Abstract

It is widely accepted that accurate mechanical properties of three-dimensional soft tissues and cellular samples are not available on the microscale. Current methods based on optical coherence elastography can measure displacements at the necessary resolution, and over the volumes required for this task. However, in converting this data to maps of elastic properties, they often impose assumptions regarding homogeneity in stress or elastic properties that are violated in most realistic scenarios. Here, we introduce novel, rigorous, and computationally efficient inverse problem techniques that do not make these assumptions, to realize quantitative volumetric elasticity imaging on the microscale. Specifically, we iteratively solve the three-dimensional elasticity inverse problem using displacement maps obtained from compression optical coherence elastography. This is made computationally feasible with adaptive mesh refinement and domain decomposition methods. By employing a transparent, compliant surface layer with known shear modulus as a reference for the measurement, absolute shear modulus values are produced within a millimeter-scale sample volume. We demonstrate the method on phantoms, on a breast cancer sample ex vivo, and on human skin in vivo. Quantitative elastography on this length scale will find wide application in cell biology, tissue engineering and medicine.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of spatial resolution in phase-sensitive compression optical coherence elastography

Matt S. Hepburn, Philip Wijesinghe, Lixin Chin, and Brendan F. Kennedy
Biomed. Opt. Express 10(3) 1496-1513 (2019)

In vivo dynamic optical coherence elastography using a ring actuator

Brendan F. Kennedy, Timothy R. Hillman, Robert A. McLaughlin, Bryden C. Quirk, and David D. Sampson
Opt. Express 17(24) 21762-21772 (2009)

In vivo volumetric quantitative micro-elastography of human skin

Shaghayegh Es’haghian, Kelsey M. Kennedy, Peijun Gong, Qingyun Li, Lixin Chin, Philip Wijesinghe, David D. Sampson, Robert A. McLaughlin, and Brendan F. Kennedy
Biomed. Opt. Express 8(5) 2458-2471 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
    [Crossref] [PubMed]
  2. P. N. T. Wells and H.-D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface 8(64), 1521–1549 (2011).
    [Crossref] [PubMed]
  3. S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: The force journey of a tumor cell,” Cancer Metastasis Rev. 28(1-2), 113–127 (2009).
    [Crossref] [PubMed]
  4. G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
    [Crossref] [PubMed]
  5. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: The 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
    [Crossref] [PubMed]
  6. W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
    [Crossref] [PubMed]
  7. K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
    [Crossref] [PubMed]
  8. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
    [Crossref]
  9. K. V. Larin and D. D. Sampson, “Optical coherence elastography–OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref] [PubMed]
  10. M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol. 57(3), R35–R73 (2012).
    [Crossref] [PubMed]
  11. J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246 (2016).
    [Crossref]
  12. L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
    [Crossref]
  13. A. A. Oberai, N. H. Gokhale, and G. R. Feijóo, “Solution of inverse problems in elasticity imaging using the adjoint method,” Inverse Probl. 19(2), 297–313 (2003).
    [Crossref]
  14. A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
    [Crossref] [PubMed]
  15. A. S. Khalil, B. E. Bouma, and M. R. Kaazempur Mofrad, “A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation,” Cardiovasc. Eng. 6(3), 93–102 (2006).
    [Crossref] [PubMed]
  16. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [Crossref] [PubMed]
  17. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
    [Crossref] [PubMed]
  18. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
    [Crossref] [PubMed]
  19. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
    [Crossref] [PubMed]
  20. S. Goenezen, P. Barbone, and A. A. Oberai, “Solution of the nonlinear elasticity imaging inverse problem: The incompressible case,” Comput. Methods Appl. Mech. Eng. 200(13-16), 1406–1420 (2011).
    [Crossref] [PubMed]
  21. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
    [Crossref] [PubMed]
  22. F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
    [Crossref] [PubMed]
  23. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
    [Crossref] [PubMed]
  24. K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
    [Crossref] [PubMed]
  25. W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
    [Crossref] [PubMed]
  26. W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
    [Crossref] [PubMed]
  27. T. Liu, O. A. Babaniyi, T. J. Hall, P. E. Barbone, and A. A. Oberai, “Noninvasive in-vivo quantification of mechanical heterogeneity of invasive breast carcinomas,” PLoS One 10(7), e0130258 (2015).
    [Crossref] [PubMed]
  28. J. T. Iivarinen, R. K. Korhonen, P. Julkunen, and J. S. Jurvelin, “Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device,” Med. Eng. Phys. 33(10), 1245–1253 (2011).
    [Crossref] [PubMed]
  29. A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test,” J. Biomech. 39(9), 1603–1610 (2006).
    [Crossref] [PubMed]
  30. S. J. Kirkpatrick, R. K. Wang, D. D. Duncan, M. Kulesz-Martin, and K. Lee, “Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography,” Opt. Express 14(21), 9770–9779 (2006).
    [Crossref] [PubMed]
  31. J. A. Clark, J. C. Y. Cheng, and K. S. Leung, “Mechanical properties of normal skin and hypertrophic scars,” Burns 22(6), 443–446 (1996).
    [Crossref] [PubMed]
  32. B. Kalis, J. De Rigal, F. Léonard, J. L. le Lévêque, O. De Riche, Y. L. Corre, and O. D. Lacharriere, “In vivo study of scleroderma by non-invasive techniques,” Br. J. Dermatol. 122(6), 785–791 (1990).
    [Crossref] [PubMed]
  33. C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Lévêque, and P. G. Agache, “Age-related mechanical properties of human skin: An in vivo study,” J. Invest. Dermatol. 93(3), 353–357 (1989).
    [Crossref] [PubMed]
  34. S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
    [Crossref] [PubMed]
  35. S. W. Shore, P. E. Barbone, A. A. Oberai, and E. F. Morgan, “Transversely isotropic elasticity imaging of cancellous bone,” J. Biomech. Eng. 133(6), 061002 (2011).
    [Crossref] [PubMed]
  36. R. Leiderman, P. E. Barbone, A. A. Oberai, and J. C. Bamber, “Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging,” Phys. Med. Biol. 51(24), 6291–6313 (2006).
    [Crossref] [PubMed]
  37. R. Leiderman, A. A. Oberai, and P. E. Barbone, “Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: Exact and approximate inverse solutions,” C. R. Mec. 338(7-8), 412–423 (2010).
    [Crossref]

