Abstract

Spatially resolved diffuse reflectance spectroscopy (SRDRS) is a promising technique for characterization of colon tissue. Herein, two methods for extracting the reduced scattering and absorption coefficients ($\mu _s^{\prime}(\lambda )$ and ${\mu _a}(\lambda )$) from SRDRS data using lookup tables of simulated diffuse reflectance are reported. Experimental measurements of liquid tissue phantoms performed with a custom multi-pixel silicon SRDRS sensor spanning the 450 - 750 nm wavelength range were used to evaluate the extraction methods, demonstrating that the combined use of spatial and spectral data reduces extraction error compared to use of spectral data alone. Additionally, SRDRS measurements of normal and tumor ex-vivo human colon tissue are presented along with $\mu _s^{\prime}(\lambda )$ and ${\mu _a}(\lambda )$ extracted from these measurements.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatially resolved diffuse reflectance spectroscopy endoscopic sensing with custom Si photodetectors

Ben Lariviere, Katherine S. Garman, N. Lynn Ferguson, Deborah A. Fisher, and Nan M. Jokerst
Biomed. Opt. Express 9(3) 1164-1176 (2018)

Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo

George Zonios, Lev T. Perelman, Vadim Backman, Ramasamy Manoharan, Maryann Fitzmaurice, Jacques Van Dam, and Michael S. Feld
Appl. Opt. 38(31) 6628-6637 (1999)

Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe

Sergio Coda, Alex J. Thompson, Gordon T. Kennedy, Kim L. Roche, Lakshmana Ayaru, Devinder S. Bansi, Gordon W. Stamp, Andrew V. Thillainayagam, Paul M. W. French, and Chris Dunsby
Biomed. Opt. Express 5(2) 515-538 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bae and Y. S. Kim, “Colon cancer screening and surveillance in inflammatory bowel disease,” Clin. Endosc. 47(6), 509 (2014).
    [Crossref]
  2. B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
    [Crossref]
  3. M. Iacucci, T. Uraoka, M. Fort Gasia, and N. Yahagi, “Novel diagnostic and therapeutic techniques for surveillance of dysplasia in patients with inflammatory bowel disease,” Can. J. Gastroenterol. Hepatol. 28(7), 361–370 (2014).
    [Crossref]
  4. A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006).
    [Crossref]
  5. G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
    [Crossref]
  6. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
    [Crossref]
  7. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
    [Crossref]
  8. S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
    [Crossref]
  9. E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointest. Endosc. 81(3), 539–547 (2015).
    [Crossref]
  10. P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
    [Crossref]
  11. I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, 2016).
  12. E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
    [Crossref]
  13. Z. Ge, K. T. Schomacker, and N. S. Nishioka, “Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques,” Appl. Spectrosc. 52(6), 833–839 (1998).
    [Crossref]
  14. S. Dhar, J. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE (IEEE, 2011), pp. 440–443.
  15. S. Dhar, D. M. Miller, and N. M. Jokerst, “High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates,” Opt. Express 22(5), 5052–5059 (2014).
    [Crossref]
  16. O. Senlik and N. M. Jokerst, “Concentric Multi-Pixel Silicon Photodiode Array Probes for Spatially Resolved Diffuse Reflectance Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 22(3), 4–5 (2016).
    [Crossref]
  17. D. M. Miller and N. M. Jokerst, “Flexible silicon sensors for diffuse reflectance spectroscopy of tissue,” Biomed. Opt. Express 8(3), 1512–1524 (2017).
    [Crossref]
  18. B. Lariviere, K. S. Garman, N. L. Ferguson, D. A. Fisher, and N. M. Jokerst, “Spatially resolved diffuse reflectance spectroscopy endoscopic sensing with custom Si photodetectors,” Biomed. Opt. Express 9(3), 1164–1176 (2018).
    [Crossref]
  19. T.-Y. Tseng, C.-Y. Chen, Y.-S. Li, and K.-B. Sung, “Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy,” Biomed. Opt. Express 2(4), 901–914 (2011).
    [Crossref]
  20. T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
    [Crossref]
  21. N. Rajaram, T. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
    [Crossref]
  22. R. J. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
    [Crossref]
  23. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref]
  24. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
    [Crossref]
  25. B. S. Nichols, N. Rajaram, J. W. Tunnell, B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
    [Crossref]
  26. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
    [Crossref]
  27. L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
    [Crossref]
  28. H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
    [Crossref]
  29. H. Wei, D. Xing, G. Wu, H. Gu, J. Lu, Y. Jin, and X.-Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
    [Crossref]
  30. H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
    [Crossref]
  31. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, “Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm,” Proc. SPIE 10063, 100631L (2017).
    [Crossref]
  32. S. A. Prahl, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology (International Society for Optics and Photonics, 1989), Vol. 10305, p. 1030509.
  33. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref]
  34. “MATLAB griddedInterpolant,” (2018).
  35. “MATLAB lsqnonlin,” (2018).
  36. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
    [Crossref]
  37. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
    [Crossref]
  38. S. Prahl, “Hemoglobin Spectra,” https://omlc.org/spectra/hemoglobin/summary.html .
  39. Maetzler, “Maetzler’s MATLAB code for Mie theory,” https://omlc.org/software/mie/ .
  40. “Polysciences 1 micron spheres datasheet,” https://www.polysciences.com/default/catalog-products/microspheres-particles/polymer-microspheres/polybead-sup-r-sup-microspheres/polybead-sup-r-sup-non-functionalized-microspheres/polybead-microspheres-100181m/ .
  41. P. Naglic, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).
    [Crossref]
  42. J. J. Bravo, K. D. Paulsen, D. W. Roberts, and S. C. Kanick, “Sub-diffuse optical biomarkers characterize localized microstructure and function of cortex and malignant tumor,” Opt. Lett. 41(4), 781–784 (2016).
    [Crossref]
  43. A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
    [Crossref]
  44. R. Graaff, M. H. Koelink, F. F. M. De Mul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32(4), 426–434 (1993).
    [Crossref]
  45. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [Crossref]
  46. C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
    [Crossref]
  47. B. Yu, A. Shah, V. K. Nagarajan, and D. G. Ferris, “Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe,” Biomed. Opt. Express 5(3), 675 (2014).
    [Crossref]
  48. B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
    [Crossref]
  49. B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
    [Crossref]
  50. H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
    [Crossref]
  51. G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
    [Crossref]
  52. R. Marchesini, E. Pignoli, and S. Tomatis, “Ex Vivo Optical Properties of Human Colon Tissue,” Lasers Surg. Med. 15(4), 351–357 (1994).
    [Crossref]

