jackson, J. E.

J. E. Jackson, A. O. Mansfield, and D. J. Allison, “Treatment of high-flow vascular malformations by venous embolization aided by flow occlusion techniques,” Cardiovasc. Intervent. Radiol. 19(5), 323–328 (1996).
[Crossref]

Jacques, S. L.

C. F. Rosen, S. L. Jacques, M. E. Stuart, and R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of action spectrum,” Photochem. Photobiol. 51(5), 583–588 (1990).
[Crossref]

Jakovels, D.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).
[Crossref]

D. Jakovels and J. Spigulis, “2-D mapping of skin chromophores in the spectral range 500–700 nm,” J. Biophotonics 3(3), 125–129 (2010).
[Crossref]

Jang, J. E.

Je, M.

Jeukendrup, A. E.

J. Achten and A. E. Jeukendrup, “Heart rate monitoring,” Sports Med. 33(7), 517–538 (2003).
[Crossref]

Jin, J. Y.

Jomier, M.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Kainerstorfer, J. M.

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

Kapostinsh, J.

I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, and J. Spigulis, “Clinical evaluation of melanomas and common nevi by spectral imaging,” Biomed. Opt. Express 3(3), 467–472 (2012).
[Crossref]

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).
[Crossref]

Kapsokalyvas, D.

Katoh, T.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Kellett, S. C.

S. C. Kellett and D. J. Gawkrodger, “The psychological and emotional impact of acne and the effect of treatment with isotretinoin,” Br. J. Dermatol. 140(2), 273–282 (1999).
[Crossref]

Kim, B.

Kim, J.

Kim, K. H.

Kim, M.

Kim, S.

Kollias, N.

G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” J. Biomed. Opt. 12(5), 051603 (2007).
[Crossref]

G. Zonios, J. Bykowski, and N. Kollias, “Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance Spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref]

Krupka, D. J.

K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
[Crossref]

Kusano, Y.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Kuzmina, I.

I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, and J. Spigulis, “Clinical evaluation of melanomas and common nevi by spectral imaging,” Biomed. Opt. Express 3(3), 467–472 (2012).
[Crossref]

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).
[Crossref]

Lee, B.

Lee, D. H.

Lee, S. H.

Libin, A.

Lihachev, A.

Lin, W.

Lindsley, E. H.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis,” Sci. Rep. 4(1), 4924 (2015).
[Crossref]

Litorja, M.

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Lutgers, H. L.

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

Ma, Y.

K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
[Crossref]

MacKinnon, N.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis,” Sci. Rep. 4(1), 4924 (2015).
[Crossref]

Magnin, P. A.

P. A. Magnin, E. I. McNamara, R. W. Bowden, and R. J. Solomon, “Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions,” (Google Patents, 2016).

Mansfield, A. O.

J. E. Jackson, A. O. Mansfield, and D. J. Allison, “Treatment of high-flow vascular malformations by venous embolization aided by flow occlusion techniques,” Cardiovasc. Intervent. Radiol. 19(5), 323–328 (1996).
[Crossref]

Manson, P. N.

P. N. Manson, K. K. Narayan, M. J. Im, G. B. Bulkley, and J. E. Hoopes, “Improved survival in free skin flap transfers in rats,” Surgery 99(2), 211–215 (1986).

Massi, D.

Mathews, S.

Matthews, T. E.

McNamara, E. I.

P. A. Magnin, E. I. McNamara, R. W. Bowden, and R. J. Solomon, “Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions,” (Google Patents, 2016).

Mies, G.

R. Hata, G. Mies, C. Wiessner, K. Fritze, D. Hesselbarth, G. Brinker, and K.-A. Hossmann, “A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging,” J. Cereb. Blood Flow Metab. 18(4), 367–375 (1998).
[Crossref]

Mihashi, T.

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

Miyata, T.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Moffatt, L. T.

Morimoto, T.

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

Nabili, M.

Nakazawa, N.

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

Narayan, K. K.

