Abstract

This work describes the implementation of a compact system allowing measurement of blood flow velocity using laser Doppler velocimetry in situ. The compact setup uses an optical fiber acting as an emitter and receptor of the signal. The signal is then recovered by a photodiode and processed using a spectrum analyzer. The prototype was successfully tested to measure microbead suspension and whole blood flow velocities in a fluidic chip. Fibers with hemispherical lenses with three different radius of curvature were investigated. This simple yet precise setup would enable the insertion of the fiber via a medical catheter to monitor blood flow velocity in non superficial vessels where previous reported techniques cannot be implemented.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Waveform analysis of human retinal and choroidal blood flow with laser Doppler holography

Léo Puyo, Michel Paques, Mathias Fink, José-Alain Sahel, and Michael Atlan
Biomed. Opt. Express 10(10) 4942-4963 (2019)

Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue

F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel
Appl. Opt. 31(27) 5844-5851 (1992)

Holographic laser Doppler imaging of microvascular blood flow

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J. A. Sahel, M. Paques, and M. Atlan
J. Opt. Soc. Am. A 31(12) 2723-2735 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Wyatt, “Blood flow and blood velocity measurement in vivo by electro- magnetic induction,” Trans Inst M C 4(2), 61–78 (1982).
    [Crossref]
  2. F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
    [Crossref]
  3. A. J. Powell and T. Geva, “Blood Flow Measurement by Magnetic Resonance Imaging in Congenital Heart Disease,” Pediatr. Cardiol., Proc. World Congr., 2nd 21(1), 47–58 (2000).
    [Crossref]
  4. Y. Aizu and T. Asakura, “Coherent Optical Techniques for Diagnostics of Retinal Blood Flow,” J. Biomed. Opt. 4(1), 61 (1999).
    [Crossref]
  5. G. T. Feke and C. E. Riva, “Laser Doppler measurements of blood velocity in human retinal vessels,” J. Opt. Soc. Am. 68(4), 526 (1978).
    [Crossref]
  6. S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
    [Crossref]
  7. L. Scalise, W. Steenbergen, and F. de Mul, “Self-mixing feedback in a laser diode for intra-arterial optical blood velocimetry”,” Appl. Opt. 40(25), 4608 (2001).
    [Crossref]
  8. G. W. Schmid-Schoenbein and B. W. Zweifach, “RBC velocity profiles in arterioles and venules of the rabbit omentum”,” Microvasc. Res. 10(2), 153–164 (1975).
    [Crossref]
  9. A. Nadort, R. G. Woolthuis, T. G. van Leeuwen, and D. J. Faber, “Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy,” Biomed. Opt. Express 4(11), 2347 (2013).
    [Crossref]
  10. S. L. Chen, Z. Xie, P. L. Carson, X. Wang, and L. J. Guo, “In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy,” Opt. Lett. 36(20), 4017 (2011).
    [Crossref]
  11. T. Tajikawa, W. Ishihara, S. Kohri, and K. Ohba, “Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measuring Local Blood Velocity: Measurement of Whole Blood Velocity in Model Blood Vessel Using a Fiber-Optic Sensor with a Convex Lens-Like Tip,” J. Sens. 2012, 1–11 (2012).
    [Crossref]
  12. O. T. Strand, L. V. Berzins, D. R. Goosman, W. W. Kuhlow, P. D. Sargis, and T. L. Whitworth, “Velocimetry using heterodyne techniques,” in (D. L. Paisley, S. Kleinfelder, D. R. Snyder, and B. J. Thompson eds.), Proceedings of the SPIE, 5580593–599 (2005).
  13. Y. Bai, D. Ren, W. Zhao, Y. Qu, L. Qian, and Z. Chen, “Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser,” Opt. Express 20(2), 764 (2012).
    [Crossref]
  14. A. Ooue, T. Ichinose-Kuwahara, A. K. M. Shamsuddin, Y. Inoue, T. Nishiyasu, S. Koga, and N. Kondo, “Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans,” Eur. J. Appl. Physiol. 101(1), 97–103 (2007).
    [Crossref]
  15. W. Z. Song, X. M. Zhang, L. K. Chin, C. S. Lim, A. Q. Liu, P. H. Yap, and H. M. Hosseini, “Optical detection of living cells’ refractive index via buffer modulation of microfluidic chip,” The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS2006) Tokyo (2006).
  16. C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).
  17. M. W. Siebert and P. S. Fodor, “Newtonian and Non-Newtonian Blood Flow over a Backward- Facing Step – A Case Study,” Proceedings of the COMSOL Conference 2009 Boston (2009).
  18. E. Lazareva and V. Tuchin, “Blood refractive index modelling in the visible and near infrared spectral regions”,” J. Biomed. Photonics Eng. 4(1), 010503 (2018).
    [Crossref]
  19. P. Snabre, J. Dufaux, and L. Brunel, “Diffuse Laser Doppler Velocimetry from Multiple Scattering Media and Flowing Suspensions,” Waves and Imaging through Complex Media (P. Sebbah ed.), 369–382 (Springer, 2001).