2018 (2)

B. Lariviere, K. S. Garman, N. L. Ferguson, D. A. Fisher, and N. M. Jokerst, “Spatially resolved diffuse reflectance spectroscopy endoscopic sensing with custom Si photodetectors,” Biomed. Opt. Express 9(3), 1164–1176 (2018).
[Crossref]

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

2017 (3)

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, “Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm,” Proc. SPIE 10063, 100631L (2017).
[Crossref]

D. M. Miller and N. M. Jokerst, “Flexible silicon sensors for diffuse reflectance spectroscopy of tissue,” Biomed. Opt. Express 8(3), 1512–1524 (2017).
[Crossref]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

2016 (3)

O. Senlik and N. M. Jokerst, “Concentric Multi-Pixel Silicon Photodiode Array Probes for Spatially Resolved Diffuse Reflectance Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 22(3), 4–5 (2016).
[Crossref]

P. Naglic, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).
[Crossref]

J. J. Bravo, K. D. Paulsen, D. W. Roberts, and S. C. Kanick, “Sub-diffuse optical biomarkers characterize localized microstructure and function of cortex and malignant tumor,” Opt. Lett. 41(4), 781–784 (2016).
[Crossref]

2015 (3)

S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
[Crossref]

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointest. Endosc. 81(3), 539–547 (2015).
[Crossref]

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

2014 (5)

B. Yu, A. Shah, V. K. Nagarajan, and D. G. Ferris, “Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe,” Biomed. Opt. Express 5(3), 675 (2014).
[Crossref]

S. I. Bae and Y. S. Kim, “Colon cancer screening and surveillance in inflammatory bowel disease,” Clin. Endosc. 47(6), 509 (2014).
[Crossref]

M. Iacucci, T. Uraoka, M. Fort Gasia, and N. Yahagi, “Novel diagnostic and therapeutic techniques for surveillance of dysplasia in patients with inflammatory bowel disease,” Can. J. Gastroenterol. Hepatol. 28(7), 361–370 (2014).
[Crossref]

