Abstract

The lens equivalent refractive index (RI) is commonly used in calculations of crystalline lens power. However, accurate determination of the equivalent RI in vivo is challenging due to the need of multiple measurements with different ocular biometry devices. A custom extended-depth Spectral Domain-OCT system was utilized to provide measurements of corneal and lens surface curvatures and all intraocular distances required for determination of the lens equivalent RI. Ocular biometry and refraction were input into a computational model eye from which the equivalent RI was calculated. Results derived from human subjects of a wide age range show a decrease in RI with age and demonstrate the capability of in vivo measurements of the equivalent RI with extended-depth OCT.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional OCT based guinea pig eye model: relating morphology and optics

Pablo Pérez-Merino, Miriam Velasco-Ocana, Eduardo Martinez-Enriquez, Luis Revuelta, Sally A McFadden, and Susana Marcos
Biomed. Opt. Express 8(4) 2173-2184 (2017)

Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT

Enrique Gambra, Sergio Ortiz, Pablo Perez-Merino, Michalina Gora, Maciej Wojtkowski, and Susana Marcos
Biomed. Opt. Express 4(9) 1595-1609 (2013)

OCT-based full crystalline lens shape change during accommodation in vivo

Eduardo Martinez-Enriquez, Pablo Pérez-Merino, Miriam Velasco-Ocana, and Susana Marcos
Biomed. Opt. Express 8(2) 918-933 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Iribarren, “Crystalline lens and refractive development,” Prog. Retin. Eye Res. 47, 86–106 (2015).
    [Crossref] [PubMed]
  2. Y. Inagaki, “The rapid change of corneal curvature in the neonatal period and infancy,” Arch. Ophthalmol. 104(7), 1026–1027 (1986).
    [Crossref] [PubMed]
  3. D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
    [Crossref] [PubMed]
  4. A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
    [Crossref] [PubMed]
  5. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
    [Crossref] [PubMed]
  6. V. M. Hernandez, F. Cabot, M. Ruggeri, C. de Freitas, A. Ho, S. Yoo, J. M. Parel, and F. Manns, “Calculation of crystalline lens power using a modification of the Bennett method,” Biomed. Opt. Express 6(11), 4501–4515 (2015).
    [Crossref] [PubMed]
  7. R. Iribarren, I. G. Morgan, H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, and A. Fotouhi, “Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud Eye Study,” Invest. Ophthalmol. Vis. Sci. 55(2), 1031–1039 (2014).
    [Crossref] [PubMed]
  8. S. Jongenelen, J. J. Rozema, M. J. Tassignon, and EVICR.net and Project Gullstrand Study Group, “Distribution of the Crystalline Lens Power In Vivo as a Function of Age,” Invest. Ophthalmol. Vis. Sci. 56(12), 7029–7035 (2015).
    [Crossref] [PubMed]
  9. L. F. Garner, C. S. Ooi, and G. Smith, “Refractive index of the crystalline lens in young and aged eyes,” Clin. Exp. Optom. 81(4), 145–150 (1998).
    [Crossref] [PubMed]
  10. D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
    [PubMed]
  11. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
    [Crossref] [PubMed]
  12. J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
    [Crossref] [PubMed]
  13. K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
    [Crossref] [PubMed]
  14. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [Crossref] [PubMed]
  15. R. Navarro, F. Palos, and L. M. González, “Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens,” J. Opt. Soc. Am. A 24(9), 2911–2920 (2007).
    [Crossref] [PubMed]
  16. W. N. Charman and D. A. Atchison, “Age-dependence of the average and equivalent refractive indices of the crystalline lens,” Biomed. Opt. Express 5(1), 31–39 (2013).
    [Crossref] [PubMed]
  17. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
    [Crossref] [PubMed]
  18. G. L. Dick, “Optical method for estimating the equivalent refractive index of the crystalline lens in vivo,” Ophthalmic Physiol. Opt. 14(2), 177–183 (1994).
    [Crossref] [PubMed]
  19. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
    [Crossref] [PubMed]
  20. L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997).
    [Crossref] [PubMed]
  21. E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
    [Crossref] [PubMed]
  22. D. O. Mutti, K. Zadnik, and A. J. Adams, “The equivalent refractive index of the crystalline lens in childhood,” Vision Res. 35(11), 1565–1573 (1995).
    [Crossref] [PubMed]
  23. D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
    [PubMed]
  24. J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Invest. Ophthalmol. Vis. Sci. 53(6), 2533–2540 (2012).
    [Crossref] [PubMed]
  25. N. G. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology 115(10), 1679–1686 (2008).
    [Crossref] [PubMed]
  26. L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
    [Crossref] [PubMed]
  27. R. C. Augusteyn, “Growth of the human eye lens,” Mol. Vis. 13, 252–257 (2007).
    [PubMed]
  28. M. Ruggeri, C. de Freitas, S. Williams, V. M. Hernandez, F. Cabot, N. Yesilirmak, K. Alawa, Y. C. Chang, S. H. Yoo, G. Gregori, J. M. Parel, and F. Manns, “Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging,” Biomed. Opt. Express 7(4), 1351–1364 (2016).
    [Crossref] [PubMed]
  29. M. Ruggeri, C. de Freitas, S. Williams, V. M. Hernandez, F. Cabot, N. Yesilirmak, K. Alawa, Y.-C. Chang, S. H. Yoo, G. Gregori, J.-M. Parel, and F. Manns, “Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging,” Biomed. Opt. Express 7(4), 1351–1364 (2016).
    [Crossref] [PubMed]
  30. S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” in BiOS '98 International Biomedical Optics Symposium, (SPIE, 1998), 8.
    [Crossref]
  31. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref] [PubMed]
  32. D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
    [Crossref] [PubMed]
  33. W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
    [Crossref] [PubMed]
  34. R. C. Augusteyn, “On the growth and internal structure of the human lens,” Exp. Eye Res. 90(6), 643–654 (2010).
    [Crossref] [PubMed]
  35. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
    [Crossref] [PubMed]

