Abstract

Instruments that allow the detection of fluorescence signal are invaluable tools for biomedical and clinical researchers. The technique is widely used in cell biology to microscopically detect target proteins of interest in mammalian cells. Importantly, fluorescence microscopy finds major applications in cancer biology where cancer cells are chemically labelled for detection. However, conventional fluorescence detection instruments such as fluorescence imaging microscopes are expensive, not portable and entail potentially high maintenance costs. Here we describe the design, development and applicability of a low-cost and portable fluorometer for the detection of fluorescence signal emitted from a model breast cancer cell line, engineered to stably express the green fluorescent protein (GFP). This device utilizes a flashlight which works in the visible range as an excitation source and a photodiode as the detector. It also utilizes an emission filter to mainly allow the fluorescence signal to reach the detector while eliminating the use of an excitation filter and dichroic mirror, hence, making the device compact, low-cost, portable and lightweight. The custom-built sample chamber is fabricated with a 3D printer to house the detector circuitry. We demonstrate that the developed fluorometer is able to distinguish between the cancer cell expressing GFP and the control cell. The fluorometer we developed exhibits immense potential for future applicability in the selective detection of fluorescently-labelled breast cancer cells.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simple, low-cost, portable corneal fluorometer for detection of the level of diabetic retinopathy

Jaap A. Van Best and Franco Docchio
Appl. Opt. 37(19) 4303-4311 (1998)

Optomechanical imaging system for breast cancer detection

Rabah Al abdi, Harry L. Graber, Yong Xu, and Randall L. Barbour
J. Opt. Soc. Am. A 28(12) 2473-2493 (2011)

Real-time cancer detection with an integrated lensless fluorescence contact imager

Efthymios P. Papageorgiou, Hui Zhang, Simeon Giverts, Catherine Park, Bernhard E. Boser, and Mekhail Anwar
Biomed. Opt. Express 9(8) 3607-3623 (2018)

References

  • View by:
  • |
  • |
  • |

  1. “IX51 Inverted Microscope from Olympus | Biocompare.com,” https://www.biocompare.com/19419-Inverted-Microscopes/396657-IX51-Inverted-Microscope/ .
  2. “Meiji MT6000H Fluorescence Microscope with X-Y Stage & Focus Automation - New York Microscope Co.,” https://www.microscopeinternational.com/product/meiji-mt6000h-fluorescence-microscope-with-x-y-stage-focus-automation/ .
  3. T. Sojinrin, J. Conde, K. Liu, J. Curtin, H. J. Byrne, D. Cui, and F. Tian, “Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections,” Anal. Bioanal. Chem. 409(19), 4647–4658 (2017).
    [Crossref] [PubMed]
  4. M. M. Hasan, M. W. Alam, K. A. Wahid, S. Miah, and K. E. Lukong, “A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability,” PLoS One 11(12), e0167863 (2016).
    [Crossref] [PubMed]
  5. A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
    [Crossref] [PubMed]
  6. J. Kahle, R. Levin, W. Niles, B. Rasnow, M. Schehlein, and C. Shumate, “An Inexpensive Simple-to-Use Inverted Fluorescence Microscope: A New Tool for Cellular Analysis,” J. Lab. Autom. 15(5), 355–361 (2010).
    [Crossref]
  7. B. T. Wigton, B. S. Chohan, C. McDonald, M. Johnson, D. Schunk, R. Kreuter, and D. Sykes, “A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs,” J. Chem. Educ. 88(8), 1182–1187 (2011).
    [Crossref]
  8. S. Akraa, A. Pham Tran Tam, H. Shen, Y. Tang, B. Z. Tang, J. Li, and S. Walker, “A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients,” J. Netw. Comput. Appl. 115, 59–69 (2018).
    [Crossref]
  9. D. V. Kornilin, V. N. Grishanov, and K. V. Cherepanov, “Pulse excitation fluorescence meter for diagnostic purposes,” Proc. SPIE 10685, 41 (2018).
    [Crossref]
  10. J. Kissinger and D. Wilson, “Portable Fluorescence Lifetime Detection for Chlorophyll Analysis in Marine Environments,” IEEE Sens. J. 11(2), 288–295 (2011).
    [Crossref]
  11. Ó. Sampedro and J. R. Salgueiro, “Remote photonic sensor to detect crude and refined oil,” Appl. Opt. 56(8), 2150–2156 (2017).
    [Crossref] [PubMed]
  12. “Breast Cancer Facts & Figures 2017-2018,” https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2017-2018.pdf .
  13. “United States Cancer Statistics: Data Visualizations,” https://gis.cdc.gov/Cancer/USCS/DataViz.html .
  14. “Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics 2018. Toronto, ON: Canadian Cancer Society; 2018,” http://www.cancer.ca/Canadian-Cancer-Statistics-2018-EN .
  15. S. P. Singh, S. Urooj, and A. Lay-Ekuakille, “Breast Cancer Detection Using PCPCET and ADEWNN: A Geometric Invariant Approach to Medical X-Ray Image Sensors,” IEEE Sens. J. 16(12), 4847–4855 (2016).
    [Crossref]
  16. B. H. Choi, N. Choi, M. Y. Kim, J.-H. Yang, Y. B. Yoo, and H. K. Jung, “Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery,” Breast Cancer Res. Treat. 167(2), 495–502 (2018).
    [Crossref] [PubMed]
  17. G. Sun, W. Xing, R. Xing, L. Cong, S. Tong, and S. Yu, “Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe,” Oncol. Lett. 15(2), 2471–2476 (2018).
    [PubMed]
  18. L. Shi, L. Lu, G. Harvey, T. Harvey, A. Rodríguez-Contreras, and R. R. Alfano, “Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer’s Disease,” Sci. Rep. 7(1), 2599 (2017).
    [Crossref] [PubMed]
  19. J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
    [Crossref] [PubMed]
  20. “Ultrafire Cg-C8-3 mode Flashlight,” https://www.amazon.co.uk/UltraFire-CG-C8-3-Mode-Flashlight-1x18650/dp/B00IWPGZGI .
  21. Cree, “Product family data sheet Cree ® XLamp ® XP-E LEDs,” http://www.cree.com/led-components/media/documents/XLampXPE.pdf .
  22. D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, “Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E,” Genes Dev. 16(12), 1472–1487 (2002).
    [Crossref] [PubMed]
  23. M. Shirley, A. Handley, C. Bryant, and S. Hall, “Quantization of Immunoglobulin E Using Fluorescence Assay,” Chem 2, 1–7 (2014).
  24. A. R. Miller, G. Davis, M. Pierce, Z. M. Oden, and R. Richards-Kortum, “Portable, battery-operated, fluorescence field microscope for the developing world,” Proc. SPIE 7556, 755608 (2010).
    [Crossref]
  25. J. J. Lamb, J. J. Eaton-Rye, and M. F. Hohmann-Marriott, “A Cost-Effective Solution for the Reliable Determination of Cell Numbers of Microorganisms in Liquid Culture,” Curr. Microbiol. 67(2), 123–129 (2013).
    [Crossref] [PubMed]
  26. I. Nuñez, T. Matute, R. Herrera, J. Keymer, T. Marzullo, T. Rudge, and F. Federici, “Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering,” PLoS One 12(11), e0187163 (2017).
    [Crossref] [PubMed]
  27. G. A. Babbitt, C. A. Hanzlik, and K. N. Busse, “Observing fluorescent probes living cells using a low-cost LED flashlight retrofitted to a common vintage light microscope,” J. Microbiol. Biol. Educ. 14(1), 121–124 (2013).
    [Crossref] [PubMed]
  28. J. Lamb, K. Forfang, and M. Hohmann-Marriott, “A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector,” PLoS One 10(7), e0132258 (2015).
    [Crossref] [PubMed]
  29. K. D. Hoadley and M. E. Warner, “Use of Open Source Hardware and Software Platforms to Quantify Spectrally Dependent Differences in Photochemical Efficiency and Functional Absorption Cross Section within the Dinoflagellate Symbiodinium spp,” Front. Mar. Sci. 4, 365 (2017).
    [Crossref]
  30. L. Blockstein and O. Yadid-Pecht, “Lensless Miniature Portable Fluorometer for Measurement of Chlorophyll and CDOM in Water Using Fluorescence Contact Imaging,” IEEE Photonics J. 6, 1–16 (2014).
  31. “FS5 Spectrofluorometer | Steady State | Edinburgh Instruments,” https://www.edinst.com/us/products/fs5-spectrofluorometer/ .
  32. F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
    [Crossref]