P. N. Manson, K. K. Narayan, M. J. Im, G. B. Bulkley, and J. E. Hoopes, “Improved survival in free skin flap transfers in rats,” Surgery 99(2), 211–215 (1986).

Neel, V.

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol. 121(2), 259–266 (2003).
[Crossref]

Nemoto, F.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Nikiforos, K.

Nishiyama, A.

M. Fujiwara, S. Shun, P. K. W. Abeygunawardhana, S. Suzuki, A. Nishiyama, K. Wada, and I. Ishimaru, “Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement,” in (Optical Society of America, 953714.

Nkengne, A.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Noordmans, H. J.

Oshina, I.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

Pastre, C. M.

M. P. Barbosa, N. T. da Silva, F. M. de Azevedo, C. M. Pastre, and L. C. Vanderlei, “Comparison of Polar RS 800G heart rate monitor with P olar S810 and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest,” Clin. Physiol. Funct. Imaging 36(2), 112–117 (2016).
[Crossref]

Paterson, A. D.

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

Paulo, B.

Pavone, F. S.

Peacock, J.

K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
[Crossref]

Pearle, M. S.

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Pearson, T. C.

T. C. Pearson, “Hemorheologic considerations in the pathogenesis of vascular occlusive events in polycythemia vera,” in (Thieme Medical Publishers, Inc., 1997), pp. 433–439.

Pensabene, V.

S. Benedetto, C. Caldato, E. Bazzan, D. C. Greenwood, V. Pensabene, and P. Actis, “Assessment of the Fitbit Charge 2 for monitoring heart rate,” PLoS One 13(2), e0192691 (2018).
[Crossref]

Pimpinelli, N.

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Ramella-Roman, J. C.

Rehak, J.

J. Rehak and M. Rehak, “Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities,” Curr. Eye Res. 33(2), 111–131 (2008).
[Crossref]

Rehak, M.

J. Rehak and M. Rehak, “Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities,” Curr. Eye Res. 33(2), 111–131 (2008).
[Crossref]

Riley, J. D.

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

Robic, J.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Robles, F. E.

F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
[Crossref]

Rosen, C. F.

C. F. Rosen, S. L. Jacques, M. E. Stuart, and R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of action spectrum,” Photochem. Photobiol. 51(5), 583–588 (1990).
[Crossref]

Saager, R. B.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis,” Sci. Rep. 4(1), 4924 (2015).
[Crossref]

Sato, S.

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

Schwartz, J. E.

K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
[Crossref]

Seroul, P.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Sheng, J.

Sheng-Hao, T.

Shun, S.

M. Fujiwara, S. Shun, P. K. W. Abeygunawardhana, S. Suzuki, A. Nishiyama, K. Wada, and I. Ishimaru, “Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement,” in (Optical Society of America, 953714.

Shupp, J. W.

Simpson, M. J.

Singh, M.

Slagter, S. N.

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

Smit, A. J.

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

Smith, J.

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Smith, R. T.

Solomon, R. J.

P. A. Magnin, E. I. McNamara, R. W. Bowden, and R. J. Solomon, “Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions,” (Google Patents, 2016).

Spigulis, J.

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

J. Spigulis, “Multispectral, fluorescent and photoplethysmographic imaging for remote skin assessment,” Sensors 17(5), 1165 (2017).
[Crossref]

I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, and J. Spigulis, “Clinical evaluation of melanomas and common nevi by spectral imaging,” Biomed. Opt. Express 3(3), 467–472 (2012).
[Crossref]

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).
[Crossref]

D. Jakovels and J. Spigulis, “2-D mapping of skin chromophores in the spectral range 500–700 nm,” J. Biophotonics 3(3), 125–129 (2010).
[Crossref]

Stamatas, G. N.

G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” J. Biomed. Opt. 12(5), 051603 (2007).
[Crossref]

Stoyanov, D.

Stuart, M. E.

C. F. Rosen, S. L. Jacques, M. E. Stuart, and R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of action spectrum,” Photochem. Photobiol. 51(5), 583–588 (1990).
[Crossref]

Suzuki, H.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Suzuki, S.