S. Dhar, D. M. Miller, and N. M. Jokerst, “High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates,” Opt. Express 22(5), 5052–5059 (2014).
[Crossref]

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

2013 (3)

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

R. J. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

2012 (1)

B. S. Nichols, N. Rajaram, J. W. Tunnell, B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref]

2011 (1)

2009 (2)

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref]

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

2008 (3)

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

N. Rajaram, T. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref]

2007 (1)

2006 (2)

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006).
[Crossref]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[Crossref]

2005 (3)

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref]

H. Wei, D. Xing, G. Wu, H. Gu, J. Lu, Y. Jin, and X.-Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref]

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[Crossref]

2003 (1)

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

2002 (1)

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref]

1999 (2)

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref]

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]

1998 (1)

1996 (3)

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref]

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
[Crossref]

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[Crossref]

1994 (1)

R. Marchesini, E. Pignoli, and S. Tomatis, “Ex Vivo Optical Properties of Human Colon Tissue,” Lasers Surg. Med. 15(4), 351–357 (1994).
[Crossref]

1993 (1)

1992 (2)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[Crossref]

A’Amar, O.

Aalders, M. C.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]

Aarnoudse, J. G.

Ao, H.

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

Arendt, J. T.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
[Crossref]

Atkinson, C.

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

Backman, V.

Badie, N.

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

Bae, S. I.

S. I. Bae and Y. S. Kim, “Colon cancer screening and surveillance in inflammatory bowel disease,” Clin. Endosc. 47(6), 509 (2014).
[Crossref]

Bargo, P. R.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref]

Bechtel, K. L.

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

Berg, A.

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

Bevilacqua, F.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

Bigio, I. J.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointest. Endosc. 81(3), 539–547 (2015).
[Crossref]

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[Crossref]

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006).
[Crossref]

I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, 2016).

Blair, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref]

Bloom, S. L.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006).
[Crossref]

Boas, D. A.

Bown, S. G.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006).
[Crossref]

Bravo, J. J.

Brooke, M. A.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

S. Dhar, J. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE (IEEE, 2011), pp. 440–443.

Brown, J. Q.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

Bürmen, M.

P. Naglic, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).
[Crossref]

Carvalho, S.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, “Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm,” Proc. SPIE 10063, 100631L (2017).
[Crossref]

Cerda, S. R.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointest. Endosc. 81(3), 539–547 (2015).
[Crossref]

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

Charvet, I.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

Chen, C.-Y.

Coda, S.

S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
[Crossref]

S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
[Crossref]

Cothren, R. M.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
[Crossref]

Crawford, J. M.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
[Crossref]

Cross, F. W.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]

Dassel, A. C. M.

De Mul, F. F. M.

Depeursinge, C.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

Dhar, A.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006).
[Crossref]

Dhar, S.

S. Dhar, D. M. Miller, and N. M. Jokerst, “High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates,” Opt. Express 22(5), 5052–5059 (2014).
[Crossref]

S. Dhar, J. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE (IEEE, 2011), pp. 440–443.

Doornbos, R. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]

Fang, Q.

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref]

Fantini, S.

I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, 2016).

Farraye, F. A.

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

Farrell, T. J.

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[Crossref]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]

Feld, M. S.

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref]

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
[Crossref]

Ferguson, N. L.

Ferris, D. G.

Fisher, D. A.

Fitzmaurice, M.

Fort Gasia, M.

M. Iacucci, T. Uraoka, M. Fort Gasia, and N. Yahagi, “Novel diagnostic and therapeutic techniques for surveillance of dysplasia in patients with inflammatory bowel disease,” Can. J. Gastroenterol. Hepatol. 28(7), 361–370 (2014).
[Crossref]

Fulghum, S. F.

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

Gallagher, J.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

Garman, K. S.

Ge, Z.

Geradts, J.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

Goodell, T. T.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref]

Graaff, R.

Greenup, R.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

Greenup, R. A.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

Gu, H.

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Wei, D. Xing, G. Wu, H. Gu, J. Lu, Y. Jin, and X.-Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref]

Gu, H.-M.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[Crossref]

Gueiral, N.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, “Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm,” Proc. SPIE 10063, 100631L (2017).
[Crossref]

Hennessy, R. J.