2018 (4)

S. Akraa, A. Pham Tran Tam, H. Shen, Y. Tang, B. Z. Tang, J. Li, and S. Walker, “A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients,” J. Netw. Comput. Appl. 115, 59–69 (2018).
[Crossref]

D. V. Kornilin, V. N. Grishanov, and K. V. Cherepanov, “Pulse excitation fluorescence meter for diagnostic purposes,” Proc. SPIE 10685, 41 (2018).
[Crossref]

B. H. Choi, N. Choi, M. Y. Kim, J.-H. Yang, Y. B. Yoo, and H. K. Jung, “Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery,” Breast Cancer Res. Treat. 167(2), 495–502 (2018).
[Crossref] [PubMed]

G. Sun, W. Xing, R. Xing, L. Cong, S. Tong, and S. Yu, “Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe,” Oncol. Lett. 15(2), 2471–2476 (2018).
[PubMed]

2017 (5)

L. Shi, L. Lu, G. Harvey, T. Harvey, A. Rodríguez-Contreras, and R. R. Alfano, “Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer’s Disease,” Sci. Rep. 7(1), 2599 (2017).
[Crossref] [PubMed]

Ó. Sampedro and J. R. Salgueiro, “Remote photonic sensor to detect crude and refined oil,” Appl. Opt. 56(8), 2150–2156 (2017).
[Crossref] [PubMed]

T. Sojinrin, J. Conde, K. Liu, J. Curtin, H. J. Byrne, D. Cui, and F. Tian, “Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections,” Anal. Bioanal. Chem. 409(19), 4647–4658 (2017).
[Crossref] [PubMed]

I. Nuñez, T. Matute, R. Herrera, J. Keymer, T. Marzullo, T. Rudge, and F. Federici, “Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering,” PLoS One 12(11), e0187163 (2017).
[Crossref] [PubMed]

K. D. Hoadley and M. E. Warner, “Use of Open Source Hardware and Software Platforms to Quantify Spectrally Dependent Differences in Photochemical Efficiency and Functional Absorption Cross Section within the Dinoflagellate Symbiodinium spp,” Front. Mar. Sci. 4, 365 (2017).
[Crossref]

2016 (3)

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

M. M. Hasan, M. W. Alam, K. A. Wahid, S. Miah, and K. E. Lukong, “A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability,” PLoS One 11(12), e0167863 (2016).
[Crossref] [PubMed]

S. P. Singh, S. Urooj, and A. Lay-Ekuakille, “Breast Cancer Detection Using PCPCET and ADEWNN: A Geometric Invariant Approach to Medical X-Ray Image Sensors,” IEEE Sens. J. 16(12), 4847–4855 (2016).
[Crossref]

2015 (1)

J. Lamb, K. Forfang, and M. Hohmann-Marriott, “A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector,” PLoS One 10(7), e0132258 (2015).
[Crossref] [PubMed]

2014 (3)

L. Blockstein and O. Yadid-Pecht, “Lensless Miniature Portable Fluorometer for Measurement of Chlorophyll and CDOM in Water Using Fluorescence Contact Imaging,” IEEE Photonics J. 6, 1–16 (2014).

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

M. Shirley, A. Handley, C. Bryant, and S. Hall, “Quantization of Immunoglobulin E Using Fluorescence Assay,” Chem 2, 1–7 (2014).