M. Fujiwara, S. Shun, P. K. W. Abeygunawardhana, S. Suzuki, A. Nishiyama, K. Wada, and I. Ishimaru, “Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement,” in (Optical Society of America, 953714.

Takahashi, Y.

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

Tanaka, K.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Tani, Y.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Terrell, J. D.

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Tkaczyk, T. S.

Tracy, C. R.

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Travis, T. E.

Valeine, L.

I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, and J. Spigulis, “Clinical evaluation of melanomas and common nevi by spectral imaging,” Biomed. Opt. Express 3(3), 467–472 (2012).
[Crossref]

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).
[Crossref]

van der Klauw, M. M.

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

van Vliet-Ostaptchouk, J. V.

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

van Waateringe, R. P.

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

Vanderlei, L. C.

M. P. Barbosa, N. T. da Silva, F. M. de Azevedo, C. M. Pastre, and L. C. Vanderlei, “Comparison of Polar RS 800G heart rate monitor with P olar S810 and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest,” Clin. Physiol. Funct. Imaging 36(2), 112–117 (2016).
[Crossref]

Vasefi, F.

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis,” Sci. Rep. 4(1), 4924 (2015).
[Crossref]

Vie, K.

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Wada, K.

M. Fujiwara, S. Shun, P. K. W. Abeygunawardhana, S. Suzuki, A. Nishiyama, K. Wada, and I. Ishimaru, “Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement,” in (Optical Society of America, 953714.

Wang, C.

Wang, R. K.

A. J. Deegan and R. K. Wang, “Microvascular imaging of the skin,” Phys. Med. Biol. 64(7), 07TR01 (2019).
[Crossref]

Warren, W. S.

F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
[Crossref]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref]

Watanabe, T.

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Wehner, E. F.

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Wiessner, C.

R. Hata, G. Mies, C. Wiessner, K. Fritze, D. Hesselbarth, G. Brinker, and K.-A. Hossmann, “A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging,” J. Cereb. Blood Flow Metab. 18(4), 367–375 (1998).
[Crossref]

Wilson, J. W.

F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
[Crossref]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref]

Wolffenbuttel, B. H. R.

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

Xu, M.

Yamaguchi, T.

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

Yaroslavsky, A. N.

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol. 121(2), 259–266 (2003).
[Crossref]

Yoon, C. J.

Youn, S.

Zeng, B.

Zhang, J. Y.

Zhang, R.-L.

R.-L. Zhang, M. Chopp, H. Chen, and J. H. Garcia, “Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat,” J. Neurol. Sci. 125(1), 3–10 (1994).
[Crossref]

Zimmer, C. N.

P. U. Dugel and C. N. Zimmer, “Imaging of melanin disruption in age-related macular degeneration using multispectral imaging,” Ophthalmic Surg Lasers Imaging Retina 47(2), 134–141 (2016).
[Crossref]

Zonios, G.

G. Zonios, J. Bykowski, and N. Kollias, “Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance Spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref]

Zuzak, K. J.

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Biomed. Opt. Express (8)

B. Kim, S. H. Lee, C. J. Yoon, Y. S. Gho, G. O. Ahn, and K. H. Kim, “In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy,” Biomed. Opt. Express 6(7), 2512–2521 (2015).
[Crossref]

P. Ghassemi, T. E. Travis, L. T. Moffatt, J. W. Shupp, and J. C. Ramella-Roman, “A polarized multispectral imaging system for quantitative assessment of hypertrophic scars,” Biomed. Opt. Express 5(10), 3337–3354 (2014).
[Crossref]

S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, D. L. Farkas, and J. Y. Hwang, “Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis,” Biomed. Opt. Express 7(12), 5294–5307 (2016).
[Crossref]

I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, and J. Spigulis, “Clinical evaluation of melanomas and common nevi by spectral imaging,” Biomed. Opt. Express 3(3), 467–472 (2012).
[Crossref]

L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
[Crossref]

N. T. Clancy, S. Arya, D. Stoyanov, M. Singh, G. B. Hanna, and D. S. Elson, “Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope,” Biomed. Opt. Express 6(10), 4179–4190 (2015).
[Crossref]