R. J. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

Henrique, R.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, “Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm,” Proc. SPIE 10063, 100631L (2017).
[Crossref]

Hibst, R.

Huang, C. S.

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

Huang, Q.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointest. Endosc. 81(3), 539–547 (2015).
[Crossref]

Iacucci, M.

M. Iacucci, T. Uraoka, M. Fort Gasia, and N. Yahagi, “Novel diagnostic and therapeutic techniques for surveillance of dysplasia in patients with inflammatory bowel disease,” Can. J. Gastroenterol. Hepatol. 28(7), 361–370 (2014).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref]

Jepeal, L. I.

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

Jin, Y.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[Crossref]

H. Wei, D. Xing, G. Wu, H. Gu, J. Lu, Y. Jin, and X.-Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref]

Johnson, K. S.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006).
[Crossref]

Jokerst, N. M.

B. Lariviere, K. S. Garman, N. L. Ferguson, D. A. Fisher, and N. M. Jokerst, “Spatially resolved diffuse reflectance spectroscopy endoscopic sensing with custom Si photodetectors,” Biomed. Opt. Express 9(3), 1164–1176 (2018).
[Crossref]

D. M. Miller and N. M. Jokerst, “Flexible silicon sensors for diffuse reflectance spectroscopy of tissue,” Biomed. Opt. Express 8(3), 1512–1524 (2017).
[Crossref]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

O. Senlik and N. M. Jokerst, “Concentric Multi-Pixel Silicon Photodiode Array Probes for Spatially Resolved Diffuse Reflectance Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 22(3), 4–5 (2016).
[Crossref]

S. Dhar, D. M. Miller, and N. M. Jokerst, “High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates,” Opt. Express 22(5), 5052–5059 (2014).
[Crossref]

S. Dhar, J. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE (IEEE, 2011), pp. 440–443.

Kaeli, D. R.

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

Kanick, S. C.

Kienle, A.

Kim, Y. S.

S. I. Bae and Y. S. Kim, “Colon cancer screening and surveillance in inflammatory bowel disease,” Clin. Endosc. 47(6), 509 (2014).
[Crossref]

Kingdom, U.

S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
[Crossref]

Koelink, M. H.

Koval, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref]

Krieger, M. S.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

Lang, R.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]

Lariviere, B.

Lau, C.

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

Li, X.-Y.

H. Wei, D. Xing, G. Wu, H. Gu, J. Lu, Y. Jin, and X.-Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref]

Li, Y.-S.

Likar, B.

P. Naglic, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).
[Crossref]

Lilge, L.

Lim, S. L.

R. J. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

Llopis, A.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

Lo, J.

S. Dhar, J. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE (IEEE, 2011), pp. 440–443.

Lovat, L. B.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006).
[Crossref]

Lu, J.

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Wei, D. Xing, G. Wu, H. Gu, J. Lu, Y. Jin, and X.-Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref]

Lu, J.-J.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[Crossref]

Manoharan, R.

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref]

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
[Crossref]

Marchesini, R.

R. Marchesini, E. Pignoli, and S. Tomatis, “Ex Vivo Optical Properties of Human Colon Tissue,” Lasers Surg. Med. 15(4), 351–357 (1994).
[Crossref]

Markey, M. K.

R. J. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

Marquet, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

Marshek, C. L.

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref]

McCachren, S. S.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

McGee, S.

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

Meda, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

Miller, D.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

Miller, D. M.

Mirkovic, J.

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

Mulvey, C. S.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

Nagarajan, V. K.

Naglic, P.

P. Naglic, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).
[Crossref]

Nguyen, T.

N. Rajaram, T. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref]

Nichols, B. S.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

B. S. Nichols, N. Rajaram, J. W. Tunnell, B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref]

B. S. Nichols, N. Rajaram, J. W. Tunnell, B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref]

Nina-Paravecino, F.

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

Nishioka, N. S.

Nogueira, E.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, “Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm,” Proc. SPIE 10063, 100631L (2017).
[Crossref]

Novelli, M. R.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006).
[Crossref]

O’Brien, M. J.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointest. Endosc. 81(3), 539–547 (2015).
[Crossref]

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

Oliveira, L.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, “Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm,” Proc. SPIE 10063, 100631L (2017).
[Crossref]

Open, E. I.