2013 (2)

J. J. Lamb, J. J. Eaton-Rye, and M. F. Hohmann-Marriott, “A Cost-Effective Solution for the Reliable Determination of Cell Numbers of Microorganisms in Liquid Culture,” Curr. Microbiol. 67(2), 123–129 (2013).
[Crossref] [PubMed]

G. A. Babbitt, C. A. Hanzlik, and K. N. Busse, “Observing fluorescent probes living cells using a low-cost LED flashlight retrofitted to a common vintage light microscope,” J. Microbiol. Biol. Educ. 14(1), 121–124 (2013).
[Crossref] [PubMed]

2011 (2)

B. T. Wigton, B. S. Chohan, C. McDonald, M. Johnson, D. Schunk, R. Kreuter, and D. Sykes, “A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs,” J. Chem. Educ. 88(8), 1182–1187 (2011).
[Crossref]

J. Kissinger and D. Wilson, “Portable Fluorescence Lifetime Detection for Chlorophyll Analysis in Marine Environments,” IEEE Sens. J. 11(2), 288–295 (2011).
[Crossref]

2010 (3)

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

J. Kahle, R. Levin, W. Niles, B. Rasnow, M. Schehlein, and C. Shumate, “An Inexpensive Simple-to-Use Inverted Fluorescence Microscope: A New Tool for Cellular Analysis,” J. Lab. Autom. 15(5), 355–361 (2010).
[Crossref]

A. R. Miller, G. Davis, M. Pierce, Z. M. Oden, and R. Richards-Kortum, “Portable, battery-operated, fluorescence field microscope for the developing world,” Proc. SPIE 7556, 755608 (2010).
[Crossref]

2002 (1)

D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, “Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E,” Genes Dev. 16(12), 1472–1487 (2002).
[Crossref] [PubMed]

Abdolrahimi, F.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Akraa, S.

S. Akraa, A. Pham Tran Tam, H. Shen, Y. Tang, B. Z. Tang, J. Li, and S. Walker, “A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients,” J. Netw. Comput. Appl. 115, 59–69 (2018).
[Crossref]

Alam, M. W.

M. M. Hasan, M. W. Alam, K. A. Wahid, S. Miah, and K. E. Lukong, “A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability,” PLoS One 11(12), e0167863 (2016).
[Crossref] [PubMed]

Alfano, R. R.

L. Shi, L. Lu, G. Harvey, T. Harvey, A. Rodríguez-Contreras, and R. R. Alfano, “Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer’s Disease,” Sci. Rep. 7(1), 2599 (2017).
[Crossref] [PubMed]

Babbitt, G. A.

G. A. Babbitt, C. A. Hanzlik, and K. N. Busse, “Observing fluorescent probes living cells using a low-cost LED flashlight retrofitted to a common vintage light microscope,” J. Microbiol. Biol. Educ. 14(1), 121–124 (2013).
[Crossref] [PubMed]

Bahrmand, A. R.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Blenis, J.

D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, “Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E,” Genes Dev. 16(12), 1472–1487 (2002).
[Crossref] [PubMed]

Blockstein, L.

L. Blockstein and O. Yadid-Pecht, “Lensless Miniature Portable Fluorometer for Measurement of Chlorophyll and CDOM in Water Using Fluorescence Contact Imaging,” IEEE Photonics J. 6, 1–16 (2014).

Brugos, F. L.

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

Bryant, C.

M. Shirley, A. Handley, C. Bryant, and S. Hall, “Quantization of Immunoglobulin E Using Fluorescence Assay,” Chem 2, 1–7 (2014).

Busse, K. N.

G. A. Babbitt, C. A. Hanzlik, and K. N. Busse, “Observing fluorescent probes living cells using a low-cost LED flashlight retrofitted to a common vintage light microscope,” J. Microbiol. Biol. Educ. 14(1), 121–124 (2013).
[Crossref] [PubMed]

Byrne, H. J.

T. Sojinrin, J. Conde, K. Liu, J. Curtin, H. J. Byrne, D. Cui, and F. Tian, “Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections,” Anal. Bioanal. Chem. 409(19), 4647–4658 (2017).
[Crossref] [PubMed]

Chen, H.-E.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Cherepanov, K. V.

D. V. Kornilin, V. N. Grishanov, and K. V. Cherepanov, “Pulse excitation fluorescence meter for diagnostic purposes,” Proc. SPIE 10685, 41 (2018).
[Crossref]

Chohan, B. S.

B. T. Wigton, B. S. Chohan, C. McDonald, M. Johnson, D. Schunk, R. Kreuter, and D. Sykes, “A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs,” J. Chem. Educ. 88(8), 1182–1187 (2011).
[Crossref]

Choi, B. H.

B. H. Choi, N. Choi, M. Y. Kim, J.-H. Yang, Y. B. Yoo, and H. K. Jung, “Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery,” Breast Cancer Res. Treat. 167(2), 495–502 (2018).
[Crossref] [PubMed]

Choi, N.

B. H. Choi, N. Choi, M. Y. Kim, J.-H. Yang, Y. B. Yoo, and H. K. Jung, “Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery,” Breast Cancer Res. Treat. 167(2), 495–502 (2018).
[Crossref] [PubMed]

Clark, P. A.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Clarke, W.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Conde, J.

T. Sojinrin, J. Conde, K. Liu, J. Curtin, H. J. Byrne, D. Cui, and F. Tian, “Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections,” Anal. Bioanal. Chem. 409(19), 4647–4658 (2017).
[Crossref] [PubMed]

Cong, L.

G. Sun, W. Xing, R. Xing, L. Cong, S. Tong, and S. Yu, “Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe,” Oncol. Lett. 15(2), 2471–2476 (2018).
[PubMed]

Corugedo, F. O. F.

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

Cui, D.

T. Sojinrin, J. Conde, K. Liu, J. Curtin, H. J. Byrne, D. Cui, and F. Tian, “Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections,” Anal. Bioanal. Chem. 409(19), 4647–4658 (2017).
[Crossref] [PubMed]

Curtin, J.