2018 (1)

E. Lazareva and V. Tuchin, “Blood refractive index modelling in the visible and near infrared spectral regions”,” J. Biomed. Photonics Eng. 4(1), 010503 (2018).
[Crossref]

2013 (1)

2012 (3)

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

T. Tajikawa, W. Ishihara, S. Kohri, and K. Ohba, “Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measuring Local Blood Velocity: Measurement of Whole Blood Velocity in Model Blood Vessel Using a Fiber-Optic Sensor with a Convex Lens-Like Tip,” J. Sens. 2012, 1–11 (2012).
[Crossref]

Y. Bai, D. Ren, W. Zhao, Y. Qu, L. Qian, and Z. Chen, “Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser,” Opt. Express 20(2), 764 (2012).
[Crossref]

2011 (2)

S. L. Chen, Z. Xie, P. L. Carson, X. Wang, and L. J. Guo, “In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy,” Opt. Lett. 36(20), 4017 (2011).
[Crossref]

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

2007 (1)

A. Ooue, T. Ichinose-Kuwahara, A. K. M. Shamsuddin, Y. Inoue, T. Nishiyasu, S. Koga, and N. Kondo, “Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans,” Eur. J. Appl. Physiol. 101(1), 97–103 (2007).
[Crossref]

2001 (1)

2000 (1)

A. J. Powell and T. Geva, “Blood Flow Measurement by Magnetic Resonance Imaging in Congenital Heart Disease,” Pediatr. Cardiol., Proc. World Congr., 2nd 21(1), 47–58 (2000).
[Crossref]

1999 (1)

Y. Aizu and T. Asakura, “Coherent Optical Techniques for Diagnostics of Retinal Blood Flow,” J. Biomed. Opt. 4(1), 61 (1999).
[Crossref]

1982 (1)

G. Wyatt, “Blood flow and blood velocity measurement in vivo by electro- magnetic induction,” Trans Inst M C 4(2), 61–78 (1982).
[Crossref]

1978 (1)

1975 (1)

G. W. Schmid-Schoenbein and B. W. Zweifach, “RBC velocity profiles in arterioles and venules of the rabbit omentum”,” Microvasc. Res. 10(2), 153–164 (1975).
[Crossref]

Agachi, P. S.

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).

Aizu, Y.

Y. Aizu and T. Asakura, “Coherent Optical Techniques for Diagnostics of Retinal Blood Flow,” J. Biomed. Opt. 4(1), 61 (1999).
[Crossref]

Akiguchi, S.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Andoh, T.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Asakura, T.

Y. Aizu and T. Asakura, “Coherent Optical Techniques for Diagnostics of Retinal Blood Flow,” J. Biomed. Opt. 4(1), 61 (1999).
[Crossref]

Badea, R.