2018 (1)

2017 (3)

2016 (4)

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246 (2016).
[Crossref]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

2015 (3)

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

T. Liu, O. A. Babaniyi, T. J. Hall, P. E. Barbone, and A. A. Oberai, “Noninvasive in-vivo quantification of mechanical heterogeneity of invasive breast carcinomas,” PLoS One 10(7), e0130258 (2015).
[Crossref] [PubMed]

2014 (1)

2012 (5)

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol. 57(3), R35–R73 (2012).
[Crossref] [PubMed]

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
[Crossref] [PubMed]

2011 (5)

P. N. T. Wells and H.-D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface 8(64), 1521–1549 (2011).
[Crossref] [PubMed]

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: The 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

J. T. Iivarinen, R. K. Korhonen, P. Julkunen, and J. S. Jurvelin, “Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device,” Med. Eng. Phys. 33(10), 1245–1253 (2011).
[Crossref] [PubMed]

S. Goenezen, P. Barbone, and A. A. Oberai, “Solution of the nonlinear elasticity imaging inverse problem: The incompressible case,” Comput. Methods Appl. Mech. Eng. 200(13-16), 1406–1420 (2011).
[Crossref] [PubMed]

S. W. Shore, P. E. Barbone, A. A. Oberai, and E. F. Morgan, “Transversely isotropic elasticity imaging of cancellous bone,” J. Biomech. Eng. 133(6), 061002 (2011).
[Crossref] [PubMed]

2010 (1)

R. Leiderman, A. A. Oberai, and P. E. Barbone, “Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: Exact and approximate inverse solutions,” C. R. Mec. 338(7-8), 412–423 (2010).
[Crossref]

2009 (2)

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: The force journey of a tumor cell,” Cancer Metastasis Rev. 28(1-2), 113–127 (2009).
[Crossref] [PubMed]

2007 (1)

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref] [PubMed]

2006 (4)

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test,” J. Biomech. 39(9), 1603–1610 (2006).
[Crossref] [PubMed]

A. S. Khalil, B. E. Bouma, and M. R. Kaazempur Mofrad, “A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation,” Cardiovasc. Eng. 6(3), 93–102 (2006).
[Crossref] [PubMed]

S. J. Kirkpatrick, R. K. Wang, D. D. Duncan, M. Kulesz-Martin, and K. Lee, “Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography,” Opt. Express 14(21), 9770–9779 (2006).
[Crossref] [PubMed]