T. Sojinrin, J. Conde, K. Liu, J. Curtin, H. J. Byrne, D. Cui, and F. Tian, “Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections,” Anal. Bioanal. Chem. 409(19), 4647–4658 (2017).
[Crossref] [PubMed]

Davis, G.

A. R. Miller, G. Davis, M. Pierce, Z. M. Oden, and R. Richards-Kortum, “Portable, battery-operated, fluorescence field microscope for the developing world,” Proc. SPIE 7556, 755608 (2010).
[Crossref]

Davis, G. L.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Eaton-Rye, J. J.

J. J. Lamb, J. J. Eaton-Rye, and M. F. Hohmann-Marriott, “A Cost-Effective Solution for the Reliable Determination of Cell Numbers of Microorganisms in Liquid Culture,” Curr. Microbiol. 67(2), 123–129 (2013).
[Crossref] [PubMed]

Farhoud, M.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Fateh, A.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Federici, F.

I. Nuñez, T. Matute, R. Herrera, J. Keymer, T. Marzullo, T. Rudge, and F. Federici, “Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering,” PLoS One 12(11), e0187163 (2017).
[Crossref] [PubMed]

Fernandez, N. C.

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

Fernández, J. F.

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

Fernández, L. M.

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

Fingar, D. C.

D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, “Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E,” Genes Dev. 16(12), 1472–1487 (2002).
[Crossref] [PubMed]

Floberg, J. M.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Forfang, K.

J. Lamb, K. Forfang, and M. Hohmann-Marriott, “A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector,” PLoS One 10(7), e0132258 (2015).
[Crossref] [PubMed]

Ghazanfari, M.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Graviss, E. A.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Grishanov, V. N.

D. V. Kornilin, V. N. Grishanov, and K. V. Cherepanov, “Pulse excitation fluorescence meter for diagnostic purposes,” Proc. SPIE 10685, 41 (2018).
[Crossref]

Grudzinski, J.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Hall, L. T.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Hall, S.

M. Shirley, A. Handley, C. Bryant, and S. Hall, “Quantization of Immunoglobulin E Using Fluorescence Assay,” Chem 2, 1–7 (2014).

Handley, A.

M. Shirley, A. Handley, C. Bryant, and S. Hall, “Quantization of Immunoglobulin E Using Fluorescence Assay,” Chem 2, 1–7 (2014).

Hanzlik, C. A.

G. A. Babbitt, C. A. Hanzlik, and K. N. Busse, “Observing fluorescent probes living cells using a low-cost LED flashlight retrofitted to a common vintage light microscope,” J. Microbiol. Biol. Educ. 14(1), 121–124 (2013).
[Crossref] [PubMed]

Harlow, E.

D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, “Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E,” Genes Dev. 16(12), 1472–1487 (2002).
[Crossref] [PubMed]

Harvey, G.

L. Shi, L. Lu, G. Harvey, T. Harvey, A. Rodríguez-Contreras, and R. R. Alfano, “Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer’s Disease,” Sci. Rep. 7(1), 2599 (2017).
[Crossref] [PubMed]

Harvey, T.

L. Shi, L. Lu, G. Harvey, T. Harvey, A. Rodríguez-Contreras, and R. R. Alfano, “Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer’s Disease,” Sci. Rep. 7(1), 2599 (2017).
[Crossref] [PubMed]

Hasan, M. M.

M. M. Hasan, M. W. Alam, K. A. Wahid, S. Miah, and K. E. Lukong, “A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability,” PLoS One 11(12), e0167863 (2016).
[Crossref] [PubMed]

Herrera, R.

I. Nuñez, T. Matute, R. Herrera, J. Keymer, T. Marzullo, T. Rudge, and F. Federici, “Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering,” PLoS One 12(11), e0187163 (2017).
[Crossref] [PubMed]

Hoadley, K. D.

K. D. Hoadley and M. E. Warner, “Use of Open Source Hardware and Software Platforms to Quantify Spectrally Dependent Differences in Photochemical Efficiency and Functional Absorption Cross Section within the Dinoflagellate Symbiodinium spp,” Front. Mar. Sci. 4, 365 (2017).
[Crossref]

Hohmann-Marriott, M.

J. Lamb, K. Forfang, and M. Hohmann-Marriott, “A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector,” PLoS One 10(7), e0132258 (2015).
[Crossref] [PubMed]

Hohmann-Marriott, M. F.

J. J. Lamb, J. J. Eaton-Rye, and M. F. Hohmann-Marriott, “A Cost-Effective Solution for the Reliable Determination of Cell Numbers of Microorganisms in Liquid Culture,” Curr. Microbiol. 67(2), 123–129 (2013).
[Crossref] [PubMed]

Johnson, M.

B. T. Wigton, B. S. Chohan, C. McDonald, M. Johnson, D. Schunk, R. Kreuter, and D. Sykes, “A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs,” J. Chem. Educ. 88(8), 1182–1187 (2011).
[Crossref]

Jung, H. K.

B. H. Choi, N. Choi, M. Y. Kim, J.-H. Yang, Y. B. Yoo, and H. K. Jung, “Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery,” Breast Cancer Res. Treat. 167(2), 495–502 (2018).
[Crossref] [PubMed]

Kahle, J.

J. Kahle, R. Levin, W. Niles, B. Rasnow, M. Schehlein, and C. Shumate, “An Inexpensive Simple-to-Use Inverted Fluorescence Microscope: A New Tool for Cellular Analysis,” J. Lab. Autom. 15(5), 355–361 (2010).
[Crossref]

Kandela, I. K.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Keymer, J.

I. Nuñez, T. Matute, R. Herrera, J. Keymer, T. Marzullo, T. Rudge, and F. Federici, “Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering,” PLoS One 12(11), e0187163 (2017).
[Crossref] [PubMed]

Kim, M. Y.

B. H. Choi, N. Choi, M. Y. Kim, J.-H. Yang, Y. B. Yoo, and H. K. Jung, “Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery,” Breast Cancer Res. Treat. 167(2), 495–502 (2018).
[Crossref] [PubMed]

Kissinger, J.