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).

Bai, Y.

Barker, A. J.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Bellenger, N. G.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Berzins, L. V.

O. T. Strand, L. V. Berzins, D. R. Goosman, W. W. Kuhlow, P. D. Sargis, and T. L. Whitworth, “Velocimetry using heterodyne techniques,” in (D. L. Paisley, S. Kleinfelder, D. R. Snyder, and B. J. Thompson eds.), Proceedings of the SPIE, 5580593–599 (2005).

Botar, C. C.

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).

Brunel, L.

P. Snabre, J. Dufaux, and L. Brunel, “Diffuse Laser Doppler Velocimetry from Multiple Scattering Media and Flowing Suspensions,” Waves and Imaging through Complex Media (P. Sebbah ed.), 369–382 (Springer, 2001).

Carson, P. L.

Chen, J.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Chen, S. L.

Chen, Z.

Chin, L. K.

W. Z. Song, X. M. Zhang, L. K. Chin, C. S. Lim, A. Q. Liu, P. H. Yap, and H. M. Hosseini, “Optical detection of living cells’ refractive index via buffer modulation of microfluidic chip,” The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS2006) Tokyo (2006).

Clichici, S.

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).

Cristea, M. V.

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).

de Mul, F.

Dufaux, J.

P. Snabre, J. Dufaux, and L. Brunel, “Diffuse Laser Doppler Velocimetry from Multiple Scattering Media and Flowing Suspensions,” Waves and Imaging through Complex Media (P. Sebbah ed.), 369–382 (Springer, 2001).

Faber, D. J.

Feke, G. T.

Fodor, P. S.

M. W. Siebert and P. S. Fodor, “Newtonian and Non-Newtonian Blood Flow over a Backward- Facing Step – A Case Study,” Proceedings of the COMSOL Conference 2009 Boston (2009).

Fulford, J.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Gastes, P.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Geva, T.

A. J. Powell and T. Geva, “Blood Flow Measurement by Magnetic Resonance Imaging in Congenital Heart Disease,” Pediatr. Cardiol., Proc. World Congr., 2nd 21(1), 47–58 (2000).
[Crossref]

Goosman, D. R.

O. T. Strand, L. V. Berzins, D. R. Goosman, W. W. Kuhlow, P. D. Sargis, and T. L. Whitworth, “Velocimetry using heterodyne techniques,” in (D. L. Paisley, S. Kleinfelder, D. R. Snyder, and B. J. Thompson eds.), Proceedings of the SPIE, 5580593–599 (2005).

Gosling, O. E.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Guo, L. J.

Hachiga, T.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Hosseini, H. M.

W. Z. Song, X. M. Zhang, L. K. Chin, C. S. Lim, A. Q. Liu, P. H. Yap, and H. M. Hosseini, “Optical detection of living cells’ refractive index via buffer modulation of microfluidic chip,” The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS2006) Tokyo (2006).

Ichinose-Kuwahara, T.

A. Ooue, T. Ichinose-Kuwahara, A. K. M. Shamsuddin, Y. Inoue, T. Nishiyasu, S. Koga, and N. Kondo, “Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans,” Eur. J. Appl. Physiol. 101(1), 97–103 (2007).
[Crossref]

Inoue, Y.

A. Ooue, T. Ichinose-Kuwahara, A. K. M. Shamsuddin, Y. Inoue, T. Nishiyasu, S. Koga, and N. Kondo, “Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans,” Eur. J. Appl. Physiol. 101(1), 97–103 (2007).
[Crossref]

Ishida, H.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Ishihara, W.

T. Tajikawa, W. Ishihara, S. Kohri, and K. Ohba, “Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measuring Local Blood Velocity: Measurement of Whole Blood Velocity in Model Blood Vessel Using a Fiber-Optic Sensor with a Convex Lens-Like Tip,” J. Sens. 2012, 1–11 (2012).
[Crossref]

Koga, S.

