Abstract

Tissue engineering applications demand 3D, non-invasive, and longitudinal assessment of bioprinted constructs. Current emphasis is on developing tissue constructs mimicking in vivo conditions; however, these are increasingly challenging to image as they are typically a few millimeters thick and turbid, limiting the usefulness of classical fluorescence microscopic techniques. For such applications, we developed a Mesoscopic Fluorescence Molecular Tomography methodology that collects high information content data to enable high-resolution tomographic reconstruction of fluorescence biomarkers at millimeters depths. This imaging approach is based on an inverse problem; hence, its imaging performances are dependent on critical technical considerations including optode sampling, forward model design and inverse solver parameters. Herein, we investigate the impact of the optical system configuration parameters, including detector layout, number of detectors, combination of detector and source numbers, and scanning mode with uncoupled or coupled source and detector array, on the 3D imaging performances. Our results establish that an MFMT system with a 2D detection chain implemented in a de-scanned mode provides the optimal imaging reconstruction performances.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improving mesoscopic fluorescence molecular tomography through data reduction

Fugang Yang, Mehmet S. Ozturk, Ruoyang Yao, and Xavier Intes
Biomed. Opt. Express 8(8) 3868-3881 (2017)

Improving mesoscopic fluorescence molecular tomography via preconditioning and regularization

Fugang Yang, Ruoyang Yao, Mehmet Saadeddin Ozturk, Denzel Faulkner, Qinglan Qu, and Xavier Intes
Biomed. Opt. Express 9(6) 2765-2778 (2018)

Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography

Edward E. Graves, Joseph P. Culver, Jorge Ripoll, Ralph Weissleder, and Vasilis Ntziachristos
J. Opt. Soc. Am. A 21(2) 231-241 (2004)