J. Kissinger and D. Wilson, “Portable Fluorescence Lifetime Detection for Chlorophyll Analysis in Marine Environments,” IEEE Sens. J. 11(2), 288–295 (2011).
[Crossref]

Kornilin, D. V.

D. V. Kornilin, V. N. Grishanov, and K. V. Cherepanov, “Pulse excitation fluorescence meter for diagnostic purposes,” Proc. SPIE 10685, 41 (2018).
[Crossref]

Kreuter, R.

B. T. Wigton, B. S. Chohan, C. McDonald, M. Johnson, D. Schunk, R. Kreuter, and D. Sykes, “A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs,” J. Chem. Educ. 88(8), 1182–1187 (2011).
[Crossref]

Kuo, J. S.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Lamb, J.

J. Lamb, K. Forfang, and M. Hohmann-Marriott, “A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector,” PLoS One 10(7), e0132258 (2015).
[Crossref] [PubMed]

Lamb, J. J.

J. J. Lamb, J. J. Eaton-Rye, and M. F. Hohmann-Marriott, “A Cost-Effective Solution for the Reliable Determination of Cell Numbers of Microorganisms in Liquid Culture,” Curr. Microbiol. 67(2), 123–129 (2013).
[Crossref] [PubMed]

Lay-Ekuakille, A.

S. P. Singh, S. Urooj, and A. Lay-Ekuakille, “Breast Cancer Detection Using PCPCET and ADEWNN: A Geometric Invariant Approach to Medical X-Ray Image Sensors,” IEEE Sens. J. 16(12), 4847–4855 (2016).
[Crossref]

Levin, R.

J. Kahle, R. Levin, W. Niles, B. Rasnow, M. Schehlein, and C. Shumate, “An Inexpensive Simple-to-Use Inverted Fluorescence Microscope: A New Tool for Cellular Analysis,” J. Lab. Autom. 15(5), 355–361 (2010).
[Crossref]

Li, J.

S. Akraa, A. Pham Tran Tam, H. Shen, Y. Tang, B. Z. Tang, J. Li, and S. Walker, “A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients,” J. Netw. Comput. Appl. 115, 59–69 (2018).
[Crossref]

Liu, K.

T. Sojinrin, J. Conde, K. Liu, J. Curtin, H. J. Byrne, D. Cui, and F. Tian, “Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections,” Anal. Bioanal. Chem. 409(19), 4647–4658 (2017).
[Crossref] [PubMed]

Llopis, M. V.

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

Longino, M. A.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Lu, L.

L. Shi, L. Lu, G. Harvey, T. Harvey, A. Rodríguez-Contreras, and R. R. Alfano, “Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer’s Disease,” Sci. Rep. 7(1), 2599 (2017).
[Crossref] [PubMed]

Lukong, K. E.

M. M. Hasan, M. W. Alam, K. A. Wahid, S. Miah, and K. E. Lukong, “A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability,” PLoS One 11(12), e0167863 (2016).
[Crossref] [PubMed]

Martín, F. J. F.

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

Marzullo, T.

I. Nuñez, T. Matute, R. Herrera, J. Keymer, T. Marzullo, T. Rudge, and F. Federici, “Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering,” PLoS One 12(11), e0187163 (2017).
[Crossref] [PubMed]

Matute, T.

I. Nuñez, T. Matute, R. Herrera, J. Keymer, T. Marzullo, T. Rudge, and F. Federici, “Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering,” PLoS One 12(11), e0187163 (2017).
[Crossref] [PubMed]

McDonald, C.

B. T. Wigton, B. S. Chohan, C. McDonald, M. Johnson, D. Schunk, R. Kreuter, and D. Sykes, “A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs,” J. Chem. Educ. 88(8), 1182–1187 (2011).
[Crossref]

Menéndez, I. G.-R.

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

Miah, S.

M. M. Hasan, M. W. Alam, K. A. Wahid, S. Miah, and K. E. Lukong, “A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability,” PLoS One 11(12), e0167863 (2016).
[Crossref] [PubMed]

Miller, A. R.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

A. R. Miller, G. Davis, M. Pierce, Z. M. Oden, and R. Richards-Kortum, “Portable, battery-operated, fluorescence field microscope for the developing world,” Proc. SPIE 7556, 755608 (2010).
[Crossref]

Niles, W.

J. Kahle, R. Levin, W. Niles, B. Rasnow, M. Schehlein, and C. Shumate, “An Inexpensive Simple-to-Use Inverted Fluorescence Microscope: A New Tool for Cellular Analysis,” J. Lab. Autom. 15(5), 355–361 (2010).
[Crossref]

Nuñez, I.

I. Nuñez, T. Matute, R. Herrera, J. Keymer, T. Marzullo, T. Rudge, and F. Federici, “Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering,” PLoS One 12(11), e0187163 (2017).
[Crossref] [PubMed]

Oden, Z. M.

A. R. Miller, G. Davis, M. Pierce, Z. M. Oden, and R. Richards-Kortum, “Portable, battery-operated, fluorescence field microscope for the developing world,” Proc. SPIE 7556, 755608 (2010).
[Crossref]

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Olsen, R. J.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Pazoles, C. J.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Pham Tran Tam, A.

S. Akraa, A. Pham Tran Tam, H. Shen, Y. Tang, B. Z. Tang, J. Li, and S. Walker, “A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients,” J. Netw. Comput. Appl. 115, 59–69 (2018).
[Crossref]

Pickhardt, P. J.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Pierce, M.

A. R. Miller, G. Davis, M. Pierce, Z. M. Oden, and R. Richards-Kortum, “Portable, battery-operated, fluorescence field microscope for the developing world,” Proc. SPIE 7556, 755608 (2010).
[Crossref]

Pierce, M. C.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Pinchuk, A. N.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Poorazar, S.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Rasnow, B.