S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
[Crossref]

Ory, G.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

Palmer, G. M.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[Crossref]

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref]

Parasa, S.

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

Patterson, M. S.

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[Crossref]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref]

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[Crossref]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]

Paulsen, K. D.

Perelman, L. T.

Pernuš, F.

P. Naglic, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).
[Crossref]

Pignoli, E.

R. Marchesini, E. Pignoli, and S. Tomatis, “Ex Vivo Optical Properties of Human Colon Tissue,” Lasers Surg. Med. 15(4), 351–357 (1994).
[Crossref]

Prahl, S.

S. Prahl, “Hemoglobin Spectra,” https://omlc.org/spectra/hemoglobin/summary.html .

Prahl, S. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref]

S. A. Prahl, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology (International Society for Optics and Photonics, 1989), Vol. 10305, p. 1030509.

Qumseya, B. J.

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

Rajaram, N.

B. S. Nichols, N. Rajaram, J. W. Tunnell, B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref]

B. S. Nichols, N. Rajaram, J. W. Tunnell, B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref]

N. Rajaram, T. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref]

Ramanujam, N.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[Crossref]

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref]

S. Dhar, J. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE (IEEE, 2011), pp. 440–443.

Reif, R.

Road, P. C.

S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
[Crossref]

Roberts, D. W.

Rodriguez-Diaz, E.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointest. Endosc. 81(3), 539–547 (2015).
[Crossref]

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

Scepanovic, O. R.

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

Schindler, C. E.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

Schomacker, K. T.

Senlik, O.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

O. Senlik and N. M. Jokerst, “Concentric Multi-Pixel Silicon Photodiode Array Probes for Spatially Resolved Diffuse Reflectance Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 22(3), 4–5 (2016).
[Crossref]

Shah, A.

Sharma, P.

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

Siersema, P. D.

S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
[Crossref]

Singh, S. K.

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointest. Endosc. 81(3), 539–547 (2015).
[Crossref]

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

Sleven, R. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref]

St Ghislain, M.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

Stamp, G. W. H.

S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
[Crossref]

Steiner, R.

Sterenborg, H. J.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]

Sung, K.-B.

Thillainayagam, A. V.

S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
[Crossref]

Thueler, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

Tomatis, S.

R. Marchesini, E. Pignoli, and S. Tomatis, “Ex Vivo Optical Properties of Human Colon Tissue,” Lasers Surg. Med. 15(4), 351–357 (1994).
[Crossref]

Tseng, T.-Y.

Tuchin, V. V.

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, “Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm,” Proc. SPIE 10063, 100631L (2017).
[Crossref]

Tunnell, J. W.

R. J. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

B. S. Nichols, N. Rajaram, J. W. Tunnell, B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref]

B. S. Nichols, N. Rajaram, J. W. Tunnell, B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref]

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

N. Rajaram, T. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref]

Uraoka, T.

M. Iacucci, T. Uraoka, M. Fort Gasia, and N. Yahagi, “Novel diagnostic and therapeutic techniques for surveillance of dysplasia in patients with inflammatory bowel disease,” Can. J. Gastroenterol. Hepatol. 28(7), 361–370 (2014).
[Crossref]

Uzomba, R. N.

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

Van Dam, J.

VanDam, J.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
[Crossref]

Vermeulen, B.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

Von Windheim, J. A.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

Vrotsos, K. M.

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref]

Wallace, M. B.

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

Wang, H.

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

Wei, H.

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Wei, D. Xing, G. Wu, H. Gu, J. Lu, Y. Jin, and X.-Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref]

Wei, H.-J.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[Crossref]

White, D. L.

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

Wilke, L. G.

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]

Wilson, B. C.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref]

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[Crossref]

Wolfsen, H.

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

Wu, G.

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Wei, D. Xing, G. Wu, H. Gu, J. Lu, Y. Jin, and X.-Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref]

Wu, G.-Y.

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[Crossref]

Wu, J.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
[Crossref]

Xing, D.

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[Crossref]

H. Wei, D. Xing, G. Wu, H. Gu, J. Lu, Y. Jin, and X.-Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref]

Yahagi, N.