R. Leiderman, P. E. Barbone, A. A. Oberai, and J. C. Bamber, “Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging,” Phys. Med. Biol. 51(24), 6291–6313 (2006).
[Crossref] [PubMed]

2005 (1)

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

2003 (1)

A. A. Oberai, N. H. Gokhale, and G. R. Feijóo, “Solution of inverse problems in elasticity imaging using the adjoint method,” Inverse Probl. 19(2), 297–313 (2003).
[Crossref]

1998 (1)

1996 (2)

F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
[Crossref] [PubMed]

J. A. Clark, J. C. Y. Cheng, and K. S. Leung, “Mechanical properties of normal skin and hypertrophic scars,” Burns 22(6), 443–446 (1996).
[Crossref] [PubMed]

1990 (1)

B. Kalis, J. De Rigal, F. Léonard, J. L. le Lévêque, O. De Riche, Y. L. Corre, and O. D. Lacharriere, “In vivo study of scleroderma by non-invasive techniques,” Br. J. Dermatol. 122(6), 785–791 (1990).
[Crossref] [PubMed]

1989 (1)

C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Lévêque, and P. G. Agache, “Age-related mechanical properties of human skin: An in vivo study,” J. Invest. Dermatol. 93(3), 353–357 (1989).
[Crossref] [PubMed]

Adie, S. G.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246 (2016).
[Crossref]

Agache, P. G.

C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Lévêque, and P. G. Agache, “Age-related mechanical properties of human skin: An in vivo study,” J. Invest. Dermatol. 93(3), 353–357 (1989).
[Crossref] [PubMed]

Allen, W. M.

Babaniyi, O. A.

T. Liu, O. A. Babaniyi, T. J. Hall, P. E. Barbone, and A. A. Oberai, “Noninvasive in-vivo quantification of mechanical heterogeneity of invasive breast carcinomas,” PLoS One 10(7), e0130258 (2015).
[Crossref] [PubMed]

Balu-Maestro, C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Bamber, J. C.

R. Leiderman, P. E. Barbone, A. A. Oberai, and J. C. Bamber, “Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging,” Phys. Med. Biol. 51(24), 6291–6313 (2006).
[Crossref] [PubMed]

Barbone, P.

S. Goenezen, P. Barbone, and A. A. Oberai, “Solution of the nonlinear elasticity imaging inverse problem: The incompressible case,” Comput. Methods Appl. Mech. Eng. 200(13-16), 1406–1420 (2011).
[Crossref] [PubMed]

Barbone, P. E.

T. Liu, O. A. Babaniyi, T. J. Hall, P. E. Barbone, and A. A. Oberai, “Noninvasive in-vivo quantification of mechanical heterogeneity of invasive breast carcinomas,” PLoS One 10(7), e0130258 (2015).
[Crossref] [PubMed]

S. W. Shore, P. E. Barbone, A. A. Oberai, and E. F. Morgan, “Transversely isotropic elasticity imaging of cancellous bone,” J. Biomech. Eng. 133(6), 061002 (2011).
[Crossref] [PubMed]

R. Leiderman, A. A. Oberai, and P. E. Barbone, “Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: Exact and approximate inverse solutions,” C. R. Mec. 338(7-8), 412–423 (2010).
[Crossref]

R. Leiderman, P. E. Barbone, A. A. Oberai, and J. C. Bamber, “Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging,” Phys. Med. Biol. 51(24), 6291–6313 (2006).
[Crossref] [PubMed]

Berg, W. A.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Bergheau, J.-M.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test,” J. Biomech. 39(9), 1603–1610 (2006).
[Crossref] [PubMed]

Bertrand, M.

F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
[Crossref] [PubMed]

Bisaillon, C. E.

Bouma, B. E.

A. S. Khalil, B. E. Bouma, and M. R. Kaazempur Mofrad, “A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation,” Cardiovasc. Eng. 6(3), 93–102 (2006).
[Crossref] [PubMed]

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Brown, C. N.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246 (2016).
[Crossref]

Campbell, G.

Cavanaugh, B. C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Chan, R. C.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Chandrasekaran, S. N.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246 (2016).
[Crossref]

Chau, A. H.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Cheng, J. C. Y.