J. Kahle, R. Levin, W. Niles, B. Rasnow, M. Schehlein, and C. Shumate, “An Inexpensive Simple-to-Use Inverted Fluorescence Microscope: A New Tool for Cellular Analysis,” J. Lab. Autom. 15(5), 355–361 (2010).
[Crossref]

Razavi, M. R.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Richards-Kortum, R.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

A. R. Miller, G. Davis, M. Pierce, Z. M. Oden, and R. Richards-Kortum, “Portable, battery-operated, fluorescence field microscope for the developing world,” Proc. SPIE 7556, 755608 (2010).
[Crossref]

Rodriguez, J. C. C.

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

Rodríguez-Contreras, A.

L. Shi, L. Lu, G. Harvey, T. Harvey, A. Rodríguez-Contreras, and R. R. Alfano, “Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer’s Disease,” Sci. Rep. 7(1), 2599 (2017).
[Crossref] [PubMed]

Rudge, T.

I. Nuñez, T. Matute, R. Herrera, J. Keymer, T. Marzullo, T. Rudge, and F. Federici, “Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering,” PLoS One 12(11), e0187163 (2017).
[Crossref] [PubMed]

Sakhaie, F.

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

Salama, S.

D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, “Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E,” Genes Dev. 16(12), 1472–1487 (2002).
[Crossref] [PubMed]

Salgueiro, J. R.

Sampedro, Ó.

Schehlein, M.

J. Kahle, R. Levin, W. Niles, B. Rasnow, M. Schehlein, and C. Shumate, “An Inexpensive Simple-to-Use Inverted Fluorescence Microscope: A New Tool for Cellular Analysis,” J. Lab. Autom. 15(5), 355–361 (2010).
[Crossref]

Schunk, D.

B. T. Wigton, B. S. Chohan, C. McDonald, M. Johnson, D. Schunk, R. Kreuter, and D. Sykes, “A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs,” J. Chem. Educ. 88(8), 1182–1187 (2011).
[Crossref]

Shen, H.

S. Akraa, A. Pham Tran Tam, H. Shen, Y. Tang, B. Z. Tang, J. Li, and S. Walker, “A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients,” J. Netw. Comput. Appl. 115, 59–69 (2018).
[Crossref]

Shi, L.

L. Shi, L. Lu, G. Harvey, T. Harvey, A. Rodríguez-Contreras, and R. R. Alfano, “Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer’s Disease,” Sci. Rep. 7(1), 2599 (2017).
[Crossref] [PubMed]

Shirley, M.

M. Shirley, A. Handley, C. Bryant, and S. Hall, “Quantization of Immunoglobulin E Using Fluorescence Assay,” Chem 2, 1–7 (2014).

Shumate, C.

J. Kahle, R. Levin, W. Niles, B. Rasnow, M. Schehlein, and C. Shumate, “An Inexpensive Simple-to-Use Inverted Fluorescence Microscope: A New Tool for Cellular Analysis,” J. Lab. Autom. 15(5), 355–361 (2010).
[Crossref]

Singh, S. P.

S. P. Singh, S. Urooj, and A. Lay-Ekuakille, “Breast Cancer Detection Using PCPCET and ADEWNN: A Geometric Invariant Approach to Medical X-Ray Image Sensors,” IEEE Sens. J. 16(12), 4847–4855 (2016).
[Crossref]

Sojinrin, T.

T. Sojinrin, J. Conde, K. Liu, J. Curtin, H. J. Byrne, D. Cui, and F. Tian, “Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections,” Anal. Bioanal. Chem. 409(19), 4647–4658 (2017).
[Crossref] [PubMed]

Suarez, I. M.

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

Sun, G.

G. Sun, W. Xing, R. Xing, L. Cong, S. Tong, and S. Yu, “Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe,” Oncol. Lett. 15(2), 2471–2476 (2018).
[PubMed]

Swanson, K. I.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Sykes, D.

B. T. Wigton, B. S. Chohan, C. McDonald, M. Johnson, D. Schunk, R. Kreuter, and D. Sykes, “A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs,” J. Chem. Educ. 88(8), 1182–1187 (2011).
[Crossref]

Tang, B. Z.

S. Akraa, A. Pham Tran Tam, H. Shen, Y. Tang, B. Z. Tang, J. Li, and S. Walker, “A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients,” J. Netw. Comput. Appl. 115, 59–69 (2018).
[Crossref]

Tang, Y.

S. Akraa, A. Pham Tran Tam, H. Shen, Y. Tang, B. Z. Tang, J. Li, and S. Walker, “A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients,” J. Netw. Comput. Appl. 115, 59–69 (2018).
[Crossref]

Tian, F.

T. Sojinrin, J. Conde, K. Liu, J. Curtin, H. J. Byrne, D. Cui, and F. Tian, “Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections,” Anal. Bioanal. Chem. 409(19), 4647–4658 (2017).
[Crossref] [PubMed]

Titz, B.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Tong, S.

G. Sun, W. Xing, R. Xing, L. Cong, S. Tong, and S. Yu, “Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe,” Oncol. Lett. 15(2), 2471–2476 (2018).
[PubMed]

Traynor, A. M.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Tsou, C.

D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, “Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E,” Genes Dev. 16(12), 1472–1487 (2002).
[Crossref] [PubMed]

Urooj, S.

S. P. Singh, S. Urooj, and A. Lay-Ekuakille, “Breast Cancer Detection Using PCPCET and ADEWNN: A Geometric Invariant Approach to Medical X-Ray Image Sensors,” IEEE Sens. J. 16(12), 4847–4855 (2016).
[Crossref]

Vaccaro, A. M.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Wahid, K. A.

M. M. Hasan, M. W. Alam, K. A. Wahid, S. Miah, and K. E. Lukong, “A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability,” PLoS One 11(12), e0167863 (2016).
[Crossref] [PubMed]

Walker, S.

S. Akraa, A. Pham Tran Tam, H. Shen, Y. Tang, B. Z. Tang, J. Li, and S. Walker, “A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients,” J. Netw. Comput. Appl. 115, 59–69 (2018).
[Crossref]

Warner, M. E.