A. Ooue, T. Ichinose-Kuwahara, A. K. M. Shamsuddin, Y. Inoue, T. Nishiyasu, S. Koga, and N. Kondo, “Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans,” Eur. J. Appl. Physiol. 101(1), 97–103 (2007).
[Crossref]

Kohri, S.

T. Tajikawa, W. Ishihara, S. Kohri, and K. Ohba, “Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measuring Local Blood Velocity: Measurement of Whole Blood Velocity in Model Blood Vessel Using a Fiber-Optic Sensor with a Convex Lens-Like Tip,” J. Sens. 2012, 1–11 (2012).
[Crossref]

Kondo, N.

A. Ooue, T. Ichinose-Kuwahara, A. K. M. Shamsuddin, Y. Inoue, T. Nishiyasu, S. Koga, and N. Kondo, “Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans,” Eur. J. Appl. Physiol. 101(1), 97–103 (2007).
[Crossref]

Kuhlow, W. W.

O. T. Strand, L. V. Berzins, D. R. Goosman, W. W. Kuhlow, P. D. Sargis, and T. L. Whitworth, “Velocimetry using heterodyne techniques,” in (D. L. Paisley, S. Kleinfelder, D. R. Snyder, and B. J. Thompson eds.), Proceedings of the SPIE, 5580593–599 (2005).

Kuraishi, Y.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Lanning, C.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Lazareva, E.

E. Lazareva and V. Tuchin, “Blood refractive index modelling in the visible and near infrared spectral regions”,” J. Biomed. Photonics Eng. 4(1), 010503 (2018).
[Crossref]

Lim, C. S.

W. Z. Song, X. M. Zhang, L. K. Chin, C. S. Lim, A. Q. Liu, P. H. Yap, and H. M. Hosseini, “Optical detection of living cells’ refractive index via buffer modulation of microfluidic chip,” The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS2006) Tokyo (2006).

Liu, A. Q.

W. Z. Song, X. M. Zhang, L. K. Chin, C. S. Lim, A. Q. Liu, P. H. Yap, and H. M. Hosseini, “Optical detection of living cells’ refractive index via buffer modulation of microfluidic chip,” The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS2006) Tokyo (2006).

Mazzaro, L.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Mircea, P.

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).

Moldovan, R.

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).

Nadort, A.

Nishiyasu, T.

A. Ooue, T. Ichinose-Kuwahara, A. K. M. Shamsuddin, Y. Inoue, T. Nishiyasu, S. Koga, and N. Kondo, “Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans,” Eur. J. Appl. Physiol. 101(1), 97–103 (2007).
[Crossref]

Ohba, K.

T. Tajikawa, W. Ishihara, S. Kohri, and K. Ohba, “Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measuring Local Blood Velocity: Measurement of Whole Blood Velocity in Model Blood Vessel Using a Fiber-Optic Sensor with a Convex Lens-Like Tip,” J. Sens. 2012, 1–11 (2012).
[Crossref]

Ooue, A.

A. Ooue, T. Ichinose-Kuwahara, A. K. M. Shamsuddin, Y. Inoue, T. Nishiyasu, S. Koga, and N. Kondo, “Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans,” Eur. J. Appl. Physiol. 101(1), 97–103 (2007).
[Crossref]

Powell, A. J.

A. J. Powell and T. Geva, “Blood Flow Measurement by Magnetic Resonance Imaging in Congenital Heart Disease,” Pediatr. Cardiol., Proc. World Congr., 2nd 21(1), 47–58 (2000).
[Crossref]

Qian, L.

Qu, Y.

Rech, B.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Ren, D.

Riva, C. E.

Sargis, P. D.