References

  • View by:
  • |
  • |
  • |

  1. S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
    [Crossref]
  2. P. Datta, B. Ayan, and I. T. Ozbolat, “Bioprinting for vascular and vascularized tissue biofabrication,” Acta Biomater. 51, 1–20 (2017).
    [Crossref]
  3. V. K. Lee and G. Dai, “Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine,” Ann. Biomed. Eng. 45(1), 115–131 (2017).
    [Crossref]
  4. S. Pashneh-Tala, M. Sheila, and C. Frederik, “The Tissue-Engineered Vascular Graft-Past, Present, and Future,” Tissue Eng., Part B 22(1), 68–100 (2016).
    [Crossref]
  5. D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, and J. A. Lewis, “Three-dimensional bioprinting of thick vascularized tissues,” Proc. Natl. Acad. Sci. U. S. A. 113(12), 3179–3184 (2016).
    [Crossref]
  6. T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
    [Crossref]
  7. E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
    [Crossref]
  8. Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
    [Crossref]
  9. M. J. Kiel and S. J. Morrison, “Maintaining hematopoietic stem cells in the vascular niche,” Immunity 25(6), 862–864 (2006).
    [Crossref]
  10. R. J. Gilbertson and J. N. Rich, “Making a tumour's bed: glioblastoma stem cells and the vascular niche,” Nat. Rev. Cancer 7(10), 733–736 (2007).
    [Crossref]
  11. J. M. Butler, H. Kobayashi, and S. Rafii, “Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors,” Nat. Rev. Cancer 10(2), 138–146 (2010).
    [Crossref]
  12. A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
    [Crossref]
  13. D. R. Bielenberg and B. R. Zetter, “The Contribution of Angiogenesis to the Process of Metastasis,” Cancer J. (Philadelphia, PA, U. S.) 21(4), 267–273 (2015).
    [Crossref]
  14. M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
    [Crossref]
  15. Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2016).
    [Crossref]
  16. R. Ji, M. S. Ozturk, and X. Intes, “SNR characterization of Mesoscopic Fluorescence Molecular Tomography with EMCCD camera,” 2015 41st Annu. Northeast Biomed. Eng. Conf. NEBEC 2015, 1–2 (2015).
  17. E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
    [Crossref]
  18. Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
    [Crossref]
  19. L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
    [Crossref]
  20. D. Andrew and B. David, “Transport-based image reconstruction in turbid media with small source–detector separations,” Opt. Lett. 25(24), 1777–1779 (2000).
    [Crossref]
  21. R. Yao, X. Intes, and Q. Fang, “Generalized Mesh-based Monte Carlo for Wide-field Sources and Detectors via Mesh Retesselation,” Biomed. Opt. Express 7(1), 171–184 (2016).
    [Crossref]
  22. R. Yao, X. Intes, and Q. Fang, “Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon “replay”,” Biomed. Opt. Express 9(10), 4588–4603 (2018).
    [Crossref]
  23. F. Yang, M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes, “High-Resolution Mesoscopic Fluorescence Molecular Tomography Based on Compressive Sensing,” IEEE Trans. Biomed. Eng. 62(1), 248–255 (2015).
    [Crossref]
  24. R. Yao, Q. Pian, and X. Intes, “Wide-field fluorescence molecular tomography with compressive sensing based preconditioning,” Biomed. Opt. Express 6(12), 4887–4898 (2015).
    [Crossref]
  25. F. Yang, R. Yao, M. S. Ozturk, D. Faulkner, Q. Qu, and X. Intes, “Improving mesoscopic fluorescence molecular tomography via preconditioning and regularization,” Biomed. Opt. Express 9(6), 2765–2778 (2018).
    [Crossref]
  26. F. Yang, M. S. Ozturk, R. Yao, and X. Intes, “Improving mesoscopic fluorescence molecular tomography through data reduction,” Biomed. Opt. Express 8(8), 3868–3881 (2017).
    [Crossref]
  27. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
    [Crossref]
  28. J. P. Angelo, S. J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
    [Crossref]
  29. J. Chen and X. Intes, “Comparison of Monte Carlo Methods for Fluorescence Molecular Tomography - Computational Efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
    [Crossref]
  30. N. Ouakli, E. Guevara, S. Dubeau, E. Beaumont, and F. Lesage, “Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats,” Opt. Express 18(10), 10068–77 (2010).
    [Crossref]
  31. L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
    [Crossref]
  32. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
    [Crossref]
  33. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).
    [Crossref]
  34. X. Intes and B. Chance, “Multi-frequency Diffuse Optical Tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005).
    [Crossref]
  35. M. Boffety, M. Allain, A. Sentenac, M. Massonneau, and R. Carminati, “Cramér-Rao analysis of steady-state and time-domain fluorescence diffuse optical imaging,” Biomed. Opt. Express 2(6), 1626–1636 (2011).
    [Crossref]
  36. L. Chen and N. Chen, “Optimization of source and detector configurations based on Cramér-Rao lower bound analysis,” J. Biomed. Opt. 16(3), 035001 (2011).
    [Crossref]
  37. F. Leblond, K. M. Tichauer, and B. W. Pogue, “Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography,” Biomed. Opt. Express 1(5), 1514–1531 (2010).
    [Crossref]
  38. V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
    [Crossref]

2018 (4)

A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
[Crossref]

J. P. Angelo, S. J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

F. Yang, R. Yao, M. S. Ozturk, D. Faulkner, Q. Qu, and X. Intes, “Improving mesoscopic fluorescence molecular tomography via preconditioning and regularization,” Biomed. Opt. Express 9(6), 2765–2778 (2018).
[Crossref]

R. Yao, X. Intes, and Q. Fang, “Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon “replay”,” Biomed. Opt. Express 9(10), 4588–4603 (2018).
[Crossref]

2017 (4)

F. Yang, M. S. Ozturk, R. Yao, and X. Intes, “Improving mesoscopic fluorescence molecular tomography through data reduction,” Biomed. Opt. Express 8(8), 3868–3881 (2017).
[Crossref]

P. Datta, B. Ayan, and I. T. Ozbolat, “Bioprinting for vascular and vascularized tissue biofabrication,” Acta Biomater. 51, 1–20 (2017).
[Crossref]

V. K. Lee and G. Dai, “Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine,” Ann. Biomed. Eng. 45(1), 115–131 (2017).
[Crossref]

T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
[Crossref]

2016 (6)

S. Pashneh-Tala, M. Sheila, and C. Frederik, “The Tissue-Engineered Vascular Graft-Past, Present, and Future,” Tissue Eng., Part B 22(1), 68–100 (2016).
[Crossref]

D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, and J. A. Lewis, “Three-dimensional bioprinting of thick vascularized tissues,” Proc. Natl. Acad. Sci. U. S. A. 113(12), 3179–3184 (2016).
[Crossref]