K. D. Hoadley and M. E. Warner, “Use of Open Source Hardware and Software Platforms to Quantify Spectrally Dependent Differences in Photochemical Efficiency and Functional Absorption Cross Section within the Dinoflagellate Symbiodinium spp,” Front. Mar. Sci. 4, 365 (2017).
[Crossref]

Weichert, J. P.

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Wigton, B. T.

B. T. Wigton, B. S. Chohan, C. McDonald, M. Johnson, D. Schunk, R. Kreuter, and D. Sykes, “A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs,” J. Chem. Educ. 88(8), 1182–1187 (2011).
[Crossref]

Wilson, D.

J. Kissinger and D. Wilson, “Portable Fluorescence Lifetime Detection for Chlorophyll Analysis in Marine Environments,” IEEE Sens. J. 11(2), 288–295 (2011).
[Crossref]

Xing, R.

G. Sun, W. Xing, R. Xing, L. Cong, S. Tong, and S. Yu, “Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe,” Oncol. Lett. 15(2), 2471–2476 (2018).
[PubMed]

Xing, W.

G. Sun, W. Xing, R. Xing, L. Cong, S. Tong, and S. Yu, “Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe,” Oncol. Lett. 15(2), 2471–2476 (2018).
[PubMed]

Yadid-Pecht, O.

L. Blockstein and O. Yadid-Pecht, “Lensless Miniature Portable Fluorometer for Measurement of Chlorophyll and CDOM in Water Using Fluorescence Contact Imaging,” IEEE Photonics J. 6, 1–16 (2014).

Yang, J.-H.

B. H. Choi, N. Choi, M. Y. Kim, J.-H. Yang, Y. B. Yoo, and H. K. Jung, “Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery,” Breast Cancer Res. Treat. 167(2), 495–502 (2018).
[Crossref] [PubMed]

Yoo, Y. B.

B. H. Choi, N. Choi, M. Y. Kim, J.-H. Yang, Y. B. Yoo, and H. K. Jung, “Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery,” Breast Cancer Res. Treat. 167(2), 495–502 (2018).
[Crossref] [PubMed]

Yu, S.

G. Sun, W. Xing, R. Xing, L. Cong, S. Tong, and S. Yu, “Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe,” Oncol. Lett. 15(2), 2471–2476 (2018).
[PubMed]

Anal. Bioanal. Chem. (1)

T. Sojinrin, J. Conde, K. Liu, J. Curtin, H. J. Byrne, D. Cui, and F. Tian, “Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections,” Anal. Bioanal. Chem. 409(19), 4647–4658 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Breast Cancer Res. Treat. (1)

B. H. Choi, N. Choi, M. Y. Kim, J.-H. Yang, Y. B. Yoo, and H. K. Jung, “Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery,” Breast Cancer Res. Treat. 167(2), 495–502 (2018).
[Crossref] [PubMed]

Chem (1)

M. Shirley, A. Handley, C. Bryant, and S. Hall, “Quantization of Immunoglobulin E Using Fluorescence Assay,” Chem 2, 1–7 (2014).

Curr. Microbiol. (1)

J. J. Lamb, J. J. Eaton-Rye, and M. F. Hohmann-Marriott, “A Cost-Effective Solution for the Reliable Determination of Cell Numbers of Microorganisms in Liquid Culture,” Curr. Microbiol. 67(2), 123–129 (2013).
[Crossref] [PubMed]

Front. Mar. Sci. (1)

K. D. Hoadley and M. E. Warner, “Use of Open Source Hardware and Software Platforms to Quantify Spectrally Dependent Differences in Photochemical Efficiency and Functional Absorption Cross Section within the Dinoflagellate Symbiodinium spp,” Front. Mar. Sci. 4, 365 (2017).
[Crossref]

Genes Dev. (1)

D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, “Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E,” Genes Dev. 16(12), 1472–1487 (2002).
[Crossref] [PubMed]

IEEE Photonics J. (1)

L. Blockstein and O. Yadid-Pecht, “Lensless Miniature Portable Fluorometer for Measurement of Chlorophyll and CDOM in Water Using Fluorescence Contact Imaging,” IEEE Photonics J. 6, 1–16 (2014).

IEEE Sens. J. (3)

F. J. F. Martín, M. V. Llopis, J. C. C. Rodriguez, L. M. Fernández, I. G.-R. Menéndez, J. F. Fernández, F. L. Brugos, N. C. Fernandez, F. O. F. Corugedo, and I. M. Suarez, “A Novel Handheld Fluorimeter for Rapid Detection of Escherichia coli in Drinking Water,” IEEE Sens. J. 16(13), 5136–5144 (2016).
[Crossref]

S. P. Singh, S. Urooj, and A. Lay-Ekuakille, “Breast Cancer Detection Using PCPCET and ADEWNN: A Geometric Invariant Approach to Medical X-Ray Image Sensors,” IEEE Sens. J. 16(12), 4847–4855 (2016).
[Crossref]

J. Kissinger and D. Wilson, “Portable Fluorescence Lifetime Detection for Chlorophyll Analysis in Marine Environments,” IEEE Sens. J. 11(2), 288–295 (2011).
[Crossref]

J. Chem. Educ. (1)

B. T. Wigton, B. S. Chohan, C. McDonald, M. Johnson, D. Schunk, R. Kreuter, and D. Sykes, “A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs,” J. Chem. Educ. 88(8), 1182–1187 (2011).
[Crossref]

J. Lab. Autom. (1)

J. Kahle, R. Levin, W. Niles, B. Rasnow, M. Schehlein, and C. Shumate, “An Inexpensive Simple-to-Use Inverted Fluorescence Microscope: A New Tool for Cellular Analysis,” J. Lab. Autom. 15(5), 355–361 (2010).
[Crossref]

J. Microbiol. Biol. Educ. (1)

G. A. Babbitt, C. A. Hanzlik, and K. N. Busse, “Observing fluorescent probes living cells using a low-cost LED flashlight retrofitted to a common vintage light microscope,” J. Microbiol. Biol. Educ. 14(1), 121–124 (2013).
[Crossref] [PubMed]