O. T. Strand, L. V. Berzins, D. R. Goosman, W. W. Kuhlow, P. D. Sargis, and T. L. Whitworth, “Velocimetry using heterodyne techniques,” in (D. L. Paisley, S. Kleinfelder, D. R. Snyder, and B. J. Thompson eds.), Proceedings of the SPIE, 5580593–599 (2005).

Scalise, L.

Schmid-Schoenbein, G. W.

G. W. Schmid-Schoenbein and B. W. Zweifach, “RBC velocity profiles in arterioles and venules of the rabbit omentum”,” Microvasc. Res. 10(2), 153–164 (1975).
[Crossref]

Sfrangeu, S.

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).

Shamsuddin, A. K. M.

A. Ooue, T. Ichinose-Kuwahara, A. K. M. Shamsuddin, Y. Inoue, T. Nishiyasu, S. Koga, and N. Kondo, “Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans,” Eur. J. Appl. Physiol. 101(1), 97–103 (2007).
[Crossref]

Shandas, R.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Shimizu, T.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Shirakawa, H.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Shore, A. C.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Siebert, M. W.

M. W. Siebert and P. S. Fodor, “Newtonian and Non-Newtonian Blood Flow over a Backward- Facing Step – A Case Study,” Proceedings of the COMSOL Conference 2009 Boston (2009).

Snabre, P.

P. Snabre, J. Dufaux, and L. Brunel, “Diffuse Laser Doppler Velocimetry from Multiple Scattering Media and Flowing Suspensions,” Waves and Imaging through Complex Media (P. Sebbah ed.), 369–382 (Springer, 2001).

Song, W. Z.

W. Z. Song, X. M. Zhang, L. K. Chin, C. S. Lim, A. Q. Liu, P. H. Yap, and H. M. Hosseini, “Optical detection of living cells’ refractive index via buffer modulation of microfluidic chip,” The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS2006) Tokyo (2006).

Steenbergen, W.

Strain, W. D.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Strand, O. T.

O. T. Strand, L. V. Berzins, D. R. Goosman, W. W. Kuhlow, P. D. Sargis, and T. L. Whitworth, “Velocimetry using heterodyne techniques,” in (D. L. Paisley, S. Kleinfelder, D. R. Snyder, and B. J. Thompson eds.), Proceedings of the SPIE, 5580593–599 (2005).

Tajikawa, T.

T. Tajikawa, W. Ishihara, S. Kohri, and K. Ohba, “Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measuring Local Blood Velocity: Measurement of Whole Blood Velocity in Model Blood Vessel Using a Fiber-Optic Sensor with a Convex Lens-Like Tip,” J. Sens. 2012, 1–11 (2012).
[Crossref]

Tuchin, V.

E. Lazareva and V. Tuchin, “Blood refractive index modelling in the visible and near infrared spectral regions”,” J. Biomed. Photonics Eng. 4(1), 010503 (2018).
[Crossref]

Ueyama, K.

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

van Leeuwen, T. G.

Vasile, T.

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).

Wang, X.

Whitworth, T. L.

O. T. Strand, L. V. Berzins, D. R. Goosman, W. W. Kuhlow, P. D. Sargis, and T. L. Whitworth, “Velocimetry using heterodyne techniques,” in (D. L. Paisley, S. Kleinfelder, D. R. Snyder, and B. J. Thompson eds.), Proceedings of the SPIE, 5580593–599 (2005).

Woolthuis, R. G.

Wyatt, G.

G. Wyatt, “Blood flow and blood velocity measurement in vivo by electro- magnetic induction,” Trans Inst M C 4(2), 61–78 (1982).
[Crossref]

Xie, Z.

Yap, P. H.

W. Z. Song, X. M. Zhang, L. K. Chin, C. S. Lim, A. Q. Liu, P. H. Yap, and H. M. Hosseini, “Optical detection of living cells’ refractive index via buffer modulation of microfluidic chip,” The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS2006) Tokyo (2006).

Zhang, F.