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref]

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2016).
[Crossref]

R. Yao, X. Intes, and Q. Fang, “Generalized Mesh-based Monte Carlo for Wide-field Sources and Detectors via Mesh Retesselation,” Biomed. Opt. Express 7(1), 171–184 (2016).
[Crossref]

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref]

2015 (3)

F. Yang, M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes, “High-Resolution Mesoscopic Fluorescence Molecular Tomography Based on Compressive Sensing,” IEEE Trans. Biomed. Eng. 62(1), 248–255 (2015).
[Crossref]

D. R. Bielenberg and B. R. Zetter, “The Contribution of Angiogenesis to the Process of Metastasis,” Cancer J. (Philadelphia, PA, U. S.) 21(4), 267–273 (2015).
[Crossref]

R. Yao, Q. Pian, and X. Intes, “Wide-field fluorescence molecular tomography with compressive sensing based preconditioning,” Biomed. Opt. Express 6(12), 4887–4898 (2015).
[Crossref]

2014 (3)

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref]

V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
[Crossref]

2012 (1)

L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref]

2011 (3)

M. Boffety, M. Allain, A. Sentenac, M. Massonneau, and R. Carminati, “Cramér-Rao analysis of steady-state and time-domain fluorescence diffuse optical imaging,” Biomed. Opt. Express 2(6), 1626–1636 (2011).
[Crossref]

L. Chen and N. Chen, “Optimization of source and detector configurations based on Cramér-Rao lower bound analysis,” J. Biomed. Opt. 16(3), 035001 (2011).
[Crossref]

J. Chen and X. Intes, “Comparison of Monte Carlo Methods for Fluorescence Molecular Tomography - Computational Efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[Crossref]

2010 (4)

N. Ouakli, E. Guevara, S. Dubeau, E. Beaumont, and F. Lesage, “Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats,” Opt. Express 18(10), 10068–77 (2010).
[Crossref]

F. Leblond, K. M. Tichauer, and B. W. Pogue, “Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography,” Biomed. Opt. Express 1(5), 1514–1531 (2010).
[Crossref]

J. M. Butler, H. Kobayashi, and S. Rafii, “Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors,” Nat. Rev. Cancer 10(2), 138–146 (2010).
[Crossref]

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

2009 (1)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

2007 (1)

R. J. Gilbertson and J. N. Rich, “Making a tumour's bed: glioblastoma stem cells and the vascular niche,” Nat. Rev. Cancer 7(10), 733–736 (2007).
[Crossref]

2006 (1)

M. J. Kiel and S. J. Morrison, “Maintaining hematopoietic stem cells in the vascular niche,” Immunity 25(6), 862–864 (2006).
[Crossref]

2005 (1)

X. Intes and B. Chance, “Multi-frequency Diffuse Optical Tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005).
[Crossref]

2004 (3)

2001 (1)

2000 (1)

Abramova, N.

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
[Crossref]

Adelman, E. R.

T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
[Crossref]

Allain, M.

Andrew, D.

Angelo, J. P.

J. P. Angelo, S. J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

Arridge, S. R.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

Asif, M.

A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
[Crossref]

Atala, A.

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref]

Ayan, B.

P. Datta, B. Ayan, and I. T. Ozbolat, “Bioprinting for vascular and vascularized tissue biofabrication,” Acta Biomater. 51, 1–20 (2017).
[Crossref]

Beaumont, E.

Bielenberg, D. R.

D. R. Bielenberg and B. R. Zetter, “The Contribution of Angiogenesis to the Process of Metastasis,” Cancer J. (Philadelphia, PA, U. S.) 21(4), 267–273 (2015).
[Crossref]

Boas, D. A.

Boffety, M.

Brooks, D. H.

V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
[Crossref]

Butler, J. M.

J. M. Butler, H. Kobayashi, and S. Rafii, “Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors,” Nat. Rev. Cancer 10(2), 138–146 (2010).
[Crossref]

Carminati, R.

Chance, B.

X. Intes and B. Chance, “Multi-frequency Diffuse Optical Tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005).
[Crossref]

Chen, C.

Chen, C. W.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref]

Chen, J.