2016 (2)

2015 (3)

R. Iribarren, “Crystalline lens and refractive development,” Prog. Retin. Eye Res. 47, 86–106 (2015).
[Crossref] [PubMed]

V. M. Hernandez, F. Cabot, M. Ruggeri, C. de Freitas, A. Ho, S. Yoo, J. M. Parel, and F. Manns, “Calculation of crystalline lens power using a modification of the Bennett method,” Biomed. Opt. Express 6(11), 4501–4515 (2015).
[Crossref] [PubMed]

S. Jongenelen, J. J. Rozema, M. J. Tassignon, and EVICR.net and Project Gullstrand Study Group, “Distribution of the Crystalline Lens Power In Vivo as a Function of Age,” Invest. Ophthalmol. Vis. Sci. 56(12), 7029–7035 (2015).
[Crossref] [PubMed]

2014 (2)

R. Iribarren, I. G. Morgan, H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, and A. Fotouhi, “Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud Eye Study,” Invest. Ophthalmol. Vis. Sci. 55(2), 1031–1039 (2014).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

2013 (2)

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

W. N. Charman and D. A. Atchison, “Age-dependence of the average and equivalent refractive indices of the crystalline lens,” Biomed. Opt. Express 5(1), 31–39 (2013).
[Crossref] [PubMed]

2012 (2)

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Invest. Ophthalmol. Vis. Sci. 53(6), 2533–2540 (2012).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

2010 (2)

2008 (4)

N. G. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology 115(10), 1679–1686 (2008).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

2007 (2)

2005 (3)

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

2002 (1)

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

2001 (2)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[Crossref] [PubMed]

1999 (1)

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

1998 (3)

L. F. Garner, C. S. Ooi, and G. Smith, “Refractive index of the crystalline lens in young and aged eyes,” Clin. Exp. Optom. 81(4), 145–150 (1998).
[Crossref] [PubMed]

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

1997 (1)

L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997).
[Crossref] [PubMed]

1995 (1)

D. O. Mutti, K. Zadnik, and A. J. Adams, “The equivalent refractive index of the crystalline lens in childhood,” Vision Res. 35(11), 1565–1573 (1995).
[Crossref] [PubMed]

1994 (1)

G. L. Dick, “Optical method for estimating the equivalent refractive index of the crystalline lens in vivo,” Ophthalmic Physiol. Opt. 14(2), 177–183 (1994).
[Crossref] [PubMed]

1992 (1)

D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
[PubMed]

1986 (1)

Y. Inagaki, “The rapid change of corneal curvature in the neonatal period and infancy,” Arch. Ophthalmol. 104(7), 1026–1027 (1986).
[Crossref] [PubMed]

Adams, A. J.

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

D. O. Mutti, K. Zadnik, and A. J. Adams, “The equivalent refractive index of the crystalline lens in childhood,” Vision Res. 35(11), 1565–1573 (1995).
[Crossref] [PubMed]

D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
[PubMed]

Alawa, K.