J. A. Clark, J. C. Y. Cheng, and K. S. Leung, “Mechanical properties of normal skin and hypertrophic scars,” Burns 22(6), 443–446 (1996).
[Crossref] [PubMed]

Chin, L.

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

Chin, S. L.

Clark, J. A.

J. A. Clark, J. C. Y. Cheng, and K. S. Leung, “Mechanical properties of normal skin and hypertrophic scars,” Burns 22(6), 443–446 (1996).
[Crossref] [PubMed]

Cohen-Bacrie, C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Corre, Y. L.

B. Kalis, J. De Rigal, F. Léonard, J. L. le Lévêque, O. De Riche, Y. L. Corre, and O. D. Lacharriere, “In vivo study of scleroderma by non-invasive techniques,” Br. J. Dermatol. 122(6), 785–791 (1990).
[Crossref] [PubMed]

Cosgrove, D. O.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Curatolo, A.

Dantuono, J. T.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

De Riche, O.

B. Kalis, J. De Rigal, F. Léonard, J. L. le Lévêque, O. De Riche, Y. L. Corre, and O. D. Lacharriere, “In vivo study of scleroderma by non-invasive techniques,” Br. J. Dermatol. 122(6), 785–791 (1990).
[Crossref] [PubMed]

De Rigal, J.

B. Kalis, J. De Rigal, F. Léonard, J. L. le Lévêque, O. De Riche, Y. L. Corre, and O. D. Lacharriere, “In vivo study of scleroderma by non-invasive techniques,” Br. J. Dermatol. 122(6), 785–791 (1990).
[Crossref] [PubMed]

C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Lévêque, and P. G. Agache, “Age-related mechanical properties of human skin: An in vivo study,” J. Invest. Dermatol. 93(3), 353–357 (1989).
[Crossref] [PubMed]

Delalleau, A.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test,” J. Biomech. 39(9), 1603–1610 (2006).
[Crossref] [PubMed]

Dessauvagie, B. F.

Discher, D.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

Dong, C.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

Dong, L.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

Doré, C. J.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Doyley, M. M.

M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol. 57(3), R35–R73 (2012).
[Crossref] [PubMed]

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: The 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

Duncan, D. D.

Ehman, R. L.

K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
[Crossref] [PubMed]

Es’haghian, S.

Escoffier, C.

C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Lévêque, and P. G. Agache, “Age-related mechanical properties of human skin: An in vivo study,” J. Invest. Dermatol. 93(3), 353–357 (1989).
[Crossref] [PubMed]

Fang, Q.

Feijóo, G. R.

A. A. Oberai, N. H. Gokhale, and G. R. Feijóo, “Solution of inverse problems in elasticity imaging using the adjoint method,” Inverse Probl. 19(2), 297–313 (2003).
[Crossref]

Fredberg, J. J.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

Gay, J.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Glaser, K. J.

K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
[Crossref] [PubMed]

Goenezen, S.

S. Goenezen, P. Barbone, and A. A. Oberai, “Solution of the nonlinear elasticity imaging inverse problem: The incompressible case,” Comput. Methods Appl. Mech. Eng. 200(13-16), 1406–1420 (2011).
[Crossref] [PubMed]

Gokhale, N. H.

A. A. Oberai, N. H. Gokhale, and G. R. Feijóo, “Solution of inverse problems in elasticity imaging using the adjoint method,” Inverse Probl. 19(2), 297–313 (2003).
[Crossref]

Gong, P.

Guilak, F.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

Hall, T. J.

T. Liu, O. A. Babaniyi, T. J. Hall, P. E. Barbone, and A. A. Oberai, “Noninvasive in-vivo quantification of mechanical heterogeneity of invasive breast carcinomas,” PLoS One 10(7), e0130258 (2015).
[Crossref] [PubMed]

Henry, J.-P.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Hooley, R. J.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Iivarinen, J. T.

J. T. Iivarinen, R. K. Korhonen, P. Julkunen, and J. S. Jurvelin, “Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device,” Med. Eng. Phys. 33(10), 1245–1253 (2011).
[Crossref] [PubMed]

Ingber, D.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

Janmey, P.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

Josse, G.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test,” J. Biomech. 39(9), 1603–1610 (2006).
[Crossref] [PubMed]

Juhan, V.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Julkunen, P.