J. Chen and X. Intes, “Comparison of Monte Carlo Methods for Fluorescence Molecular Tomography - Computational Efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[Crossref]

Chen, L.

L. Chen and N. Chen, “Optimization of source and detector configurations based on Cramér-Rao lower bound analysis,” J. Biomed. Opt. 16(3), 035001 (2011).
[Crossref]

Chen, N.

L. Chen and N. Chen, “Optimization of source and detector configurations based on Cramér-Rao lower bound analysis,” J. Biomed. Opt. 16(3), 035001 (2011).
[Crossref]

Chen, S. J.

J. P. Angelo, S. J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

Chen, Y.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2016).
[Crossref]

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref]

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref]

Cong, W.

F. Yang, M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes, “High-Resolution Mesoscopic Fluorescence Molecular Tomography Based on Compressive Sensing,” IEEE Trans. Biomed. Eng. 62(1), 248–255 (2015).
[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
[Crossref]

Culver, J. P.

Dai, G.

V. K. Lee and G. Dai, “Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine,” Ann. Biomed. Eng. 45(1), 115–131 (2017).
[Crossref]

L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref]

Dale, A. M.

Datta, P.

P. Datta, B. Ayan, and I. T. Ozbolat, “Bioprinting for vascular and vascularized tissue biofabrication,” Acta Biomater. 51, 1–20 (2017).
[Crossref]

David, B.

Dubeau, S.

Dunn, A. K.

Erzurumlu, R. S.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2016).
[Crossref]

Fang, Q.

Faulkner, D.

Figueroa, M. E.

T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
[Crossref]

Fisher, J. P.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref]

Flach, J.

T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
[Crossref]

Frank, A.

Frederik, C.

S. Pashneh-Tala, M. Sheila, and C. Frederik, “The Tissue-Engineered Vascular Graft-Past, Present, and Future,” Tissue Eng., Part B 22(1), 68–100 (2016).
[Crossref]

Gilbertson, R. J.

R. J. Gilbertson and J. N. Rich, “Making a tumour's bed: glioblastoma stem cells and the vascular niche,” Nat. Rev. Cancer 7(10), 733–736 (2007).
[Crossref]

Gioux, S.

J. P. Angelo, S. J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

Goderie, S.

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

Goderie, S. K.

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
[Crossref]

Graves, E. E.

Greenwald, B. D.

Guevara, E.

Hillman, E. M.

Ho, T. T.

T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
[Crossref]

Holboke, M. J.

Homan, K. A.

D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, and J. A. Lewis, “Three-dimensional bioprinting of thick vascularized tissues,” Proc. Natl. Acad. Sci. U. S. A. 113(12), 3179–3184 (2016).
[Crossref]

Intes, X.

J. P. Angelo, S. J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

F. Yang, R. Yao, M. S. Ozturk, D. Faulkner, Q. Qu, and X. Intes, “Improving mesoscopic fluorescence molecular tomography via preconditioning and regularization,” Biomed. Opt. Express 9(6), 2765–2778 (2018).
[Crossref]

R. Yao, X. Intes, and Q. Fang, “Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon “replay”,” Biomed. Opt. Express 9(10), 4588–4603 (2018).
[Crossref]

F. Yang, M. S. Ozturk, R. Yao, and X. Intes, “Improving mesoscopic fluorescence molecular tomography through data reduction,” Biomed. Opt. Express 8(8), 3868–3881 (2017).
[Crossref]

R. Yao, X. Intes, and Q. Fang, “Generalized Mesh-based Monte Carlo for Wide-field Sources and Detectors via Mesh Retesselation,” Biomed. Opt. Express 7(1), 171–184 (2016).
[Crossref]

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref]

F. Yang, M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes, “High-Resolution Mesoscopic Fluorescence Molecular Tomography Based on Compressive Sensing,” IEEE Trans. Biomed. Eng. 62(1), 248–255 (2015).
[Crossref]

R. Yao, Q. Pian, and X. Intes, “Wide-field fluorescence molecular tomography with compressive sensing based preconditioning,” Biomed. Opt. Express 6(12), 4887–4898 (2015).
[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
[Crossref]

L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref]

J. Chen and X. Intes, “Comparison of Monte Carlo Methods for Fluorescence Molecular Tomography - Computational Efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[Crossref]

X. Intes and B. Chance, “Multi-frequency Diffuse Optical Tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005).
[Crossref]

R. Ji, M. S. Ozturk, and X. Intes, “SNR characterization of Mesoscopic Fluorescence Molecular Tomography with EMCCD camera,” 2015 41st Annu. Northeast Biomed. Eng. Conf. NEBEC 2015, 1–2 (2015).