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Zhang, X. M.

W. Z. Song, X. M. Zhang, L. K. Chin, C. S. Lim, A. Q. Liu, P. H. Yap, and H. M. Hosseini, “Optical detection of living cells’ refractive index via buffer modulation of microfluidic chip,” The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS2006) Tokyo (2006).

Zhao, W.

Zweifach, B. W.

G. W. Schmid-Schoenbein and B. W. Zweifach, “RBC velocity profiles in arterioles and venules of the rabbit omentum”,” Microvasc. Res. 10(2), 153–164 (1975).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Eur. J. Appl. Physiol. (1)

A. Ooue, T. Ichinose-Kuwahara, A. K. M. Shamsuddin, Y. Inoue, T. Nishiyasu, S. Koga, and N. Kondo, “Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans,” Eur. J. Appl. Physiol. 101(1), 97–103 (2007).
[Crossref]

J. Biomed. Opt. (1)

Y. Aizu and T. Asakura, “Coherent Optical Techniques for Diagnostics of Retinal Blood Flow,” J. Biomed. Opt. 4(1), 61 (1999).
[Crossref]

J. Biomed. Photonics Eng. (1)

E. Lazareva and V. Tuchin, “Blood refractive index modelling in the visible and near infrared spectral regions”,” J. Biomed. Photonics Eng. 4(1), 010503 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

J. Sens. (1)

T. Tajikawa, W. Ishihara, S. Kohri, and K. Ohba, “Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measuring Local Blood Velocity: Measurement of Whole Blood Velocity in Model Blood Vessel Using a Fiber-Optic Sensor with a Convex Lens-Like Tip,” J. Sens. 2012, 1–11 (2012).
[Crossref]

Meas. Sci. Technol. (1)

S. Akiguchi, H. Ishida, T. Andoh, T. Hachiga, T. Shimizu, Y. Kuraishi, H. Shirakawa, and K. Ueyama, “Measurement of blood flow velocity in a model of stenosis in vitro and in mesenteric vessels in vivo using non-invasive micro multipoint laser Doppler velocimetry,” Meas. Sci. Technol. 23(4), 045702 (2012).
[Crossref]

Microvasc. Res. (1)

G. W. Schmid-Schoenbein and B. W. Zweifach, “RBC velocity profiles in arterioles and venules of the rabbit omentum”,” Microvasc. Res. 10(2), 153–164 (1975).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Pediatr. Cardiol., Proc. World Congr., 2nd (1)

A. J. Powell and T. Geva, “Blood Flow Measurement by Magnetic Resonance Imaging in Congenital Heart Disease,” Pediatr. Cardiol., Proc. World Congr., 2nd 21(1), 47–58 (2000).
[Crossref]

Trans Inst M C (1)

G. Wyatt, “Blood flow and blood velocity measurement in vivo by electro- magnetic induction,” Trans Inst M C 4(2), 61–78 (1982).
[Crossref]

Ultrasound in Medicine & Biology (1)

F. Zhang, C. Lanning, L. Mazzaro, A. J. Barker, P. Gastes, W. D. Strain, J. Fulford, O. E. Gosling, A. C. Shore, N. G. Bellenger, B. Rech, J. Chen, J. Chen, and R. Shandas, “In Vitro and Preliminary In Vivo Validation of Echo Particle Image Velocimetry in Carotid Vascular Imaging,” Ultrasound in Medicine & Biology 37(3), 450–464 (2011).
[Crossref]

Other (5)

W. Z. Song, X. M. Zhang, L. K. Chin, C. S. Lim, A. Q. Liu, P. H. Yap, and H. M. Hosseini, “Optical detection of living cells’ refractive index via buffer modulation of microfluidic chip,” The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS2006) Tokyo (2006).