X. Chen, W. Lin, C. Wang, S. Chen, J. Sheng, B. Zeng, and M. Xu, “In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light,” Biomed. Opt. Express 8(12), 5468–5482 (2017).
[Crossref]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref]

Br. J. Dermatol. (1)

S. C. Kellett and D. J. Gawkrodger, “The psychological and emotional impact of acne and the effect of treatment with isotretinoin,” Br. J. Dermatol. 140(2), 273–282 (1999).
[Crossref]

Cardiovasc. Intervent. Radiol. (1)

J. E. Jackson, A. O. Mansfield, and D. J. Allison, “Treatment of high-flow vascular malformations by venous embolization aided by flow occlusion techniques,” Cardiovasc. Intervent. Radiol. 19(5), 323–328 (1996).
[Crossref]

Clin. Physiol. Funct. Imaging (1)

M. P. Barbosa, N. T. da Silva, F. M. de Azevedo, C. M. Pastre, and L. C. Vanderlei, “Comparison of Polar RS 800G heart rate monitor with P olar S810 and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest,” Clin. Physiol. Funct. Imaging 36(2), 112–117 (2016).
[Crossref]

Curr. Eye Res. (1)

J. Rehak and M. Rehak, “Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities,” Curr. Eye Res. 33(2), 111–131 (2008).
[Crossref]

Diabetologia (1)

R. P. van Waateringe, B. T. Fokkens, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, A. J. Smit, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence predicts incident type 2 diabetes, cardiovascular disease and mortality in the general population,” Diabetologia 62(2), 269–280 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Int. J. Cardiol. (1)

K. M. Diaz, D. J. Krupka, M. J. Chang, J. Peacock, Y. Ma, J. Goldsmith, J. E. Schwartz, and K. W. Davidson, “Fitbit: An accurate and reliable device for wireless physical activity tracking,” Int. J. Cardiol. 185(1), 138–140 (2015).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

Y. Hirohara, T. Yamaguchi, H. Aoki, Y. Takahashi, N. Nakazawa, T. Mihashi, S. Sato, T. Morimoto, and T. Fujikado, “Development of fundus camera for spectral imaging using liquid crystal tunable filter,” Invest. Ophthalmol. Visual Sci. 45(13), 2418 (2004).

J. Biomed. Opt. (5)

J. Spigulis, I. Oshina, A. Berzina, and A. Bykov, “Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination,” J. Biomed. Opt. 22(9), 091508 (2017).
[Crossref]

J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(14), 046007 (2010).
[Crossref]

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).
[Crossref]

F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
[Crossref]

G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” J. Biomed. Opt. 12(5), 051603 (2007).
[Crossref]

J. Biophotonics (1)

D. Jakovels and J. Spigulis, “2-D mapping of skin chromophores in the spectral range 500–700 nm,” J. Biophotonics 3(3), 125–129 (2010).
[Crossref]

J. Cereb. Blood Flow Metab. (1)

R. Hata, G. Mies, C. Wiessner, K. Fritze, D. Hesselbarth, G. Brinker, and K.-A. Hossmann, “A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging,” J. Cereb. Blood Flow Metab. 18(4), 367–375 (1998).
[Crossref]

J. Invest. Dermatol. (2)

G. Zonios, J. Bykowski, and N. Kollias, “Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance Spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref]

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol. 121(2), 259–266 (2003).
[Crossref]

J. Neurol. Sci. (1)

R.-L. Zhang, M. Chopp, H. Chen, and J. H. Garcia, “Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat,” J. Neurol. Sci. 125(1), 3–10 (1994).
[Crossref]

Journal of Endourology (1)

C. R. Tracy, J. D. Terrell, R. P. Francis, E. F. Wehner, J. Smith, M. Litorja, D. L. Hawkins, M. S. Pearle, J. A. Cadeddu, and K. J. Zuzak, “First Prize: Characterization of Renal Ischemia Using DLP® Hyperspectral Imaging: A Pilot Study Comparing Artery-Only Occlusion Versus Artery and Vein Occlusion,” Journal of Endourology 24(3), 321–325 (2010).
[Crossref]

