Abstract

While magnetic thermoseeds are often utilized in interstitial magnetic thermotherapy (iMT) to enable localized tumor ablation, we propose to extend their use as the perturbative source in magnetomotive optical coherence elastography (MM-OCE) so that the heat-induced elasticity alterations can be ‘theranostically’ probed. MM-OCE measurements were found to agree with indentation results. Tissue stiffening was visualized on iMT-treated porcine liver and canine soft tissue sarcoma specimens, where histology confirmed thermal damages. Additionally, the elasticity was found to increase exponentially and linearly with the conventional thermal dosage metrics and the deposited thermal energy, respectively. Collectively, a physiologically-meaningful, MM-OCE-based iMT dosimetry is feasible.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms

Marjan Razani, Adrian Mariampillai, Cuiru Sun, Timothy W. H. Luk, Victor X. D. Yang, and Michael C. Kolios
Biomed. Opt. Express 3(5) 972-980 (2012)

Optical micro-scale mapping of dynamic biomechanical tissue properties

Xing Liang, Amy L. Oldenburg, Vasilica Crecea, Eric J. Chaney, and Stephen A. Boppart
Opt. Express 16(15) 11052-11065 (2008)

Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves

Chunhui Li, Guangying Guan, Fan Zhang, Shaozhen Song, Ruikang K. Wang, Zhihong Huang, and Ghulam Nabi
Biomed. Opt. Express 5(12) 4313-4328 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Dewhirst, P. R. Stauffer, S. Das, O. I. Craciunescu, and Z. Vujaskovic, “Hyperthermia,” in Clinical Radiation Oncology, L. L. Gunderson, and J. E. Tepper, eds. (Elsevier, 2015), pp. 381–398.
  2. J. A. Paulus, J. S. Richardson, R. D. Tucker, and J. B. Park, “Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia,” IEEE Trans. Biomed. Eng. 43(4), 406–413 (1996).
    [Crossref] [PubMed]
  3. I. Tohnai, Y. Goto, Y. Hayashi, M. Ueda, T. Kobayashi, and M. Matsui, “Preoperative thermochemotherapy of oral cancer using magnetic induction hyperthermia (Implant Heating System: IHS),” Int. J. Hyperthermia 12(1), 37–47 (1996).
    [Crossref] [PubMed]
  4. S. Deger, D. Boehmer, I. Türk, J. Roigas, V. Budach, and S. A. Loening, “Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy,” Eur. Urol. 42(2), 147–153 (2002).
    [Crossref] [PubMed]
  5. R. D. Tucker, “Use of interstitial temperature self-regulating thermal rods in the treatment of prostate cancer,” J. Endourol. 17(8), 601–607 (2003).
    [Crossref] [PubMed]
  6. Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
    [PubMed]
  7. G. Warrell, D. Shvydka, and E. I. Parsai, “Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments,” Med. Phys. 43(11), 6033–6048 (2016).
    [Crossref] [PubMed]
  8. S. N. Goldberg, “Radiofrequency tumor ablation: principles and techniques,” Eur. J. Ultrasound 13(2), 129–147 (2001).
    [Crossref] [PubMed]
  9. M. Tubiana, “The future of hyperthermia,” Natl. Cancer Inst. Monogr. 61, 539–543 (1982).
    [PubMed]
  10. S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984).
    [Crossref] [PubMed]
  11. M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
    [Crossref] [PubMed]
  12. E. Sapin-de Brosses, J. L. Gennisson, M. Pernot, M. Fink, and M. Tanter, “Temperature dependence of the shear modulus of soft tissues assessed by ultrasound,” Phys. Med. Biol. 55(6), 1701–1718 (2010).
    [Crossref] [PubMed]
  13. T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, “Assessment of thermal tissue ablation with MR elastography,” Magn. Reson. Med. 45(1), 80–87 (2001).
    [Crossref] [PubMed]
  14. N. Benech and C. A. Negreira, “Monitoring heat-induced changes in soft tissues with 1D transient elastography,” Phys. Med. Biol. 55(6), 1753–1765 (2010).
    [Crossref] [PubMed]
  15. E. S. Brosses, M. Pernot, and M. Tanter, “The link between tissue elasticity and thermal dose in vivo,” Phys. Med. Biol. 56(24), 7755–7765 (2011).
    [Crossref] [PubMed]
  16. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
    [Crossref]
  17. X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
    [Crossref] [PubMed]
  18. J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
    [Crossref]
  19. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref] [PubMed]
  20. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009).
    [Crossref] [PubMed]
  21. A. L. Oldenburg and S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol. 55(4), 1189–1201 (2010).
    [Crossref] [PubMed]
  22. V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
    [Crossref] [PubMed]
  23. A. Ahmad, P.-C. Huang, N. A. Sobh, P. Pande, J. Kim, and S. A. Boppart, “Mechanical contrast in spectroscopic magnetomotive optical coherence elastography,” Phys. Med. Biol. 60(17), 6655–6668 (2015).
    [Crossref] [PubMed]
  24. P.-C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 104–119 (2016).