Ji, R.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref]

R. Ji, M. S. Ozturk, and X. Intes, “SNR characterization of Mesoscopic Fluorescence Molecular Tomography with EMCCD camera,” 2015 41st Annu. Northeast Biomed. Eng. Conf. NEBEC 2015, 1–2 (2015).

Jin, L.

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref]

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
[Crossref]

Karanth, N.

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
[Crossref]

Kiel, M. J.

M. J. Kiel and S. J. Morrison, “Maintaining hematopoietic stem cells in the vascular niche,” Immunity 25(6), 862–864 (2006).
[Crossref]

Kobayashi, H.

J. M. Butler, H. Kobayashi, and S. Rafii, “Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors,” Nat. Rev. Cancer 10(2), 138–146 (2010).
[Crossref]

Kokovay, E.

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

Kolesky, D. B.

D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, and J. A. Lewis, “Three-dimensional bioprinting of thick vascularized tissues,” Proc. Natl. Acad. Sci. U. S. A. 113(12), 3179–3184 (2016).
[Crossref]

Kono, K.

A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
[Crossref]

Lansinger, O. M.

T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
[Crossref]

Leblond, F.

Lee, V. K.

V. K. Lee and G. Dai, “Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine,” Ann. Biomed. Eng. 45(1), 115–131 (2017).
[Crossref]

L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref]

Lesage, F.

Lewis, J. A.

D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, and J. A. Lewis, “Three-dimensional bioprinting of thick vascularized tissues,” Proc. Natl. Acad. Sci. U. S. A. 113(12), 3179–3184 (2016).
[Crossref]

Li, Z.

Lin, G.

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

Lin, J.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2016).
[Crossref]

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref]

Liu, Y.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2016).
[Crossref]

Lotz, S.

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

Majid, A. M. S.

A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
[Crossref]

Mashimo, H.

Massonneau, M.

Morrison, S. J.

M. J. Kiel and S. J. Morrison, “Maintaining hematopoietic stem cells in the vascular niche,” Immunity 25(6), 862–864 (2006).
[Crossref]

Murphy, S. V.

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref]

Nguyen, B.-N. B.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref]

Niedre, M.

V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
[Crossref]

Ntziachristos, V.

Ochoa, M.

J. P. Angelo, S. J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

Oon, C. E.

A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
[Crossref]

Ouakli, N.

Ozbolat, I. T.

P. Datta, B. Ayan, and I. T. Ozbolat, “Bioprinting for vascular and vascularized tissue biofabrication,” Acta Biomater. 51, 1–20 (2017).
[Crossref]

Ozturk, M. S.

F. Yang, R. Yao, M. S. Ozturk, D. Faulkner, Q. Qu, and X. Intes, “Improving mesoscopic fluorescence molecular tomography via preconditioning and regularization,” Biomed. Opt. Express 9(6), 2765–2778 (2018).
[Crossref]

F. Yang, M. S. Ozturk, R. Yao, and X. Intes, “Improving mesoscopic fluorescence molecular tomography through data reduction,” Biomed. Opt. Express 8(8), 3868–3881 (2017).
[Crossref]

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref]

F. Yang, M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes, “High-Resolution Mesoscopic Fluorescence Molecular Tomography Based on Compressive Sensing,” IEEE Trans. Biomed. Eng. 62(1), 248–255 (2015).
[Crossref]

R. Ji, M. S. Ozturk, and X. Intes, “SNR characterization of Mesoscopic Fluorescence Molecular Tomography with EMCCD camera,” 2015 41st Annu. Northeast Biomed. Eng. Conf. NEBEC 2015, 1–2 (2015).

Pashneh-Tala, S.

S. Pashneh-Tala, M. Sheila, and C. Frederik, “The Tissue-Engineered Vascular Graft-Past, Present, and Future,” Tissue Eng., Part B 22(1), 68–100 (2016).
[Crossref]

Passegué, E.