Nephrol., Dial., Transplant. (1)

F. Nemoto, H. Suzuki, J. Asai, K. Asahi, T. Katoh, T. Watanabe, Y. Tani, Y. Hayashi, Y. Kusano, K. Tanaka, and T. Miyata, “Skin autofluorescence is associated with renal function and cardiovascular diseases in pre-dialysis chronic kidney disease patients,” Nephrol., Dial., Transplant. 26(1), 214–220 (2011).
[Crossref]

Ophthalmic Surg Lasers Imaging Retina (1)

P. U. Dugel and C. N. Zimmer, “Imaging of melanin disruption in age-related macular degeneration using multispectral imaging,” Ophthalmic Surg Lasers Imaging Retina 47(2), 134–141 (2016).
[Crossref]

Opt. Express (3)

Photochem. Photobiol. (1)

C. F. Rosen, S. L. Jacques, M. E. Stuart, and R. W. Gange, “Immediate pigment darkening: visual and reflectance spectrophotometric analysis of action spectrum,” Photochem. Photobiol. 51(5), 583–588 (1990).
[Crossref]

Phys. Med. Biol. (1)

A. J. Deegan and R. K. Wang, “Microvascular imaging of the skin,” Phys. Med. Biol. 64(7), 07TR01 (2019).
[Crossref]

PLoS One (1)

S. Benedetto, C. Caldato, E. Bazzan, D. C. Greenwood, V. Pensabene, and P. Actis, “Assessment of the Fitbit Charge 2 for monitoring heart rate,” PLoS One 13(2), e0192691 (2018).
[Crossref]

Sci. Rep. (1)

F. Vasefi, N. MacKinnon, R. B. Saager, A. J. Durkin, R. Chave, E. H. Lindsley, and D. L. Farkas, “Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis,” Sci. Rep. 4(1), 4924 (2015).
[Crossref]

Sensors (1)

J. Spigulis, “Multispectral, fluorescent and photoplethysmographic imaging for remote skin assessment,” Sensors 17(5), 1165 (2017).
[Crossref]

Skin Res. Technol. (1)

A. Nkengne, J. Robic, P. Seroul, S. Gueheunneux, M. Jomier, and K. Vie, “SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation,” Skin Res. Technol. 24(1), 99–107 (2018).
[Crossref]

Sports Med. (1)

J. Achten and A. E. Jeukendrup, “Heart rate monitoring,” Sports Med. 33(7), 517–538 (2003).
[Crossref]

Surgery (1)

P. N. Manson, K. K. Narayan, M. J. Im, G. B. Bulkley, and J. E. Hoopes, “Improved survival in free skin flap transfers in rats,” Surgery 99(2), 211–215 (1986).

Other (3)

P. A. Magnin, E. I. McNamara, R. W. Bowden, and R. J. Solomon, “Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions,” (Google Patents, 2016).

T. C. Pearson, “Hemorheologic considerations in the pathogenesis of vascular occlusive events in polycythemia vera,” in (Thieme Medical Publishers, Inc., 1997), pp. 433–439.