    [Crossref] [PubMed]
  25. A. Ahmad, J. Kim, N. A. Sobh, N. D. Shemonski, and S. A. Boppart, “Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves,” Biomed. Opt. Express 5(7), 2349–2361 (2014).
    [Crossref] [PubMed]
  26. T. W. Kang and H. Rhim, “Recent advances in tumor ablation for hepatocellular carcinoma,” Liver Cancer 4(3), 176–187 (2015).
    [Crossref] [PubMed]
  27. L. H. Lindner and R. D. Issels, “Hyperthermia in soft tissue sarcoma,” Curr. Treat. Options Oncol. 12(1), 12–20 (2011).
    [Crossref] [PubMed]
  28. R. Iwasaki, R. Takagi, R. Nagaoka, H. Jimbo, S. Yoshizawa, Y. Saijo, and S.-i. Umemura, “Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer,” Jpn. J. Appl. Phys. 55(7S1), 07KF05 (2016).
    [Crossref]
  29. R. Souchon, O. Rouvière, A. Gelet, V. Detti, S. Srinivasan, J. Ophir, and J. Y. Chapelon, “Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results,” Ultrasound Med. Biol. 29(7), 1007–1015 (2003).
    [Crossref] [PubMed]
  30. T. Varghese, J. A. Zagzebski, and F. T. Lee, “Elastographic imaging of thermal lesions in the liver in vivo following radiofrequency ablation: preliminary results,” Ultrasound Med. Biol. 28(11-12), 1467–1473 (2002).
    [Crossref] [PubMed]
  31. R. J. Dewall, T. Varghese, and C. L. Brace, “Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography,” Med. Phys. 39(11), 6692–6700 (2012).
    [Crossref] [PubMed]
  32. A. K. Robertson, P. S. Basran, S. D. Thomas, and D. Wells, “CT, MR, and ultrasound image artifacts from prostate brachytherapy seed implants: the impact of seed size,” Med. Phys. 39(4), 2061–2068 (2012).
    [Crossref] [PubMed]
  33. M. Orescanin and M. Insana, “Shear modulus estimation with vibrating needle stimulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1358–1367 (2010).
    [Crossref] [PubMed]
  34. R. H. Pritchard, P. Lava, D. Debruyne, and E. M. Terentjev, “Precise determination of the Poisson ratio in soft materials with 2D digital image correlation,” Soft Matter 9(26), 6037–6045 (2013).
    [Crossref]
  35. C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
    [Crossref] [PubMed]
  36. F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 35010 (2017).
    [Crossref] [PubMed]
  37. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
    [Crossref] [PubMed]
  38. G. C. van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld, and N. Kuster, “CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?” Eur. Radiol. 23(8), 2215–2227 (2013).
    [Crossref] [PubMed]
  39. P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: an update,” Int. J. Hyperthermia 27(4), 320–343 (2011).
    [Crossref] [PubMed]
  40. S. A. Haider, T. Cetas, J. Wait, and J.-S. Chen, “Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization,” IEEE Trans. Microw. Theory Tech. 39(11), 1817–1827 (1991).
    [Crossref]
  41. S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
    [Crossref] [PubMed]
  42. C. P. Fleming, K. J. Quan, H. Wang, G. Amit, and A. M. Rollins, “In vitro characterization of cardiac radiofrequency ablation lesions using optical coherence tomography,” Opt. Express 18(3), 3079–3092 (2010).
    [Crossref] [PubMed]
  43. D. Herranz, J. Lloret, S. Jiménez-Valero, J. L. Rubio-Guivernau, and E. Margallo-Balbás, “Novel catheter enabling simultaneous radiofrequency ablation and optical coherence reflectometry,” Biomed. Opt. Express 6(9), 3268–3275 (2015).
    [Crossref] [PubMed]
  44. C.-H. Liu, M. N. Skryabina, J. Li, M. Singh, E. N. Sobol, and K. V. Larin, “Measurement of the temperature dependence of Young’s modulus of cartilage by phase-sensitive optical coherence elastography,” Quantum Electron. 44(8), 751–756 (2014).
    [Crossref]
  45. J.-L. Gennisson, S. Catheline, S. Chaffaï, and M. Fink, “Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles,” J. Acoust. Soc. Am. 114(1), 536–541 (2003).
    [Crossref] [PubMed]
  46. C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
    [Crossref] [PubMed]
  47. N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
    [Crossref] [PubMed]
  48. K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
    [Crossref] [PubMed]
  49. M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
    [Crossref] [PubMed]
  50. S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
    [Crossref] [PubMed]
  51. W.-C. Kuo, J. Kim, N. D. Shemonski, E. J. Chaney, D. R. Spillman, and S. A. Boppart, “Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system,” Biomed. Opt. Express 3(6), 1149–1161 (2012).
    [Crossref] [PubMed]
  52. P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
    [Crossref] [PubMed]

2018 (2)

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref] [PubMed]

2017 (3)

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 35010 (2017).
[Crossref] [PubMed]

2016 (4)