M. Iacucci, T. Uraoka, M. Fort Gasia, and N. Yahagi, “Novel diagnostic and therapeutic techniques for surveillance of dysplasia in patients with inflammatory bowel disease,” Can. J. Gastroenterol. Hepatol. 28(7), 361–370 (2014).
[Crossref]

Yu, B.

B. Yu, A. Shah, V. K. Nagarajan, and D. G. Ferris, “Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe,” Biomed. Opt. Express 5(3), 675 (2014).
[Crossref]

S. Dhar, J. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE (IEEE, 2011), pp. 440–443.

Yu, C.-C.

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

Yu, L.

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

Zijlstra, W. G.

Zonios, G.

Zonios, G. I.

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
[Crossref]

Appl. Opt. (5)

Appl. Spectrosc. (1)

Biomed. Opt. Express (4)

Can. J. Gastroenterol. Hepatol. (1)

M. Iacucci, T. Uraoka, M. Fort Gasia, and N. Yahagi, “Novel diagnostic and therapeutic techniques for surveillance of dysplasia in patients with inflammatory bowel disease,” Can. J. Gastroenterol. Hepatol. 28(7), 361–370 (2014).
[Crossref]

Clin. Endosc. (1)

S. I. Bae and Y. S. Kim, “Colon cancer screening and surveillance in inflammatory bowel disease,” Clin. Endosc. 47(6), 509 (2014).
[Crossref]

Clin. Gastroenterol. Hepatol. (1)

B. J. Qumseya, H. Wang, N. Badie, R. N. Uzomba, S. Parasa, D. L. White, H. Wolfsen, P. Sharma, and M. B. Wallace, “Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: A meta-analysis and systematic review,” Clin. Gastroenterol. Hepatol. 11(12), 1562–1570.e2 (2013).
[Crossref]

Endosc. Int. open (1)

S. Coda, P. D. Siersema, G. W. H. Stamp, A. V. Thillainayagam, E. I. Open, S. Coda, P. C. Road, and U. Kingdom, “Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer,” Endosc. Int. open 3(5), E380–E392 (2015).
[Crossref]

Gastrointest. Endosc. (2)

E. Rodriguez-Diaz, Q. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, and S. K. Singh, “Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy,” Gastrointest. Endosc. 81(3), 539–547 (2015).
[Crossref]

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63(2), 257–261 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

O. Senlik and N. M. Jokerst, “Concentric Multi-Pixel Silicon Photodiode Array Probes for Spatially Resolved Diffuse Reflectance Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 22(3), 4–5 (2016).
[Crossref]

Ieee Trans. Biomed. Eng. (1)

G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. VanDam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” Ieee Trans. Biomed. Eng. 43(4), 437 (1996).
[Crossref]

Inflamm. Bowel Dis. (1)

E. Rodriguez-Diaz, C. Atkinson, L. I. Jepeal, A. Berg, C. S. Huang, S. R. Cerda, M. J. O’Brien, I. J. Bigio, F. A. Farraye, and S. K. Singh, “Elastic scattering spectroscopy as an optical marker of inflammatory bowel disease activity and subtypes,” Inflamm. Bowel Dis. 20(6), 1029–1036 (2014).
[Crossref]

J. Biomed. Opt. (10)

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495 (2003).
[Crossref]

B. S. Nichols, N. Rajaram, J. W. Tunnell, B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 057001 (2012).
[Crossref]

N. Rajaram, T. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref]

R. J. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

H. Wei, D. Xing, G. Wu, H. Gu, J. Lu, Y. Jin, and X.-Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref]

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref]

P. Naglic, F. Pernuš, B. Likar, and M. Bürmen, “Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime,” J. Biomed. Opt. 21(9), 095003 (2016).
[Crossref]

C. Lau, O. R. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, S. F. Fulghum, M. B. Wallace, J. W. Tunnell, K. L. Bechtel, and M. S. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14(2), 024031 (2009).
[Crossref]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. Miller, M. A. Brooke, N. M. Jokerst, J. Geradts, and R. Greenup, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. 22(2), 026007 (2017).
[Crossref]

Lasers Surg. Med. (2)

G. M. Palmer, C. L. Marshek, K. M. Vrotsos, and N. Ramanujam, “Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples,” Lasers Surg. Med. 30(3), 191–200 (2002).
[Crossref]