J. T. Iivarinen, R. K. Korhonen, P. Julkunen, and J. S. Jurvelin, “Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device,” Med. Eng. Phys. 33(10), 1245–1253 (2011).
[Crossref] [PubMed]

Jurvelin, J. S.

J. T. Iivarinen, R. K. Korhonen, P. Julkunen, and J. S. Jurvelin, “Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device,” Med. Eng. Phys. 33(10), 1245–1253 (2011).
[Crossref] [PubMed]

Kaazempur Mofrad, M. R.

A. S. Khalil, B. E. Bouma, and M. R. Kaazempur Mofrad, “A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation,” Cardiovasc. Eng. 6(3), 93–102 (2006).
[Crossref] [PubMed]

Kalis, B.

B. Kalis, J. De Rigal, F. Léonard, J. L. le Lévêque, O. De Riche, Y. L. Corre, and O. D. Lacharriere, “In vivo study of scleroderma by non-invasive techniques,” Br. J. Dermatol. 122(6), 785–791 (1990).
[Crossref] [PubMed]

Kallel, F.

F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
[Crossref] [PubMed]

Kamm, R. D.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

Kennedy, B. F.

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref] [PubMed]

Kennedy, K. M.

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref] [PubMed]

Khalil, A. S.

A. S. Khalil, B. E. Bouma, and M. R. Kaazempur Mofrad, “A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation,” Cardiovasc. Eng. 6(3), 93–102 (2006).
[Crossref] [PubMed]

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Kirk, R. W.

Kirkpatrick, S. J.

Koh, S. H.

Korhonen, R. K.

J. T. Iivarinen, R. K. Korhonen, P. Julkunen, and J. S. Jurvelin, “Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device,” Med. Eng. Phys. 33(10), 1245–1253 (2011).
[Crossref] [PubMed]

Kulesz-Martin, M.

Kumar, S.

S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: The force journey of a tumor cell,” Cancer Metastasis Rev. 28(1-2), 113–127 (2009).
[Crossref] [PubMed]

Lacharriere, O. D.

B. Kalis, J. De Rigal, F. Léonard, J. L. le Lévêque, O. De Riche, Y. L. Corre, and O. D. Lacharriere, “In vivo study of scleroderma by non-invasive techniques,” Br. J. Dermatol. 122(6), 785–791 (1990).
[Crossref] [PubMed]

Lagarde, J.-M.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test,” J. Biomech. 39(9), 1603–1610 (2006).
[Crossref] [PubMed]

Lamouche, G.

Larin, K. V.

Latham, B.

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

le Lévêque, J. L.

B. Kalis, J. De Rigal, F. Léonard, J. L. le Lévêque, O. De Riche, Y. L. Corre, and O. D. Lacharriere, “In vivo study of scleroderma by non-invasive techniques,” Br. J. Dermatol. 122(6), 785–791 (1990).
[Crossref] [PubMed]

Lee, G. Y. H.

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref] [PubMed]

Lee, K.

Leiderman, R.

R. Leiderman, A. A. Oberai, and P. E. Barbone, “Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: Exact and approximate inverse solutions,” C. R. Mec. 338(7-8), 412–423 (2010).
[Crossref]

R. Leiderman, P. E. Barbone, A. A. Oberai, and J. C. Bamber, “Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging,” Phys. Med. Biol. 51(24), 6291–6313 (2006).
[Crossref] [PubMed]

Léonard, F.

B. Kalis, J. De Rigal, F. Léonard, J. L. le Lévêque, O. De Riche, Y. L. Corre, and O. D. Lacharriere, “In vivo study of scleroderma by non-invasive techniques,” Br. J. Dermatol. 122(6), 785–791 (1990).
[Crossref] [PubMed]

Leung, K. S.

J. A. Clark, J. C. Y. Cheng, and K. S. Leung, “Mechanical properties of normal skin and hypertrophic scars,” Burns 22(6), 443–446 (1996).
[Crossref] [PubMed]

Lévêque, J.-L.

C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Lévêque, and P. G. Agache, “Age-related mechanical properties of human skin: An in vivo study,” J. Invest. Dermatol. 93(3), 353–357 (1989).
[Crossref] [PubMed]

Li, Q.

Liang, H.-D.

P. N. T. Wells and H.-D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface 8(64), 1521–1549 (2011).
[Crossref] [PubMed]

Lim, C. T.

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref] [PubMed]

Liu, T.