R. Iwasaki, R. Takagi, R. Nagaoka, H. Jimbo, S. Yoshizawa, Y. Saijo, and S.-i. Umemura, “Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer,” Jpn. J. Appl. Phys. 55(7S1), 07KF05 (2016).
[Crossref]

P.-C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 104–119 (2016).
[Crossref] [PubMed]

G. Warrell, D. Shvydka, and E. I. Parsai, “Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments,” Med. Phys. 43(11), 6033–6048 (2016).
[Crossref] [PubMed]

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

2015 (4)

T. W. Kang and H. Rhim, “Recent advances in tumor ablation for hepatocellular carcinoma,” Liver Cancer 4(3), 176–187 (2015).
[Crossref] [PubMed]

A. Ahmad, P.-C. Huang, N. A. Sobh, P. Pande, J. Kim, and S. A. Boppart, “Mechanical contrast in spectroscopic magnetomotive optical coherence elastography,” Phys. Med. Biol. 60(17), 6655–6668 (2015).
[Crossref] [PubMed]

D. Herranz, J. Lloret, S. Jiménez-Valero, J. L. Rubio-Guivernau, and E. Margallo-Balbás, “Novel catheter enabling simultaneous radiofrequency ablation and optical coherence reflectometry,” Biomed. Opt. Express 6(9), 3268–3275 (2015).
[Crossref] [PubMed]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

2014 (4)

C.-H. Liu, M. N. Skryabina, J. Li, M. Singh, E. N. Sobol, and K. V. Larin, “Measurement of the temperature dependence of Young’s modulus of cartilage by phase-sensitive optical coherence elastography,” Quantum Electron. 44(8), 751–756 (2014).
[Crossref]

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

A. Ahmad, J. Kim, N. A. Sobh, N. D. Shemonski, and S. A. Boppart, “Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves,” Biomed. Opt. Express 5(7), 2349–2361 (2014).
[Crossref] [PubMed]

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

2013 (3)

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
[Crossref] [PubMed]

G. C. van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld, and N. Kuster, “CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?” Eur. Radiol. 23(8), 2215–2227 (2013).
[Crossref] [PubMed]

R. H. Pritchard, P. Lava, D. Debruyne, and E. M. Terentjev, “Precise determination of the Poisson ratio in soft materials with 2D digital image correlation,” Soft Matter 9(26), 6037–6045 (2013).
[Crossref]

2012 (4)

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

R. J. Dewall, T. Varghese, and C. L. Brace, “Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography,” Med. Phys. 39(11), 6692–6700 (2012).
[Crossref] [PubMed]

A. K. Robertson, P. S. Basran, S. D. Thomas, and D. Wells, “CT, MR, and ultrasound image artifacts from prostate brachytherapy seed implants: the impact of seed size,” Med. Phys. 39(4), 2061–2068 (2012).
[Crossref] [PubMed]

W.-C. Kuo, J. Kim, N. D. Shemonski, E. J. Chaney, D. R. Spillman, and S. A. Boppart, “Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system,” Biomed. Opt. Express 3(6), 1149–1161 (2012).
[Crossref] [PubMed]

2011 (5)

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: an update,” Int. J. Hyperthermia 27(4), 320–343 (2011).
[Crossref] [PubMed]

E. S. Brosses, M. Pernot, and M. Tanter, “The link between tissue elasticity and thermal dose in vivo,” Phys. Med. Biol. 56(24), 7755–7765 (2011).
[Crossref] [PubMed]

L. H. Lindner and R. D. Issels, “Hyperthermia in soft tissue sarcoma,” Curr. Treat. Options Oncol. 12(1), 12–20 (2011).
[Crossref] [PubMed]

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

2010 (7)

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

E. Sapin-de Brosses, J. L. Gennisson, M. Pernot, M. Fink, and M. Tanter, “Temperature dependence of the shear modulus of soft tissues assessed by ultrasound,” Phys. Med. Biol. 55(6), 1701–1718 (2010).
[Crossref] [PubMed]

N. Benech and C. A. Negreira, “Monitoring heat-induced changes in soft tissues with 1D transient elastography,” Phys. Med. Biol. 55(6), 1753–1765 (2010).
[Crossref] [PubMed]

M. Orescanin and M. Insana, “Shear modulus estimation with vibrating needle stimulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1358–1367 (2010).
[Crossref] [PubMed]

A. L. Oldenburg and S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol. 55(4), 1189–1201 (2010).
[Crossref] [PubMed]

C. P. Fleming, K. J. Quan, H. Wang, G. Amit, and A. M. Rollins, “In vitro characterization of cardiac radiofrequency ablation lesions using optical coherence tomography,” Opt. Express 18(3), 3079–3092 (2010).
[Crossref] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref] [PubMed]

2009 (1)

2003 (4)

J.-L. Gennisson, S. Catheline, S. Chaffaï, and M. Fink, “Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles,” J. Acoust. Soc. Am. 114(1), 536–541 (2003).
[Crossref] [PubMed]