T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
[Crossref]

Pera, V.

V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
[Crossref]

Petersen, S. H.

A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
[Crossref]

A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
[Crossref]

Pian, Q.

Pogue, B. W.

Pumiglia, K.

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
[Crossref]

Qu, Q.

Rafii, S.

J. M. Butler, H. Kobayashi, and S. Rafii, “Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors,” Nat. Rev. Cancer 10(2), 138–146 (2010).
[Crossref]

Rich, J. N.

R. J. Gilbertson and J. N. Rich, “Making a tumour's bed: glioblastoma stem cells and the vascular niche,” Nat. Rev. Cancer 7(10), 733–736 (2007).
[Crossref]

Ripoll, J.

Roysam, B.

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

Schotland, J. C.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

Sentenac, A.

Sheila, M.

S. Pashneh-Tala, M. Sheila, and C. Frederik, “The Tissue-Engineered Vascular Graft-Past, Present, and Future,” Tissue Eng., Part B 22(1), 68–100 (2016).
[Crossref]

Shen, Q.

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
[Crossref]

Skylar-Scott, M. A.

D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, and J. A. Lewis, “Three-dimensional bioprinting of thick vascularized tissues,” Proc. Natl. Acad. Sci. U. S. A. 113(12), 3179–3184 (2016).
[Crossref]

Subramaniam, A. V.

A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
[Crossref]

Sun, Y.

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
[Crossref]

Sunar, U.

J. P. Angelo, S. J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

Tang, Q.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2016).
[Crossref]

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref]

Temple, S.

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
[Crossref]

Tichauer, K. M.

Tsytsarev, V.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2016).
[Crossref]

Verovskaya, E. V.

T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
[Crossref]

Vincent, P.

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
[Crossref]

Wang, G.

F. Yang, M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes, “High-Resolution Mesoscopic Fluorescence Molecular Tomography Based on Compressive Sensing,” IEEE Trans. Biomed. Eng. 62(1), 248–255 (2015).
[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
[Crossref]

Wang, J.

Wang, Y.

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

Warr, M. R.

T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
[Crossref]

Weissleder, R.

Wu, T.

Yang, F.

Yang, H.

Yao, R.

Yehya, A. H. S.

A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
[Crossref]

Yodh, A. G.

Yoo, S.-S.

L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref]

Zetter, B. R.

D. R. Bielenberg and B. R. Zetter, “The Contribution of Angiogenesis to the Process of Metastasis,” Cancer J. (Philadelphia, PA, U. S.) 21(4), 267–273 (2015).
[Crossref]

Zhao, L.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref]

F. Yang, M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes, “High-Resolution Mesoscopic Fluorescence Molecular Tomography Based on Compressive Sensing,” IEEE Trans. Biomed. Eng. 62(1), 248–255 (2015).
[Crossref]

L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, “Lp regularization for early gate fluorescence molecular tomography,” Opt. Lett. 39(14), 4156–4159 (2014).
[Crossref]

L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref]

Acta Biomater. (1)

P. Datta, B. Ayan, and I. T. Ozbolat, “Bioprinting for vascular and vascularized tissue biofabrication,” Acta Biomater. 51, 1–20 (2017).
[Crossref]

Ann. Biomed. Eng. (2)

V. K. Lee and G. Dai, “Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine,” Ann. Biomed. Eng. 45(1), 115–131 (2017).
[Crossref]

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B.-N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref]

Biomaterials (1)

L. Zhao, V. K. Lee, S.-S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref]

Biomed. Opt. Express (8)

R. Yao, Q. Pian, and X. Intes, “Wide-field fluorescence molecular tomography with compressive sensing based preconditioning,” Biomed. Opt. Express 6(12), 4887–4898 (2015).
[Crossref]

F. Yang, R. Yao, M. S. Ozturk, D. Faulkner, Q. Qu, and X. Intes, “Improving mesoscopic fluorescence molecular tomography via preconditioning and regularization,” Biomed. Opt. Express 9(6), 2765–2778 (2018).
[Crossref]

F. Yang, M. S. Ozturk, R. Yao, and X. Intes, “Improving mesoscopic fluorescence molecular tomography through data reduction,” Biomed. Opt. Express 8(8), 3868–3881 (2017).
[Crossref]