T. Liu, O. A. Babaniyi, T. J. Hall, P. E. Barbone, and A. A. Oberai, “Noninvasive in-vivo quantification of mechanical heterogeneity of invasive breast carcinomas,” PLoS One 10(7), e0130258 (2015).
[Crossref] [PubMed]

Locatelli, M.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Manduca, A.

K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
[Crossref] [PubMed]

McLaughlin, R. A.

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

Mendelson, E. B.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Mofrad, M. R. K.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Morgan, E. F.

S. W. Shore, P. E. Barbone, A. A. Oberai, and E. F. Morgan, “Transversely isotropic elasticity imaging of cancellous bone,” J. Biomech. Eng. 133(6), 061002 (2011).
[Crossref] [PubMed]

Mulligan, J. A.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246 (2016).
[Crossref]

Munro, P. R.

Munro, P. R. T.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

Oberai, A. A.

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

T. Liu, O. A. Babaniyi, T. J. Hall, P. E. Barbone, and A. A. Oberai, “Noninvasive in-vivo quantification of mechanical heterogeneity of invasive breast carcinomas,” PLoS One 10(7), e0130258 (2015).
[Crossref] [PubMed]

S. Goenezen, P. Barbone, and A. A. Oberai, “Solution of the nonlinear elasticity imaging inverse problem: The incompressible case,” Comput. Methods Appl. Mech. Eng. 200(13-16), 1406–1420 (2011).
[Crossref] [PubMed]

S. W. Shore, P. E. Barbone, A. A. Oberai, and E. F. Morgan, “Transversely isotropic elasticity imaging of cancellous bone,” J. Biomech. Eng. 133(6), 061002 (2011).
[Crossref] [PubMed]

R. Leiderman, A. A. Oberai, and P. E. Barbone, “Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: Exact and approximate inverse solutions,” C. R. Mec. 338(7-8), 412–423 (2010).
[Crossref]

R. Leiderman, P. E. Barbone, A. A. Oberai, and J. C. Bamber, “Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging,” Phys. Med. Biol. 51(24), 6291–6313 (2006).
[Crossref] [PubMed]

A. A. Oberai, N. H. Gokhale, and G. R. Feijóo, “Solution of inverse problems in elasticity imaging using the adjoint method,” Inverse Probl. 19(2), 297–313 (2003).
[Crossref]

Ohlinger, R.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Ophir, J.

F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
[Crossref] [PubMed]

Parker, K. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: The 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

Pazos, V.

Rochefort, A.

C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Lévêque, and P. G. Agache, “Age-related mechanical properties of human skin: An in vivo study,” J. Invest. Dermatol. 93(3), 353–357 (1989).
[Crossref] [PubMed]

Ronald, M.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

Rubens, D. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: The 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

Sampson, D. D.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography–OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

Saunders, C. M.

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
[Crossref] [PubMed]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

Schäfer, F. K. W.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Schmid-Schönbein, G. W.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

Schmitt, J.

Shore, S. W.

S. W. Shore, P. E. Barbone, A. A. Oberai, and E. F. Morgan, “Transversely isotropic elasticity imaging of cancellous bone,” J. Biomech. Eng. 133(6), 061002 (2011).
[Crossref] [PubMed]

Stavros, A. T.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Svensson, W. E.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Tardivon, A.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Tien, A.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

Tourasse, C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Untracht, G. R.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246 (2016).
[Crossref]

Vasselet, R.

C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Lévêque, and P. G. Agache, “Age-related mechanical properties of human skin: An in vivo study,” J. Invest. Dermatol. 93(3), 353–357 (1989).
[Crossref] [PubMed]

Wang, R. K.

Watts, L.

Weaver, V. M.

S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: The force journey of a tumor cell,” Cancer Metastasis Rev. 28(1-2), 113–127 (2009).
[Crossref] [PubMed]

Weinbaum, S.

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

Wells, P. N. T.

P. N. T. Wells and H.-D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface 8(64), 1521–1549 (2011).
[Crossref] [PubMed]

Wijesinghe, P.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
[Crossref] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

Zahouani, H.

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test,” J. Biomech. 39(9), 1603–1610 (2006).
[Crossref] [PubMed]

Zilkens, R.