R. Souchon, O. Rouvière, A. Gelet, V. Detti, S. Srinivasan, J. Ophir, and J. Y. Chapelon, “Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results,” Ultrasound Med. Biol. 29(7), 1007–1015 (2003).
[Crossref] [PubMed]

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

R. D. Tucker, “Use of interstitial temperature self-regulating thermal rods in the treatment of prostate cancer,” J. Endourol. 17(8), 601–607 (2003).
[Crossref] [PubMed]

2002 (2)

S. Deger, D. Boehmer, I. Türk, J. Roigas, V. Budach, and S. A. Loening, “Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy,” Eur. Urol. 42(2), 147–153 (2002).
[Crossref] [PubMed]

T. Varghese, J. A. Zagzebski, and F. T. Lee, “Elastographic imaging of thermal lesions in the liver in vivo following radiofrequency ablation: preliminary results,” Ultrasound Med. Biol. 28(11-12), 1467–1473 (2002).
[Crossref] [PubMed]

2001 (2)

S. N. Goldberg, “Radiofrequency tumor ablation: principles and techniques,” Eur. J. Ultrasound 13(2), 129–147 (2001).
[Crossref] [PubMed]

T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, “Assessment of thermal tissue ablation with MR elastography,” Magn. Reson. Med. 45(1), 80–87 (2001).
[Crossref] [PubMed]

1999 (1)

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

1996 (2)

J. A. Paulus, J. S. Richardson, R. D. Tucker, and J. B. Park, “Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia,” IEEE Trans. Biomed. Eng. 43(4), 406–413 (1996).
[Crossref] [PubMed]

I. Tohnai, Y. Goto, Y. Hayashi, M. Ueda, T. Kobayashi, and M. Matsui, “Preoperative thermochemotherapy of oral cancer using magnetic induction hyperthermia (Implant Heating System: IHS),” Int. J. Hyperthermia 12(1), 37–47 (1996).
[Crossref] [PubMed]

1991 (1)

S. A. Haider, T. Cetas, J. Wait, and J.-S. Chen, “Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization,” IEEE Trans. Microw. Theory Tech. 39(11), 1817–1827 (1991).
[Crossref]

1984 (1)

S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984).
[Crossref] [PubMed]

1982 (1)

M. Tubiana, “The future of hyperthermia,” Natl. Cancer Inst. Monogr. 61, 539–543 (1982).
[PubMed]

Adie, S. G.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref] [PubMed]

Ahmad, A.

P.-C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 104–119 (2016).
[Crossref] [PubMed]

A. Ahmad, P.-C. Huang, N. A. Sobh, P. Pande, J. Kim, and S. A. Boppart, “Mechanical contrast in spectroscopic magnetomotive optical coherence elastography,” Phys. Med. Biol. 60(17), 6655–6668 (2015).
[Crossref] [PubMed]

A. Ahmad, J. Kim, N. A. Sobh, N. D. Shemonski, and S. A. Boppart, “Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves,” Biomed. Opt. Express 5(7), 2349–2361 (2014).
[Crossref] [PubMed]

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
[Crossref] [PubMed]

Ahmed, M.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Amit, G.

Basran, P. S.

A. K. Robertson, P. S. Basran, S. D. Thomas, and D. Wells, “CT, MR, and ultrasound image artifacts from prostate brachytherapy seed implants: the impact of seed size,” Med. Phys. 39(4), 2061–2068 (2012).
[Crossref] [PubMed]

Benech, N.

N. Benech and C. A. Negreira, “Monitoring heat-induced changes in soft tissues with 1D transient elastography,” Phys. Med. Biol. 55(6), 1753–1765 (2010).
[Crossref] [PubMed]

Boehmer, D.

S. Deger, D. Boehmer, I. Türk, J. Roigas, V. Budach, and S. A. Loening, “Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy,” Eur. Urol. 42(2), 147–153 (2002).
[Crossref] [PubMed]

Boppart, S. A.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

P.-C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 104–119 (2016).
[Crossref] [PubMed]

A. Ahmad, P.-C. Huang, N. A. Sobh, P. Pande, J. Kim, and S. A. Boppart, “Mechanical contrast in spectroscopic magnetomotive optical coherence elastography,” Phys. Med. Biol. 60(17), 6655–6668 (2015).
[Crossref] [PubMed]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

A. Ahmad, J. Kim, N. A. Sobh, N. D. Shemonski, and S. A. Boppart, “Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves,” Biomed. Opt. Express 5(7), 2349–2361 (2014).
[Crossref] [PubMed]

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
[Crossref] [PubMed]

W.-C. Kuo, J. Kim, N. D. Shemonski, E. J. Chaney, D. R. Spillman, and S. A. Boppart, “Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system,” Biomed. Opt. Express 3(6), 1149–1161 (2012).
[Crossref] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref] [PubMed]

A. L. Oldenburg and S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol. 55(4), 1189–1201 (2010).
[Crossref] [PubMed]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009).
[Crossref] [PubMed]

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Brace, C. L.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

R. J. Dewall, T. Varghese, and C. L. Brace, “Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography,” Med. Phys. 39(11), 6692–6700 (2012).
[Crossref] [PubMed]

Breen, D. J.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Brezinski, M. E.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Brosses, E. S.