J. Netw. Comput. Appl. (1)

S. Akraa, A. Pham Tran Tam, H. Shen, Y. Tang, B. Z. Tang, J. Li, and S. Walker, “A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients,” J. Netw. Comput. Appl. 115, 59–69 (2018).
[Crossref]

Oncol. Lett. (1)

G. Sun, W. Xing, R. Xing, L. Cong, S. Tong, and S. Yu, “Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe,” Oncol. Lett. 15(2), 2471–2476 (2018).
[PubMed]

PLoS One (4)

M. M. Hasan, M. W. Alam, K. A. Wahid, S. Miah, and K. E. Lukong, “A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability,” PLoS One 11(12), e0167863 (2016).
[Crossref] [PubMed]

A. R. Miller, G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum, “Portable, Battery-Operated, Low-Cost, Bright Field and Fluorescence Microscope,” PLoS One 5(8), e11890 (2010).
[Crossref] [PubMed]

J. Lamb, K. Forfang, and M. Hohmann-Marriott, “A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector,” PLoS One 10(7), e0132258 (2015).
[Crossref] [PubMed]

I. Nuñez, T. Matute, R. Herrera, J. Keymer, T. Marzullo, T. Rudge, and F. Federici, “Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering,” PLoS One 12(11), e0187163 (2017).
[Crossref] [PubMed]

Proc. SPIE (2)

A. R. Miller, G. Davis, M. Pierce, Z. M. Oden, and R. Richards-Kortum, “Portable, battery-operated, fluorescence field microscope for the developing world,” Proc. SPIE 7556, 755608 (2010).
[Crossref]

D. V. Kornilin, V. N. Grishanov, and K. V. Cherepanov, “Pulse excitation fluorescence meter for diagnostic purposes,” Proc. SPIE 10685, 41 (2018).
[Crossref]

Sci. Rep. (1)

L. Shi, L. Lu, G. Harvey, T. Harvey, A. Rodríguez-Contreras, and R. R. Alfano, “Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer’s Disease,” Sci. Rep. 7(1), 2599 (2017).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

J. P. Weichert, P. A. Clark, I. K. Kandela, A. M. Vaccaro, W. Clarke, M. A. Longino, A. N. Pinchuk, M. Farhoud, K. I. Swanson, J. M. Floberg, J. Grudzinski, B. Titz, A. M. Traynor, H.-E. Chen, L. T. Hall, C. J. Pazoles, P. J. Pickhardt, and J. S. Kuo, “Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy,” Sci. Transl. Med. 6(240), 240ra75 (2014).
[Crossref] [PubMed]

Other (8)

“Ultrafire Cg-C8-3 mode Flashlight,” https://www.amazon.co.uk/UltraFire-CG-C8-3-Mode-Flashlight-1x18650/dp/B00IWPGZGI .

Cree, “Product family data sheet Cree ® XLamp ® XP-E LEDs,” http://www.cree.com/led-components/media/documents/XLampXPE.pdf .

“Breast Cancer Facts & Figures 2017-2018,” https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2017-2018.pdf .

“United States Cancer Statistics: Data Visualizations,” https://gis.cdc.gov/Cancer/USCS/DataViz.html .

“Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics 2018. Toronto, ON: Canadian Cancer Society; 2018,” http://www.cancer.ca/Canadian-Cancer-Statistics-2018-EN .

“IX51 Inverted Microscope from Olympus | Biocompare.com,” https://www.biocompare.com/19419-Inverted-Microscopes/396657-IX51-Inverted-Microscope/ .

“Meiji MT6000H Fluorescence Microscope with X-Y Stage & Focus Automation - New York Microscope Co.,” https://www.microscopeinternational.com/product/meiji-mt6000h-fluorescence-microscope-with-x-y-stage-focus-automation/ .

“FS5 Spectrofluorometer | Steady State | Edinburgh Instruments,” https://www.edinst.com/us/products/fs5-spectrofluorometer/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A graphical illustration and working principle of the developed device.
Fig. 2
Fig. 2 Off-the-Shelf components needed to build the prototype (a) 3D printed sample chamber (b) Flashlight (c) Arduino Uno Microcontroller (d) Photodiode (e) Emission Filter (f) LCD display. (The images are not to scale).
Fig. 3
Fig. 3 Detail dimension of the sample chamber which houses the detector circuitry. (a) Isometric View (b) Top view (c) 3-dimensional exploded view (All dimensions are in cm).
Fig. 4
Fig. 4 Experimental setup.
Fig. 5
Fig. 5 (a) Shown here is a representative image of the MDA-MB 231 breast cancer cell line visualized under a commercial fluorescence microscope (Olympus IX51 inverted microscope) (b) The same field of view of the breast cancer cells was visualized in bright field (light microscopy) using the same microscope (c) Absorption and emission spectra of Green Fluorescent Protein: This figure shows the absorption and emission spectra of the Green Fluorescent Protein where the peak absorption and peak emission of the cultured sample is 495nm and 519nm respectively (Adapted from [23]).
Fig. 6
Fig. 6 Operating procedure of the system.
Fig. 7
Fig. 7 Results (a) Breast cancer cell without GFP (Control cell) cultured on a glass slide (b) Breast cancer cell conjugated with GFP fluorophore cultured on a glass slide (c) Control cell visualized under commercial microscope (d) Breast cancer cell conjugated with GFP fluorophore visualized under commercial microscope (Olympus IX51) (e) No cancer cell detected with Control cell with the proposed fluorometer (f) Cancer cell detected with Conjugated breast cancer cell with the proposed fluorometer (g) Reading on a waveform oscilloscope.
Fig. 8
Fig. 8 Confusion Matrix.

Tables (2)

Tables Icon

Table 1 List of major components needed to assemble this device

Tables Icon

Table 2 Comparison with other devices that are available in the market or are in research

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Sensitivity= TP TP+FN
Specificity= TN TN+FP
Accuracy= TP+TN TP+TN+FP+FN
Precision= TP TP+FP

Metrics