R. Yao, X. Intes, and Q. Fang, “Generalized Mesh-based Monte Carlo for Wide-field Sources and Detectors via Mesh Retesselation,” Biomed. Opt. Express 7(1), 171–184 (2016).
[Crossref]

R. Yao, X. Intes, and Q. Fang, “Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon “replay”,” Biomed. Opt. Express 9(10), 4588–4603 (2018).
[Crossref]

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref]

M. Boffety, M. Allain, A. Sentenac, M. Massonneau, and R. Carminati, “Cramér-Rao analysis of steady-state and time-domain fluorescence diffuse optical imaging,” Biomed. Opt. Express 2(6), 1626–1636 (2011).
[Crossref]

F. Leblond, K. M. Tichauer, and B. W. Pogue, “Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography,” Biomed. Opt. Express 1(5), 1514–1531 (2010).
[Crossref]

Cancer J. (Philadelphia, PA, U. S.) (1)

D. R. Bielenberg and B. R. Zetter, “The Contribution of Angiogenesis to the Process of Metastasis,” Cancer J. (Philadelphia, PA, U. S.) 21(4), 267–273 (2015).
[Crossref]

Cell Stem Cell (1)

E. Kokovay, S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, B. Roysam, Q. Shen, and S. Temple, “Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling,” Cell Stem Cell 7(2), 163–173 (2010).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

F. Yang, M. S. Ozturk, L. Zhao, W. Cong, G. Wang, and X. Intes, “High-Resolution Mesoscopic Fluorescence Molecular Tomography Based on Compressive Sensing,” IEEE Trans. Biomed. Eng. 62(1), 248–255 (2015).
[Crossref]

Immunity (1)

M. J. Kiel and S. J. Morrison, “Maintaining hematopoietic stem cells in the vascular niche,” Immunity 25(6), 862–864 (2006).
[Crossref]

Inverse Probl. (1)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

J. Biomed. Opt. (3)

J. P. Angelo, S. J. Chen, M. Ochoa, U. Sunar, S. Gioux, and X. Intes, “Review of structured light in diffuse optical imaging,” J. Biomed. Opt. 24(07), 1 (2018).
[Crossref]

V. Pera, D. H. Brooks, and M. Niedre, “On the use of the Cramér-Rao lower bound for diffuse optical imaging system design,” J. Biomed. Opt. 19(2), 025002 (2014).
[Crossref]

L. Chen and N. Chen, “Optimization of source and detector configurations based on Cramér-Rao lower bound analysis,” J. Biomed. Opt. 16(3), 035001 (2011).
[Crossref]

J. Mod. Opt. (1)

X. Intes and B. Chance, “Multi-frequency Diffuse Optical Tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

J. Chen and X. Intes, “Comparison of Monte Carlo Methods for Fluorescence Molecular Tomography - Computational Efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[Crossref]

Medicina (1)

A. H. S. Yehya, M. Asif, S. H. Petersen, S. H. Petersen, A. V. Subramaniam, K. Kono, A. M. S. Majid, and C. E. Oon, “Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis,” Medicina 54(1), 8 (2018).
[Crossref]

Nat. Biotechnol. (1)

S. V. Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol. 32(8), 773–785 (2014).
[Crossref]

Nat. Rev. Cancer (2)

R. J. Gilbertson and J. N. Rich, “Making a tumour's bed: glioblastoma stem cells and the vascular niche,” Nat. Rev. Cancer 7(10), 733–736 (2007).
[Crossref]

J. M. Butler, H. Kobayashi, and S. Rafii, “Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors,” Nat. Rev. Cancer 10(2), 138–146 (2010).
[Crossref]

Nature (1)

T. T. Ho, M. R. Warr, E. R. Adelman, O. M. Lansinger, J. Flach, E. V. Verovskaya, M. E. Figueroa, and E. Passegué, “Autophagy maintains the metabolism and function of young and old stem cells,” Nature 543(7644), 205–210 (2017).
[Crossref]

Neurophotonics (1)

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Proc. Natl. Acad. Sci. U. S. A. (1)

D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, and J. A. Lewis, “Three-dimensional bioprinting of thick vascularized tissues,” Proc. Natl. Acad. Sci. U. S. A. 113(12), 3179–3184 (2016).
[Crossref]