Ann. Biomed. Eng. (2)

D. Discher, C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schönbein, and S. Weinbaum, “Biomechanics: Cell research and applications for the next decade,” Ann. Biomed. Eng. 37(5), 847–859 (2009).
[Crossref] [PubMed]

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (7)

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: Mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref] [PubMed]

K. V. Larin and D. D. Sampson, “Optical coherence elastography–OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
[Crossref] [PubMed]

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3(6), 1381–1398 (2012).
[Crossref] [PubMed]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref] [PubMed]

W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref] [PubMed]

S. Es’haghian, K. M. Kennedy, P. Gong, Q. Li, L. Chin, P. Wijesinghe, D. D. Sampson, R. A. McLaughlin, and B. F. Kennedy, “In vivo volumetric quantitative micro-elastography of human skin,” Biomed. Opt. Express 8(5), 2458–2471 (2017).
[Crossref] [PubMed]

BMC Cancer (1)

K. M. Kennedy, L. Chin, P. Wijesinghe, R. A. McLaughlin, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes,” BMC Cancer 16(1), 874 (2016).
[Crossref] [PubMed]

Br. J. Dermatol. (1)

B. Kalis, J. De Rigal, F. Léonard, J. L. le Lévêque, O. De Riche, Y. L. Corre, and O. D. Lacharriere, “In vivo study of scleroderma by non-invasive techniques,” Br. J. Dermatol. 122(6), 785–791 (1990).
[Crossref] [PubMed]

Burns (1)

J. A. Clark, J. C. Y. Cheng, and K. S. Leung, “Mechanical properties of normal skin and hypertrophic scars,” Burns 22(6), 443–446 (1996).
[Crossref] [PubMed]

C. R. Mec. (1)

R. Leiderman, A. A. Oberai, and P. E. Barbone, “Theory of reconstructing the spatial distribution of the filtration coefficient in vascularized soft tissues: Exact and approximate inverse solutions,” C. R. Mec. 338(7-8), 412–423 (2010).
[Crossref]

Cancer Metastasis Rev. (1)

S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: The force journey of a tumor cell,” Cancer Metastasis Rev. 28(1-2), 113–127 (2009).
[Crossref] [PubMed]

Cancer Res. (1)

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, P. Wijesinghe, A. Curatolo, A. Tien, M. Ronald, B. Latham, C. M. Saunders, and D. D. Sampson, “Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue,” Cancer Res. 75(16), 3236–3245 (2015).
[Crossref] [PubMed]

Cardiovasc. Eng. (1)

A. S. Khalil, B. E. Bouma, and M. R. Kaazempur Mofrad, “A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation,” Cardiovasc. Eng. 6(3), 93–102 (2006).
[Crossref] [PubMed]

Comput. Methods Appl. Mech. Eng. (1)

S. Goenezen, P. Barbone, and A. A. Oberai, “Solution of the nonlinear elasticity imaging inverse problem: The incompressible case,” Comput. Methods Appl. Mech. Eng. 200(13-16), 1406–1420 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246 (2016).
[Crossref]

L. Dong, P. Wijesinghe, J. T. Dantuono, D. D. Sampson, P. R. T. Munro, B. F. Kennedy, and A. A. Oberai, “Quantitative compression optical coherence elastography as an inverse elasticity problem,” IEEE J. Sel. Top. Quantum Electron. 22(3), 277–287 (2016).
[Crossref]

Inverse Probl. (1)

A. A. Oberai, N. H. Gokhale, and G. R. Feijóo, “Solution of inverse problems in elasticity imaging using the adjoint method,” Inverse Probl. 19(2), 297–313 (2003).
[Crossref]

J. Biomech. (1)

A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test,” J. Biomech. 39(9), 1603–1610 (2006).
[Crossref] [PubMed]

J. Biomech. Eng. (1)

S. W. Shore, P. E. Barbone, A. A. Oberai, and E. F. Morgan, “Transversely isotropic elasticity imaging of cancellous bone,” J. Biomech. Eng. 133(6), 061002 (2011).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Lévêque, and P. G. Agache, “Age-related mechanical properties of human skin: An in vivo study,” J. Invest. Dermatol. 93(3), 353–357 (1989).
[Crossref] [PubMed]

J. Magn. Reson. Imaging (1)

K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

P. N. T. Wells and H.-D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface 8(64), 1521–1549 (2011).
[Crossref] [PubMed]

Med. Eng. Phys. (1)

J. T. Iivarinen, R. K. Korhonen, P. Julkunen, and J. S. Jurvelin, “Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device,” Med. Eng. Phys. 33(10), 1245–1253 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Opt. Express (2)