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea, and R. Moldovan, “CFD Simulation of the Portal Vein Blood Flow,” in International Conference on Advancements of Medicine and Health Care through Technology (S. Vlad, R. V. Ciupa, and A. I. Nicu eds.), 26, 359–362 (Springer Berlin Heidelberg, 2009).

M. W. Siebert and P. S. Fodor, “Newtonian and Non-Newtonian Blood Flow over a Backward- Facing Step – A Case Study,” Proceedings of the COMSOL Conference 2009 Boston (2009).

O. T. Strand, L. V. Berzins, D. R. Goosman, W. W. Kuhlow, P. D. Sargis, and T. L. Whitworth, “Velocimetry using heterodyne techniques,” in (D. L. Paisley, S. Kleinfelder, D. R. Snyder, and B. J. Thompson eds.), Proceedings of the SPIE, 5580593–599 (2005).

P. Snabre, J. Dufaux, and L. Brunel, “Diffuse Laser Doppler Velocimetry from Multiple Scattering Media and Flowing Suspensions,” Waves and Imaging through Complex Media (P. Sebbah ed.), 369–382 (Springer, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Images of the three different fiber tips used for the experiments carried out. Scale bars corresponds to 100 µm. a Fiber A with higher radius of curvature. b Fiber B with intermediate radius of curvature. c Fiber C with conical lensed tip.
Fig. 2.
Fig. 2. Schematic representation of the compact experimental fibered setup for laser Doppler velocimetry measurements. a Schematic representation of the optical setup. b Schematic representation of the fluidic setup. The insert presents a picture of the fluidic chip at the center of which the optical fiber is introduced via a needle with an orientation parallel to the flow direction.
Fig. 3.
Fig. 3. Power spectral density recorded when using Fiber B on a microbead suspension. Light propagation and flow are in the same direction, i.e. the fiber is positioned upstream.
Fig. 4.
Fig. 4. Linear evolution of the cut-off frequencies as a function of Vmax for each pump rotation speed, for the three different fibers positioned upstream. The data points are from the experimental measurements and the curve is a linear fit. Correlation coefficients and slopes from the linear regression analysis are reported on the chart.
Fig. 5.
Fig. 5. Signal obtained without accumulation over several spectra when using Fiber C in the opposite direction of the flow, i.e. the fiber is positioned downstream. Red arrows denote the peaks attributed to the instant Doppler peaks of single microbeads.
Fig. 6.
Fig. 6. Velocity magnitude map in a plane horizontally centered in the fluidic channel in the case of Fiber B positioned upstream for each pump rotation speed. The scale bar is 1 mm and the arrows points flow direction, which is the same on the four images. a) Velocity magnitude map at 23 rpm. b) Velocity magnitude map at 35 rpm. c) Velocity magnitude map at 50 rpm. d) Velocity magnitude map at 60 rpm.
Fig. 7.
Fig. 7. Power spectral density recorded when using Fiber A on whole blood. Light is pointing in the flow direction, i.e. the fiber is located upstream.
Fig. 8.
Fig. 8. Linear evolution of the cut-off frequencies as a function of Vmax for each pump rotation speed, for the three different fibers positioned upstream. The data points correspond to the experimental measurements and the curve is a linear fit. Correlation coefficients and slopes from the linear regression analysis are summarized on the chart.

Tables (3)

Tables Icon

Table 1. Measured flowrate, estimated velocity using Poiseuille law, average velocity extracted by PTV and related Doppler frequency for the four pump rotation speeds used

Tables Icon

Table 2. Summary of the measured flowrate used for inlet conditions in fluidic simulations with extracted maximal velocities in the center of the channel for each pump rotation speed and corresponding Doppler frequencies

Tables Icon

Table 3. Extracted maximal velocities for each fiber in the different flow conditions on microbeads suspension and whole blood

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f D = 2 n cos ( θ ) λ v
D = V a v e r a g e S
D = 1 2 V m a x S
t h e o r e t i c a l s l o p e = 2 n λ = 17 , 56

Metrics