E. S. Brosses, M. Pernot, and M. Tanter, “The link between tissue elasticity and thermal dose in vivo,” Phys. Med. Biol. 56(24), 7755–7765 (2011).
[Crossref] [PubMed]

Brown, C. N.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Budach, V.

S. Deger, D. Boehmer, I. Türk, J. Roigas, V. Budach, and S. A. Loening, “Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy,” Eur. Urol. 42(2), 147–153 (2002).
[Crossref] [PubMed]

Callstrom, M. R.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Carr, A.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

Catheline, S.

J.-L. Gennisson, S. Catheline, S. Chaffaï, and M. Fink, “Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles,” J. Acoust. Soc. Am. 114(1), 536–541 (2003).
[Crossref] [PubMed]

Cetas, T.

S. A. Haider, T. Cetas, J. Wait, and J.-S. Chen, “Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization,” IEEE Trans. Microw. Theory Tech. 39(11), 1817–1827 (1991).
[Crossref]

Chaffaï, S.

J.-L. Gennisson, S. Catheline, S. Chaffaï, and M. Fink, “Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles,” J. Acoust. Soc. Am. 114(1), 536–541 (2003).
[Crossref] [PubMed]

Chandrasekaran, S. N.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Chaney, E. J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

W.-C. Kuo, J. Kim, N. D. Shemonski, E. J. Chaney, D. R. Spillman, and S. A. Boppart, “Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system,” Biomed. Opt. Express 3(6), 1149–1161 (2012).
[Crossref] [PubMed]

Chapelon, J. Y.

R. Souchon, O. Rouvière, A. Gelet, V. Detti, S. Srinivasan, J. Ophir, and J. Y. Chapelon, “Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results,” Ultrasound Med. Biol. 29(7), 1007–1015 (2003).
[Crossref] [PubMed]

Charboneau, J. W.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Chen, J.-S.

S. A. Haider, T. Cetas, J. Wait, and J.-S. Chen, “Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization,” IEEE Trans. Microw. Theory Tech. 39(11), 1817–1827 (1991).
[Crossref]

Chen, M.-H.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Chen, Z.-H.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Choi, B. I.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Cittadine, A. J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Cradock, K. A.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Crecea, V.

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
[Crossref] [PubMed]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009).
[Crossref] [PubMed]

Darga, D.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

de Baère, T.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Debruyne, D.

R. H. Pritchard, P. Lava, D. Debruyne, and E. M. Terentjev, “Precise determination of the Poisson ratio in soft materials with 2D digital image correlation,” Soft Matter 9(26), 6037–6045 (2013).
[Crossref]

Deger, S.

S. Deger, D. Boehmer, I. Türk, J. Roigas, V. Budach, and S. A. Loening, “Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy,” Eur. Urol. 42(2), 147–153 (2002).
[Crossref] [PubMed]

Detti, V.

R. Souchon, O. Rouvière, A. Gelet, V. Detti, S. Srinivasan, J. Ophir, and J. Y. Chapelon, “Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results,” Ultrasound Med. Biol. 29(7), 1007–1015 (2003).
[Crossref] [PubMed]

Dewall, R. J.

R. J. Dewall, T. Varghese, and C. L. Brace, “Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography,” Med. Phys. 39(11), 6692–6700 (2012).
[Crossref] [PubMed]

Dewey, W. C.

S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984).
[Crossref] [PubMed]

Dewhirst, M. W.

G. C. van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld, and N. Kuster, “CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?” Eur. Radiol. 23(8), 2215–2227 (2013).
[Crossref] [PubMed]

P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: an update,” Int. J. Hyperthermia 27(4), 320–343 (2011).
[Crossref] [PubMed]

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

Dodd, G. D.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Dupuy, D. E.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Ehman, R. L.

T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, “Assessment of thermal tissue ablation with MR elastography,” Magn. Reson. Med. 45(1), 80–87 (2001).
[Crossref] [PubMed]

Erickson-Bhatt, S. J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Felmlee, J. P.

T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, “Assessment of thermal tissue ablation with MR elastography,” Magn. Reson. Med. 45(1), 80–87 (2001).
[Crossref] [PubMed]

Fink, M.

E. Sapin-de Brosses, J. L. Gennisson, M. Pernot, M. Fink, and M. Tanter, “Temperature dependence of the shear modulus of soft tissues assessed by ultrasound,” Phys. Med. Biol. 55(6), 1701–1718 (2010).
[Crossref] [PubMed]

J.-L. Gennisson, S. Catheline, S. Chaffaï, and M. Fink, “Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles,” J. Acoust. Soc. Am. 114(1), 536–541 (2003).
[Crossref] [PubMed]

Fleming, C. P.

Fujimoto, J. G.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Gelet, A.

R. Souchon, O. Rouvière, A. Gelet, V. Detti, S. Srinivasan, J. Ophir, and J. Y. Chapelon, “Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results,” Ultrasound Med. Biol. 29(7), 1007–1015 (2003).
[Crossref] [PubMed]

Geng, C.-Y.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Gennisson, J. L.