Phys. Med. Biol. (3)

R. Leiderman, P. E. Barbone, A. A. Oberai, and J. C. Bamber, “Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging,” Phys. Med. Biol. 51(24), 6291–6313 (2006).
[Crossref] [PubMed]

M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol. 57(3), R35–R73 (2012).
[Crossref] [PubMed]

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: The 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref] [PubMed]

PLoS One (1)

T. Liu, O. A. Babaniyi, T. J. Hall, P. E. Barbone, and A. A. Oberai, “Noninvasive in-vivo quantification of mechanical heterogeneity of invasive breast carcinomas,” PLoS One 10(7), e0130258 (2015).
[Crossref] [PubMed]

Radiology (1)

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J.-P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref] [PubMed]

Trends Biotechnol. (1)

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1       The evolution of the shear modulus and the underlying mesh at various stages of the iterative inversion.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Imaging set up of compression OCE, illustrating a sample (S) with a stiff inclusion and a transparent, compliant layer (L) compressed between a rigid back-plate and a window (W). OCE is illustrated by a tomographic scanning of a beam, focused by an objective lens (Obj). The scanning is synchronized with microscale loading and unloading by a piezoelectric actuator (PZT). The field of view is outlined by a red dashed line. (b) Cross-sectional images of sample structure (i), and axial (z) displacement (ii), measured by OCE. Scale bar is 500 µm. (c) Reconstructed maps of shear modulus using the iterative inversion method, compared to the algebraic method in the top panel, illustrating steps of adaptive mesh refinement (top to bottom). The compliant layer is masked out in blank in the algebraic reconstruction. Cross-sectional slices are shown on the right, where for the iterative method, the nodes and the edges of the finite element mesh are marked in light blue. The interface between the compliant layer and the sample is marked by a red dotted line. Thresholded (by shear modulus) reconstructions that pick out the stiff inclusion are on the left, showing an increasing resolution in each refinement step.
Fig. 2
Fig. 2 Tissue-mimicking phantoms with multiple inclusions of varying shear modulus. (a) OCT structural image, showing en face (upper) and cross-sectional views. (b) Plots of reconstructed shear modulus along the white-dashed line in (a) using the iterative and algebraic methods. (c) The error in the estimated shear modulus compared with experimentally measured values with respect to the contrast ratio in modulus between the inclusion and the surrounding material. (d) and (e) are corresponding maps of shear modulus (en face and cross-sectional views) reconstructed using the algebraic and iterative methods, respectively. Scale bars are 500 µm.
Fig. 3
Fig. 3 Ex vivo OCE images from a human breast specimen containing invasive ductal carcinoma. (a), (c), and (d) en face views of OCT, shear modulus from the algebraic method, and shear modulus from the iterative method, respectively, with cross-sectional views taken at the dashed lines. The compliant layers in the modulus images are masked in black. Negative modulus values produced by the algebraic method are indicated in yellow. (b) Corresponding H&E histology. (e) and (f) 3D segmentation of tumor mass from the shear modulus reconstruction of the algebraic and iterative inversion methods, respectively. A = adipose tissue, S = stroma, T = tumor, D = benign duct in desmoplastic stroma.
Fig. 4
Fig. 4 In vivo OCE images of a human fingertip. (a) En face view of OCT showing epidermal folds in a fingerprint. (b) OCT cross-sectional structural image. (c) OCT cross-sections associated with sweat duct structures (1), (2) and (3) in (i). OCT images are smoothed by a Gaussian filter (σ = 4 µm). (d)-(g) illustrate the method of domain decomposition, and correspond to the OCT in (a). (d)-(f) show inversion and meshing in three sub-domains that combine to form (g). (h) and (i) 3D shear modulus reconstructions using the algebraic and iterative methods, respectively. The volumes are visualized by overlaying a thresholded volume with a sub-surface projection of shear modulus values. Scale bars are 500 µm. L = compliant layer, SC = stratum corneum, E = epidermis, D = dermis, SD = sweat duct.

Tables (1)

Tables Icon

Table 1 Mean and standard deviation (SD) of the shear modulus values within the inclusions and the background as determined by the algebraic and iterative methods, and independent mechanical testing.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

π= Ω T (u u ˜ ) 2 dΩ+α Ω | μ | 2 + c 2 dΩ

Metrics