Amelinckx, A.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Arrieta, E.

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Atchison, D. A.

W. N. Charman and D. A. Atchison, “Age-dependence of the average and equivalent refractive indices of the crystalline lens,” Biomed. Opt. Express 5(1), 31–39 (2013).
[Crossref] [PubMed]

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Invest. Ophthalmol. Vis. Sci. 53(6), 2533–2540 (2012).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

Augusteyn, R. C.

R. C. Augusteyn, “On the growth and internal structure of the human lens,” Exp. Eye Res. 90(6), 643–654 (2010).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

R. C. Augusteyn, “Growth of the human eye lens,” Mol. Vis. 13, 252–257 (2007).
[PubMed]

Baumgartner, A.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

Birkenfeld, J.

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

Borja, D.

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Bullimore, M. A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Cabot, F.

Campbell, M. C.

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

Chang, Y. C.

Chang, Y.-C.

Charman, W. N.

de Castro, A.

de Freitas, C.

Dick, G. L.

G. L. Dick, “Optical method for estimating the equivalent refractive index of the crystalline lens in vivo,” Ophthalmic Physiol. Opt. 14(2), 177–183 (1994).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

Dubbelman, M.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

N. G. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology 115(10), 1679–1686 (2008).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[Crossref] [PubMed]

Emamian, M. H.

R. Iribarren, I. G. Morgan, H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, and A. Fotouhi, “Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud Eye Study,” Invest. Ophthalmol. Vis. Sci. 55(2), 1031–1039 (2014).
[Crossref] [PubMed]

Fercher, A. F.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

Findl, O.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

Fotouhi, A.

R. Iribarren, I. G. Morgan, H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, and A. Fotouhi, “Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud Eye Study,” Invest. Ophthalmol. Vis. Sci. 55(2), 1031–1039 (2014).
[Crossref] [PubMed]

Friedman, N. E.

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

Fusaro, R. E.

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

Garner, L. F.

L. F. Garner, C. S. Ooi, and G. Smith, “Refractive index of the crystalline lens in young and aged eyes,” Clin. Exp. Optom. 81(4), 145–150 (1998).
[Crossref] [PubMed]

L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997).
[Crossref] [PubMed]

Glasser, A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

González, L. M.

Gregori, G.

Hashemi, H.

R. Iribarren, I. G. Morgan, H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, and A. Fotouhi, “Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud Eye Study,” Invest. Ophthalmol. Vis. Sci. 55(2), 1031–1039 (2014).
[Crossref] [PubMed]

Hayes, J. R.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[Crossref] [PubMed]

Heethaar, R. M.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

Hermans, E. A.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

Hernandez, V. M.

Hitzenberger, C. K.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

Ho, A.

Inagaki, Y.

Y. Inagaki, “The rapid change of corneal curvature in the neonatal period and infancy,” Arch. Ophthalmol. 104(7), 1026–1027 (1986).
[Crossref] [PubMed]

Iribarren, R.

R. Iribarren, “Crystalline lens and refractive development,” Prog. Retin. Eye Res. 47, 86–106 (2015).
[Crossref] [PubMed]

R. Iribarren, I. G. Morgan, H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, and A. Fotouhi, “Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud Eye Study,” Invest. Ophthalmol. Vis. Sci. 55(2), 1031–1039 (2014).
[Crossref] [PubMed]

Jain, R.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Jones, L. A.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[Crossref] [PubMed]

Jongenelen, S.

S. Jongenelen, J. J. Rozema, M. J. Tassignon, and EVICR.net and Project Gullstrand Study Group, “Distribution of the Crystalline Lens Power In Vivo as a Function of Age,” Invest. Ophthalmol. Vis. Sci. 56(12), 7029–7035 (2015).
[Crossref] [PubMed]

Kao, C. Y.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Kasthurirangan, S.

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Invest. Ophthalmol. Vis. Sci. 53(6), 2533–2540 (2012).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

Khabazkhoob, M.

R. Iribarren, I. G. Morgan, H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, and A. Fotouhi, “Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud Eye Study,” Invest. Ophthalmol. Vis. Sci. 55(2), 1031–1039 (2014).
[Crossref] [PubMed]

Kostense, P. J.

N. G. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology 115(10), 1679–1686 (2008).
[Crossref] [PubMed]

Manns, F.