E. Sapin-de Brosses, J. L. Gennisson, M. Pernot, M. Fink, and M. Tanter, “Temperature dependence of the shear modulus of soft tissues assessed by ultrasound,” Phys. Med. Biol. 55(6), 1701–1718 (2010).
[Crossref] [PubMed]

Gennisson, J.-L.

J.-L. Gennisson, S. Catheline, S. Chaffaï, and M. Fink, “Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles,” J. Acoust. Soc. Am. 114(1), 536–541 (2003).
[Crossref] [PubMed]

Gervais, D. A.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Gianfelice, D.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Gillams, A. R.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Gillman, E.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

Goldberg, S. N.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

S. N. Goldberg, “Radiofrequency tumor ablation: principles and techniques,” Eur. J. Ultrasound 13(2), 129–147 (2001).
[Crossref] [PubMed]

Goto, Y.

I. Tohnai, Y. Goto, Y. Hayashi, M. Ueda, T. Kobayashi, and M. Matsui, “Preoperative thermochemotherapy of oral cancer using magnetic induction hyperthermia (Implant Heating System: IHS),” Int. J. Hyperthermia 12(1), 37–47 (1996).
[Crossref] [PubMed]

Greenleaf, J. F.

T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, “Assessment of thermal tissue ablation with MR elastography,” Magn. Reson. Med. 45(1), 80–87 (2001).
[Crossref] [PubMed]

Guan, G.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

Haider, S. A.

S. A. Haider, T. Cetas, J. Wait, and J.-S. Chen, “Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization,” IEEE Trans. Microw. Theory Tech. 39(11), 1817–1827 (1991).
[Crossref]

Hanson, M.

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

Hayashi, Y.

I. Tohnai, Y. Goto, Y. Hayashi, M. Ueda, T. Kobayashi, and M. Matsui, “Preoperative thermochemotherapy of oral cancer using magnetic induction hyperthermia (Implant Heating System: IHS),” Int. J. Hyperthermia 12(1), 37–47 (1996).
[Crossref] [PubMed]

Herranz, D.

Herrmann, J.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Hochman, D. W.

P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: an update,” Int. J. Hyperthermia 27(4), 320–343 (2011).
[Crossref] [PubMed]

Hoopes, P. J.

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

Hu, R.-L.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Huang, P.-C.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

P.-C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 104–119 (2016).
[Crossref] [PubMed]

A. Ahmad, P.-C. Huang, N. A. Sobh, P. Pande, J. Kim, and S. A. Boppart, “Mechanical contrast in spectroscopic magnetomotive optical coherence elastography,” Phys. Med. Biol. 60(17), 6655–6668 (2015).
[Crossref] [PubMed]

Huang, Z.

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

Insana, M.

M. Orescanin and M. Insana, “Shear modulus estimation with vibrating needle stimulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1358–1367 (2010).
[Crossref] [PubMed]

Issels, R. D.

L. H. Lindner and R. D. Issels, “Hyperthermia in soft tissue sarcoma,” Curr. Treat. Options Oncol. 12(1), 12–20 (2011).
[Crossref] [PubMed]

Iwasaki, R.

R. Iwasaki, R. Takagi, R. Nagaoka, H. Jimbo, S. Yoshizawa, Y. Saijo, and S.-i. Umemura, “Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer,” Jpn. J. Appl. Phys. 55(7S1), 07KF05 (2016).
[Crossref]

Iyer, R. R.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

Jimbo, H.

R. Iwasaki, R. Takagi, R. Nagaoka, H. Jimbo, S. Yoshizawa, Y. Saijo, and S.-i. Umemura, “Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer,” Jpn. J. Appl. Phys. 55(7S1), 07KF05 (2016).
[Crossref]

Jiménez-Valero, S.

Joa, F.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

John, R.

Kang, T. W.

T. W. Kang and H. Rhim, “Recent advances in tumor ablation for hepatocellular carcinoma,” Liver Cancer 4(3), 176–187 (2015).
[Crossref] [PubMed]

Kennedy, B. F.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref] [PubMed]

Kennedy, K. M.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

Kidd, K.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

Kim, J.

Kobayashi, T.

I. Tohnai, Y. Goto, Y. Hayashi, M. Ueda, T. Kobayashi, and M. Matsui, “Preoperative thermochemotherapy of oral cancer using magnetic induction hyperthermia (Implant Heating System: IHS),” Int. J. Hyperthermia 12(1), 37–47 (1996).
[Crossref] [PubMed]

Kuo, W.-C.

Kuster, N.

G. C. van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld, and N. Kuster, “CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?” Eur. Radiol. 23(8), 2215–2227 (2013).
[Crossref] [PubMed]

Landon, C.

P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: an update,” Int. J. Hyperthermia 27(4), 320–343 (2011).
[Crossref] [PubMed]

Larin, K. V.

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

C.-H. Liu, M. N. Skryabina, J. Li, M. Singh, E. N. Sobol, and K. V. Larin, “Measurement of the temperature dependence of Young’s modulus of cartilage by phase-sensitive optical coherence elastography,” Quantum Electron. 44(8), 751–756 (2014).
[Crossref]

Lava, P.