R. Marchesini, E. Pignoli, and S. Tomatis, “Ex Vivo Optical Properties of Human Colon Tissue,” Lasers Surg. Med. 15(4), 351–357 (1994).
[Crossref]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (6)

A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[Crossref]

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref]

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400–1100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[Crossref]

H. Ao, D. Xing, H. Wei, H. Gu, G. Wu, and J. Lu, “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm,” Phys. Med. Biol. 53(8), 2197–2206 (2008).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

PLoS One (1)

B. S. Nichols, C. E. Schindler, J. Q. Brown, L. G. Wilke, C. S. Mulvey, M. S. Krieger, J. Gallagher, J. Geradts, R. A. Greenup, J. A. Von Windheim, and N. Ramanujam, “A Quantitative Diffuse Reflectance Imaging (QDRI) system for comprehensive surveillance of the morphological landscape in breast tumor margins,” PLoS One 10(6), e0127525 (2015).
[Crossref]

Proc. SPIE (1)

S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, and V. V. Tuchin, “Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm,” Proc. SPIE 10063, 100631L (2017).
[Crossref]

World J. Gastroenterol. (1)

H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005).
[Crossref]

Other (8)

S. A. Prahl, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology (International Society for Optics and Photonics, 1989), Vol. 10305, p. 1030509.

“MATLAB griddedInterpolant,” (2018).

“MATLAB lsqnonlin,” (2018).

S. Prahl, “Hemoglobin Spectra,” https://omlc.org/spectra/hemoglobin/summary.html .

Maetzler, “Maetzler’s MATLAB code for Mie theory,” https://omlc.org/software/mie/ .

“Polysciences 1 micron spheres datasheet,” https://www.polysciences.com/default/catalog-products/microspheres-particles/polymer-microspheres/polybead-sup-r-sup-microspheres/polybead-sup-r-sup-non-functionalized-microspheres/polybead-microspheres-100181m/ .

S. Dhar, J. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE (IEEE, 2011), pp. 440–443.

I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Diagrams of MEOS cross section, front view diagram, and front view photomicrograph. In the cross-section diagram, red arrow points to the red layer representing the thin-film MEOS sensor.
Fig. 2.
Fig. 2. Monte Carlo generated reflectance surfaces for the three PDs.
Fig. 3.
Fig. 3. The optical properties of the eight validation phantoms, as well as the reference phantom used for scaling, in the wavelength range 450 nm to 750 nm at 10 nm wavelength intervals.
Fig. 4.
Fig. 4. Theoretical vs extracted reduced scattering coefficients for the six validation phantoms are shown for the SR-LUT (top) and SC-LUT (bottom). Theoretical coefficients are treated as true for error calculations.
Fig. 5.
Fig. 5. Theoretical vs extracted absorption coefficients for the six validation phantoms are shown for the SR-LUT (top) and SC-LUT (bottom). Theoretical coefficients are treated as true for error calculations.
Fig. 6.
Fig. 6. DRS spectra measured with the MEOS prototype. Each subplot displays spectra with error bars obtained from two locations of excised colon (one normal and one tumor location), with two measurements performed at each location.
Fig. 7.
Fig. 7. Tissue absorption and reduced scattering coefficients extracted from the spectra provided in Fig. 7, with error bars, using the SC-LUT method. One the right, H&E-stained tissue sections of the two measured locations are displayed (both photomicrographs at 4x magnification, bar = 500 µm).

Tables (1)

Tables Icon

Table 1. Summary of average extraction errors for each PD for the SR-LUT and SC-LUT methods.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D R M E O S ( λ ) = I m e a s ( λ ) I r e f ( λ )
μ s ( λ ) = A ( λ ) B
μ a ( λ ) = C ( D H b O 2 ( λ ) + ( 1 D ) H b ( λ ) )
m i n A , B , C , D f ( A , B , C , D ) = m i n A , B , C , D λ ( ( D R L U T ( μ s ( λ ) , μ a ( λ ) ) D R M E O S ( λ ) ) / A P D ) 2
m i n A , B , C , D f ( A , B , C , D ) = m i n A , B , C , D P D λ ( ( D R L U T ( μ s ( λ ) , μ a ( λ ) , P D ) D R M E O S ( λ , P D ) ) / A P D ) 2

Metrics