Science (1)

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia, and S. Temple, “Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells,” Science 304(5675), 1338–1340 (2004).
[Crossref]

Tissue Eng., Part B (1)

S. Pashneh-Tala, M. Sheila, and C. Frederik, “The Tissue-Engineered Vascular Graft-Past, Present, and Future,” Tissue Eng., Part B 22(1), 68–100 (2016).
[Crossref]

Other (1)

R. Ji, M. S. Ozturk, and X. Intes, “SNR characterization of Mesoscopic Fluorescence Molecular Tomography with EMCCD camera,” 2015 41st Annu. Northeast Biomed. Eng. Conf. NEBEC 2015, 1–2 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Detector array with one dimensional (a) and two-dimensional (b) layout of detectors.
Fig. 2.
Fig. 2. The second-generation optical system of Mesoscopic Fluorescence Molecular Tomography. (a) Photo of the physical system (b) Schematic of light pathway in the optical system. The combination of the galvo mirror with a scanning lens enables the acquisition of dense spatial data set in coupled scanning mode.
Fig. 3.
Fig. 3. (a) Full resolution imaging area of the EMCCD and (b) 7 by 7 detector array binned from EMCCD pixels.
Fig. 4.
Fig. 4. Uncoupled scanning mode (a1-d1) and coupled scanning mode (a2-d2) to generate sensitivity matrix
Fig. 5.
Fig. 5. A numerical phantom was generated to mimic a vascular structure. Different branches laid down in different plane to investigate the effect on reconstruction resulting from system configuration. The main trunk has a diameter of 400 µm and the off-shoot branches are 200 µm in diameter and they are separated with one voxel spacing of 200 µm.
Fig. 6.
Fig. 6. Reconstruction performance comparison via four different metrics between 1D detector layout (dashed lines) and 2D detector array (solid lines).
Fig. 7.
Fig. 7. The first row shows the 3D reconstructions of 1D detector arrays from 1 by 9 to 1 by 81 (a1-d1), while the second row shows the reconstructions of 2D detector arrays from 3 by 3 to 9 by 9 (a2-d2).
Fig. 8.
Fig. 8. Number of source positions caused more drastic change in the reconstruction than the number of detectors. Like the number of detectors, number of the scanning spots exhibited an asymptotic behavior.
Fig. 9.
Fig. 9. Combined effect of detector and number of scanning spot on the reconstruction performance
Fig. 10.
Fig. 10. Visual effect comparison of measurement numbers on reconstruction performance. An approximate number of measurements can be maintained by increasing the number of detectors and reducing the number of scanning points.
Fig. 11.
Fig. 11. Effect of uncoupled and coupled scanning mode of source and detector array on reconstruction performance for (a) simple vessel model (M1) and (b) complex vascular phantom (M2). (b), (e) and (c), (f) are the reconstructions of the two models with the same parameters but under uncoupled and coupled scanning modes, respectively.
Fig. 12.
Fig. 12. Phantom reconstructions from the optimized system configuration. (a) The picture of polystyrene fluorophore letter R. The reconstruction of the letter R with CG inverse solver (b) and l1 norm based inverse solver (c). (d) is the ground truth from Optical Coherence Tomography (OCT).

Tables (2)

Tables Icon

Table 1. Metrics comparison for coupled and uncoupled scanning mode for two different models

Tables Icon

Table 2. Reconstruction comparison for phantom letter R from different solvers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Y = A X + v
min A X Y 2 2 + λ X 1
nSSD ( A , B ) = 1 1 N i = 1 R j = 1 C k = 1 Z [ A ( i , j , k ) B ( i , j , k ) ] 2
nSAD ( A , B ) = 1 1 N i = 1 R j = 1 C k = 1 Z | A ( i , j , k ) B ( i , j , k ) |
nR ( A , B ) = i = 1 R j = 1 C k = 1 Z A ( i , j , k ) × B ( i , j , k ) i = 1 R j = 1 C k = 1 Z A ( i , j , k ) 2 × i = 1 X j = 1 Y k = 1 Z B ( i , j , k ) 2
nD ( A , B ) = 1 1 N i = 1 R j = 1 C k = 1 Z A ( i , j , k ) B ( i , j , k )

Metrics