R. H. Pritchard, P. Lava, D. Debruyne, and E. M. Terentjev, “Precise determination of the Poisson ratio in soft materials with 2D digital image correlation,” Soft Matter 9(26), 6037–6045 (2013).
[Crossref]

Le, N.

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref] [PubMed]

Leartprapun, N.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

Lee, F. T.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

T. Varghese, J. A. Zagzebski, and F. T. Lee, “Elastographic imaging of thermal lesions in the liver in vivo following radiofrequency ablation: preliminary results,” Ultrasound Med. Biol. 28(11-12), 1467–1473 (2002).
[Crossref] [PubMed]

Leen, E.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Lencioni, R.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Li, C.

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

Li, H.-Y.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Li, J.

C.-H. Liu, M. N. Skryabina, J. Li, M. Singh, E. N. Sobol, and K. V. Larin, “Measurement of the temperature dependence of Young’s modulus of cartilage by phase-sensitive optical coherence elastography,” Quantum Electron. 44(8), 751–756 (2014).
[Crossref]

Liang, P.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Liang, X.

Lindner, L. H.

L. H. Lindner and R. D. Issels, “Hyperthermia in soft tissue sarcoma,” Curr. Treat. Options Oncol. 12(1), 12–20 (2011).
[Crossref] [PubMed]

Littrup, P. J.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Liu, C.-H.

C.-H. Liu, M. N. Skryabina, J. Li, M. Singh, E. N. Sobol, and K. V. Larin, “Measurement of the temperature dependence of Young’s modulus of cartilage by phase-sensitive optical coherence elastography,” Quantum Electron. 44(8), 751–756 (2014).
[Crossref]

Liu, X.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Liu, Z. G.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Livraghi, T.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Lloret, J.

Loening, S. A.

S. Deger, D. Boehmer, I. Türk, J. Roigas, V. Budach, and S. A. Loening, “Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy,” Eur. Urol. 42(2), 147–153 (2002).
[Crossref] [PubMed]

Lora-Michiels, M.

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

Lu, D. S.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Manzoor, A.

P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: an update,” Int. J. Hyperthermia 27(4), 320–343 (2011).
[Crossref] [PubMed]

Margallo-Balbás, E.

Marjanovic, M.

P.-C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 104–119 (2016).
[Crossref] [PubMed]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Matsui, M.

I. Tohnai, Y. Goto, Y. Hayashi, M. Ueda, T. Kobayashi, and M. Matsui, “Preoperative thermochemotherapy of oral cancer using magnetic induction hyperthermia (Implant Heating System: IHS),” Int. J. Hyperthermia 12(1), 37–47 (1996).
[Crossref] [PubMed]

McCormick, D. T.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

McGahan, J. P.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Meemon, P.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 35010 (2017).
[Crossref] [PubMed]

Meloni, M. F.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Monroy, G. L.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Moon, E. J.

P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: an update,” Int. J. Hyperthermia 27(4), 320–343 (2011).
[Crossref] [PubMed]

Moore, D.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

Mulligan, J. A.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Nagaoka, R.

R. Iwasaki, R. Takagi, R. Nagaoka, H. Jimbo, S. Yoshizawa, Y. Saijo, and S.-i. Umemura, “Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer,” Jpn. J. Appl. Phys. 55(7S1), 07KF05 (2016).
[Crossref]

Negreira, C. A.

N. Benech and C. A. Negreira, “Monitoring heat-induced changes in soft tissues with 1D transient elastography,” Phys. Med. Biol. 55(6), 1753–1765 (2010).
[Crossref] [PubMed]

Neufeld, E.

G. C. van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld, and N. Kuster, “CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?” Eur. Radiol. 23(8), 2215–2227 (2013).
[Crossref] [PubMed]

Nikolic, B.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Nolan, R. M.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Odintsov, B.

P.-C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 104–119 (2016).
[Crossref] [PubMed]

Odio, M.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

Oldenburg, A. L.

A. L. Oldenburg and S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol. 55(4), 1189–1201 (2010).
[Crossref] [PubMed]

V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009).
[Crossref] [PubMed]

Ophir, J.

R. Souchon, O. Rouvière, A. Gelet, V. Detti, S. Srinivasan, J. Ophir, and J. Y. Chapelon, “Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results,” Ultrasound Med. Biol. 29(7), 1007–1015 (2003).
[Crossref] [PubMed]

Orescanin, M.

M. Orescanin and M. Insana, “Shear modulus estimation with vibrating needle stimulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1358–1367 (2010).
[Crossref] [PubMed]

Pan, L.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Pande, P.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

P.-C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 104–119 (2016).
[Crossref] [PubMed]

A. Ahmad, P.-C. Huang, N. A. Sobh, P. Pande, J. Kim, and S. A. Boppart, “Mechanical contrast in spectroscopic magnetomotive optical coherence elastography,” Phys. Med. Biol. 60(17), 6655–6668 (2015).
[Crossref] [PubMed]

Park, J. B.