M. Fujiwara, S. Shun, P. K. W. Abeygunawardhana, S. Suzuki, A. Nishiyama, K. Wada, and I. Ishimaru, “Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement,” in (Optical Society of America, 953714.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the hyperspectral imaging system that consists of a light source and a 16-channel hyperspectral camera, with wavelength bands at each channel shown in the top left. (b) The manufacturer’s data of wavelength-dependent sensitivity for 16 channels in the hyperspectral camera. (c) Waveband-based multispectral images (right 16 columns, representing 16 sub-spectral channels) of self-printed color chart as shown in the left most column, captured by the hyperspectral camera. (d) Spectral power distribution of white light source that is used in this study. (e) Absorption spectra of oxyhemoglobin (oxyHb), deoxyhemoglobin (deoxyHb) and melanin.
Fig. 2.
Fig. 2. Sixteen subchannel images captured by the hyperspectral camera from a volunteer skin under white light illumination.
Fig. 3.
Fig. 3. Extraction of blood absorption information content from snapshot hyperspectral image. (a) The raw images directly exported from the spectral band 10 in the camera, from three volunteers (marked as 1, 2, and 3, respectively). (b) Corresponding images showing blood absorption information content derived from the weighted subtraction between band 6 (556 nm) and 9 (625 nm), (c) Overlaid images of raw images and corresponding blood absorption images. (d) Corresponding images derived from weighted subtractions between band11(529 nm) and 10(603 nm). (e) Corresponding images derived from weighted subtractions between band 6 (556 nm) and 8 (615 nm). (f) Contrast enhancements of the blood absorption information content by summing the images showing in (b), (d) and (e). 1,2,3 represent three different cases in the blood extraction. Red arrow: pimples or light red spots, black arrow: melanocytic nevi.
Fig. 4.
Fig. 4. Extraction of melanocytic nevus absorption information content from snapshot hyperspectral image. (a) The raw images directly exported from the spectral band 10 in the camera, from three volunteers (marked as 1, 2, and 3, respectively). (b) Corresponding images showing extracted melanocytic nevus absorption information content derived from weighted subtraction between bands 0(482 nm) and 12(543 nm). (c) Overlaid images of raw images and corresponding melanocytic nevus absorption images. (d) Corresponding images derived from weighted subtractions between bands 0(482 nm) and 11(529 nm). (e) Corresponding images derived from weighted subtractions between bands 0(482 nm) and 7(544 nm). (f) Contrast enhancements of the melanocytic nevus absorption information content by summing the images showing in (b), (d) and (e). 1,2,3 represent three different cases in the melanocytic nevus extraction. The insert in each panel is zoomed view of the regions as marked to show more details. Red arrow: pimples or light red spots, black arrow: melanocytic nevi.
Fig. 5.
Fig. 5. Heartrate measurement with snapshot-hyperspectral-camera-based multispectral imaging system. (a) The overlaid face skin image of raw image with the derived map of hemoglobin absorption information (coded according to the color bar shown in the right). The red dotted box area on the cheek is the target area for extracting heartrate from blood absorption information content derived from the hyperspectral imaging. (b) The frequency spectrum of temporal profile of blood absorption information content summed within the red-box region in (a). (c) The heartrate reference from the PowerLab pulse sensor.
Fig. 6.
Fig. 6. Exercise recovery monitoring with the snapshot-hyperspectral-camera-based multispectral imaging system. (a) The hemoglobin absorption information map (top row, color-coded according to color bar shown in the right) and overlaid images (bottom row) of the left facial skin at different time points of the recovery. (b) Real-time response curve of blood absorption information content during exercise recovery. The red dotted box area on the left is the targeted region for analysis. (c) The heartrate measurements of 5 recovery segments at 2, 3, 4, 5 and 6 minutes, respectively.
Fig. 7.
Fig. 7. Vascular occlusion monitoring with the snapshot-hyperspectral-camera-based multispectral imaging system. (a) Finger dorsal skin blood absorption images at different time points of vascular occlusion under the outside pressure. (b) Real-time quantitative blood absorption response curves of fingers under the vascular occlusion and the contrast groups. (c) Finger dorsal $Sa{O_2}$ images at different time points of vascular occlusion under the outside pressure. (d) Real-time quantitative $Sa{O_2}$ response curves of fingers under the vascular occlusion and the contrast groups.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C r = C 1 K C 2 = m x 1 + n y 1 K ( m x 2 + n y 2 ) = m ( x 1 K x 2 ) + n ( y 1 K y 2 )
A = β ln ( R )
R ( x , y , i ) = I ( x , y , i ) I B ( x , y , i ) I 0 ( i ) I B ( x , y , i )
A ( x , y , i ) = C o x y H b ε o x y H b ( i ) + C d e o x y H b ε d e o x y H b ( i ) + α
S a O 2 = C o x y H b ( C o x y H b + C d e o x y H b )

Metrics