M. Ruggeri, C. de Freitas, S. Williams, V. M. Hernandez, F. Cabot, N. Yesilirmak, K. Alawa, Y. C. Chang, S. H. Yoo, G. Gregori, J. M. Parel, and F. Manns, “Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging,” Biomed. Opt. Express 7(4), 1351–1364 (2016).
[Crossref] [PubMed]

M. Ruggeri, C. de Freitas, S. Williams, V. M. Hernandez, F. Cabot, N. Yesilirmak, K. Alawa, Y.-C. Chang, S. H. Yoo, G. Gregori, J.-M. Parel, and F. Manns, “Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging,” Biomed. Opt. Express 7(4), 1351–1364 (2016).
[Crossref] [PubMed]

V. M. Hernandez, F. Cabot, M. Ruggeri, C. de Freitas, A. Ho, S. Yoo, J. M. Parel, and F. Manns, “Calculation of crystalline lens power using a modification of the Bennett method,” Biomed. Opt. Express 6(11), 4501–4515 (2015).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Marcos, S.

Markwell, E. L.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

Mitchell, G. L.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[Crossref] [PubMed]

Moeschberger, M. L.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[Crossref] [PubMed]

Moffat, B. A.

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

Morgan, I. G.

R. Iribarren, I. G. Morgan, H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, and A. Fotouhi, “Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud Eye Study,” Invest. Ophthalmol. Vis. Sci. 55(2), 1031–1039 (2014).
[Crossref] [PubMed]

Mutti, D. O.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[Crossref] [PubMed]

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

D. O. Mutti, K. Zadnik, and A. J. Adams, “The equivalent refractive index of the crystalline lens in childhood,” Vision Res. 35(11), 1565–1573 (1995).
[Crossref] [PubMed]

D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
[PubMed]

Navarro, R.

Ooi, C. S.

L. F. Garner, C. S. Ooi, and G. Smith, “Refractive index of the crystalline lens in young and aged eyes,” Clin. Exp. Optom. 81(4), 145–150 (1998).
[Crossref] [PubMed]

Ortiz, S.

Palos, F.

Parel, J. M.

Parel, J.-M.

Patz, S.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Polak, B. C.

N. G. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology 115(10), 1679–1686 (2008).
[Crossref] [PubMed]

Pope, J. M.

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Invest. Ophthalmol. Vis. Sci. 53(6), 2533–2540 (2012).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

Richdale, K.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Ringens, P. J.

N. G. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology 115(10), 1679–1686 (2008).
[Crossref] [PubMed]

Rosen, A. M.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Rozema, J. J.

S. Jongenelen, J. J. Rozema, M. J. Tassignon, and EVICR.net and Project Gullstrand Study Group, “Distribution of the Crystalline Lens Power In Vivo as a Function of Age,” Invest. Ophthalmol. Vis. Sci. 56(12), 7029–7035 (2015).
[Crossref] [PubMed]

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Invest. Ophthalmol. Vis. Sci. 53(6), 2533–2540 (2012).
[Crossref] [PubMed]

Ruggeri, M.

Sattmann, H.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

Schmalbrock, P.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Shariati, M.

R. Iribarren, I. G. Morgan, H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, and A. Fotouhi, “Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud Eye Study,” Invest. Ophthalmol. Vis. Sci. 55(2), 1031–1039 (2014).
[Crossref] [PubMed]

Sholtz, R. I.

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

Siedlecki, D.

Sinnott, L. T.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Smith, G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

L. F. Garner, C. S. Ooi, and G. Smith, “Refractive index of the crystalline lens in young and aged eyes,” Clin. Exp. Optom. 81(4), 145–150 (1998).
[Crossref] [PubMed]

L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997).
[Crossref] [PubMed]

Swann, P. G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

Tassignon, M. J.

S. Jongenelen, J. J. Rozema, M. J. Tassignon, and EVICR.net and Project Gullstrand Study Group, “Distribution of the Crystalline Lens Power In Vivo as a Function of Age,” Invest. Ophthalmol. Vis. Sci. 56(12), 7029–7035 (2015).
[Crossref] [PubMed]

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Invest. Ophthalmol. Vis. Sci. 53(6), 2533–2540 (2012).
[Crossref] [PubMed]

Uhlhorn, S.

Uhlhorn, S. R.

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Van der Heijde, R.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

Wassenaar, P. A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[Crossref] [PubMed]

Wiemer, N. G.

N. G. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology 115(10), 1679–1686 (2008).
[Crossref] [PubMed]

Williams, S.

Yesilirmak, N.

Yoo, S.

Yoo, S. H.

Zadnik, K.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[Crossref] [PubMed]

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

D. O. Mutti, K. Zadnik, and A. J. Adams, “The equivalent refractive index of the crystalline lens in childhood,” Vision Res. 35(11), 1565–1573 (1995).
[Crossref] [PubMed]

D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
[PubMed]

Ziebarth, N.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

Y. Inagaki, “The rapid change of corneal curvature in the neonatal period and infancy,” Arch. Ophthalmol. 104(7), 1026–1027 (1986).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express 1(5), 1331–1340 (2010).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

W. N. Charman and D. A. Atchison, “Age-dependence of the average and equivalent refractive indices of the crystalline lens,” Biomed. Opt. Express 5(1), 31–39 (2013).
[Crossref] [PubMed]

V. M. Hernandez, F. Cabot, M. Ruggeri, C. de Freitas, A. Ho, S. Yoo, J. M. Parel, and F. Manns, “Calculation of crystalline lens power using a modification of the Bennett method,” Biomed. Opt. Express 6(11), 4501–4515 (2015).
[Crossref] [PubMed]

M. Ruggeri, C. de Freitas, S. Williams, V. M. Hernandez, F. Cabot, N. Yesilirmak, K. Alawa, Y. C. Chang, S. H. Yoo, G. Gregori, J. M. Parel, and F. Manns, “Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging,” Biomed. Opt. Express 7(4), 1351–1364 (2016).
[Crossref] [PubMed]

M. Ruggeri, C. de Freitas, S. Williams, V. M. Hernandez, F. Cabot, N. Yesilirmak, K. Alawa, Y.-C. Chang, S. H. Yoo, G. Gregori, J.-M. Parel, and F. Manns, “Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging,” Biomed. Opt. Express 7(4), 1351–1364 (2016).
[Crossref] [PubMed]

Clin. Exp. Optom. (1)

L. F. Garner, C. S. Ooi, and G. Smith, “Refractive index of the crystalline lens in young and aged eyes,” Clin. Exp. Optom. 81(4), 145–150 (1998).
[Crossref] [PubMed]

Exp. Eye Res. (2)

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

R. C. Augusteyn, “On the growth and internal structure of the human lens,” Exp. Eye Res. 90(6), 643–654 (2010).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (9)

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Vis. Sci. 46(7), 2317–2327 (2005).
[Crossref] [PubMed]

D. O. Mutti, K. Zadnik, and A. J. Adams, “A video technique for phakometry of the human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 33(5), 1771–1782 (1992).
[PubMed]

R. Iribarren, I. G. Morgan, H. Hashemi, M. Khabazkhoob, M. H. Emamian, M. Shariati, and A. Fotouhi, “Lens power in a population-based cross-sectional sample of adults aged 40 to 64 years in the Shahroud Eye Study,” Invest. Ophthalmol. Vis. Sci. 55(2), 1031–1039 (2014).
[Crossref] [PubMed]

S. Jongenelen, J. J. Rozema, M. J. Tassignon, and EVICR.net and Project Gullstrand Study Group, “Distribution of the Crystalline Lens Power In Vivo as a Function of Age,” Invest. Ophthalmol. Vis. Sci. 56(12), 7029–7035 (2015).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Vis. Sci. 54(2), 1095–1105 (2013).
[Crossref] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J. M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[Crossref] [PubMed]

D. O. Mutti, K. Zadnik, R. E. Fusaro, N. E. Friedman, R. I. Sholtz, and A. J. Adams, “Optical and structural development of the crystalline lens in childhood,” Invest. Ophthalmol. Vis. Sci. 39(1), 120–133 (1998).
[PubMed]

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Invest. Ophthalmol. Vis. Sci. 53(6), 2533–2540 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Vis. (1)

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008).
[Crossref] [PubMed]

Mol. Vis. (1)

R. C. Augusteyn, “Growth of the human eye lens,” Mol. Vis. 13, 252–257 (2007).
[PubMed]

Ophthalmic Physiol. Opt. (1)

G. L. Dick, “Optical method for estimating the equivalent refractive index of the crystalline lens in vivo,” Ophthalmic Physiol. Opt. 14(2), 177–183 (1994).
[Crossref] [PubMed]

Ophthalmology (1)

N. G. Wiemer, M. Dubbelman, P. J. Kostense, P. J. Ringens, and B. C. Polak, “The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens,” Ophthalmology 115(10), 1679–1686 (2008).
[Crossref] [PubMed]

Optom. Vis. Sci. (3)

L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

R. Iribarren, “Crystalline lens and refractive development,” Prog. Retin. Eye Res. 47, 86–106 (2015).
[Crossref] [PubMed]

Vision Res. (5)

D. O. Mutti, K. Zadnik, and A. J. Adams, “The equivalent refractive index of the crystalline lens in childhood,” Vision Res. 35(11), 1565–1573 (1995).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42(13), 1683–1693 (2002).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Other (1)

S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” in BiOS '98 International Biomedical Optics Symposium, (SPIE, 1998), 8.
[Crossref]

Supplementary Material (1)

NameDescription
» Data File 1       Ocular biometric parameters for all subjects measured in the study

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Flowchart showing procedure to calculate lens equivalent refractive index. For distortion correction, we used the group refractive indices (1.387 for the cornea and 1.341 for the aqueous and vitreous humor). For calculation of refractive state, we used the phase indices (1.376 for the cornea and 1.336 for the aqueous and vitreous humor).
Fig. 2
Fig. 2 (A) Example extended-depth OCT image acquired on a 23 y/o subject. (B) Computational eye model obtained from the OCT image. Anterior corneal, posterior corneal, anterior lens, posterior lens, and retinal surfaces segmented from extended-depth images are reported. The location and shape of the surfaces were defined by the radii of curvature of the anterior cornea (ACR), posterior cornea (PCR), anterior lens (ALR), and posterior lens (PLR) as well as intraocular distances, such as central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), and vitreous chamber depth (VCD). VCD is measured from the posterior lens surface to the retinal pigment epithelium.
Fig. 3
Fig. 3 Example of biometry used to define a model eye for calculation of equivalent refractive indices in a 22 y/o subject. Calculation of equivalent refractive indices was repeated over ten extended-depth images resulting in ten values, which were averaged together to determine a final value. Abbreviations- CCT: Central Corneal Thickness, ACD: Anterior Chamber Depth, LT: Lens Thickness, VCD: Vitreous Chamber Depth, ACR: Anterior Corneal Radius of Curvature, PCR: Posterior Corneal Radius of Curvature, ALR: Anterior Lens Radius of Curvature, PLR: Posterior Lens Radius of Curvature
Fig. 4
Fig. 4 CCT (A), ACD (B), LT (C), and VCD (D) were plotted versus age for all subjects. LT (LT = 0.029 mm/yr * Age + 2.867 mm; p < 0.001) and ACD (ACD = −0.014 mm/yr *Age + 3.4667 mm ; p = 0.003) showed a significant increase and decrease, respectively, with age, whereas VCD (p = 0.134) and CCT (p = 0.065) did not show a relation with age.
Fig. 5
Fig. 5 ACR (A), PCR (B), ALR (C), and PLR (D) were plotted versus age for all subjects. ALR and PLR showed a significant decrease in magnitude with age (ALR = −0.072 mm/yr * Age + 11.965 mm, p = 0.007; PLR = 0.020 mm/yr * Age - 6.615 mm; p = 0.017), whereas ACR (p = 0.691) and PCR (p = 0.174) did not show a relation with age.
Fig. 6
Fig. 6 Absolute value of error between estimated and measured refraction as a function of equivalent refractive indices. As detailed in the methods, the optimal equivalent refractive index value was determined to be the value that produces the minimum absolute error. Results shown are based on the biometry values for the left eye of a 31 y/o subject, where a lens equivalent refractive index of 1.430 was determined for the subject.
Fig. 7
Fig. 7 Plots of lens equivalent refractive index (A) and lens power (B) as a function of age. The lens equivalent refractive index was found to decrease with age (Equiv RI = −0.0007 yr−1 * Age + 1.4483; p <0.001; 95% CI of slope: −0.0010 to −0.0005 yr−1). Lens power was also found to decrease with age (Lens power = −0.07 D/yr * Age + 25.86 D; p = 0.017). An outlier (26 y/o with 1.395 equivalent refractive index and 19.64 D power) was removed before linear fitting and significance testing in both refractive index and power plots.

Tables (2)

Tables Icon

Table 1 Intra-Session Repeatability of Biometry (33 subjects, 10 frames each)

Tables Icon

Table 2 Inter-Session Repeatability of Biometry (1 subject, 5 visits)

Metrics