J. A. Paulus, J. S. Richardson, R. D. Tucker, and J. B. Park, “Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia,” IEEE Trans. Biomed. Eng. 43(4), 406–413 (1996).
[Crossref] [PubMed]

Parker, K. J.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 35010 (2017).
[Crossref] [PubMed]

Parsai, E. I.

G. Warrell, D. Shvydka, and E. I. Parsai, “Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments,” Med. Phys. 43(11), 6033–6048 (2016).
[Crossref] [PubMed]

Paulus, J. A.

J. A. Paulus, J. S. Richardson, R. D. Tucker, and J. B. Park, “Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia,” IEEE Trans. Biomed. Eng. 43(4), 406–413 (1996).
[Crossref] [PubMed]

Pereira, P. L.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Pernot, M.

E. S. Brosses, M. Pernot, and M. Tanter, “The link between tissue elasticity and thermal dose in vivo,” Phys. Med. Biol. 56(24), 7755–7765 (2011).
[Crossref] [PubMed]

E. Sapin-de Brosses, J. L. Gennisson, M. Pernot, M. Fink, and M. Tanter, “Temperature dependence of the shear modulus of soft tissues assessed by ultrasound,” Phys. Med. Biol. 55(6), 1701–1718 (2010).
[Crossref] [PubMed]

Pitris, C.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Pritchard, R. H.

R. H. Pritchard, P. Lava, D. Debruyne, and E. M. Terentjev, “Precise determination of the Poisson ratio in soft materials with 2D digital image correlation,” Soft Matter 9(26), 6037–6045 (2013).
[Crossref]

Putney, J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Qi, Y. J.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Quan, K. J.

Ralston, T. S.

Ray, P. S.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Reif, R.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

Rhim, H.

T. W. Kang and H. Rhim, “Recent advances in tumor ablation for hepatocellular carcinoma,” Liver Cancer 4(3), 176–187 (2015).
[Crossref] [PubMed]

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Richardson, J. S.

J. A. Paulus, J. S. Richardson, R. D. Tucker, and J. B. Park, “Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia,” IEEE Trans. Biomed. Eng. 43(4), 406–413 (1996).
[Crossref] [PubMed]

Riederer, S. J.

T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, “Assessment of thermal tissue ablation with MR elastography,” Magn. Reson. Med. 45(1), 80–87 (2001).
[Crossref] [PubMed]

Robertson, A. K.

A. K. Robertson, P. S. Basran, S. D. Thomas, and D. Wells, “CT, MR, and ultrasound image artifacts from prostate brachytherapy seed implants: the impact of seed size,” Med. Phys. 39(4), 2061–2068 (2012).
[Crossref] [PubMed]

Roigas, J.

S. Deger, D. Boehmer, I. Türk, J. Roigas, V. Budach, and S. A. Loening, “Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy,” Eur. Urol. 42(2), 147–153 (2002).
[Crossref] [PubMed]

Rolland, J. P.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 35010 (2017).
[Crossref] [PubMed]

Rollins, A. M.

Rose, S. C.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Rouvière, O.

R. Souchon, O. Rouvière, A. Gelet, V. Detti, S. Srinivasan, J. Ophir, and J. Y. Chapelon, “Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results,” Ultrasound Med. Biol. 29(7), 1007–1015 (2003).
[Crossref] [PubMed]

Rubio-Guivernau, J. L.

Saijo, Y.

R. Iwasaki, R. Takagi, R. Nagaoka, H. Jimbo, S. Yoshizawa, Y. Saijo, and S.-i. Umemura, “Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer,” Jpn. J. Appl. Phys. 55(7S1), 07KF05 (2016).
[Crossref]

Salem, R.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Samaras, T.

G. C. van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld, and N. Kuster, “CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?” Eur. Radiol. 23(8), 2215–2227 (2013).
[Crossref] [PubMed]

Sampson, D. D.

Sapareto, S. A.

S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984).
[Crossref] [PubMed]

Sapin-de Brosses, E.

E. Sapin-de Brosses, J. L. Gennisson, M. Pernot, M. Fink, and M. Tanter, “Temperature dependence of the shear modulus of soft tissues assessed by ultrasound,” Phys. Med. Biol. 55(6), 1701–1718 (2010).
[Crossref] [PubMed]

Shelton, R. L.

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

Shemonski, N. D.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

A. Ahmad, J. Kim, N. A. Sobh, N. D. Shemonski, and S. A. Boppart, “Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves,” Biomed. Opt. Express 5(7), 2349–2361 (2014).
[Crossref] [PubMed]

W.-C. Kuo, J. Kim, N. D. Shemonski, E. J. Chaney, D. R. Spillman, and S. A. Boppart, “Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system,” Biomed. Opt. Express 3(6), 1149–1161 (2012).
[Crossref] [PubMed]

Shvydka, D.

G. Warrell, D. Shvydka, and E. I. Parsai, “Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments,” Med. Phys. 43(11), 6033–6048 (2016).
[Crossref] [PubMed]

Singh, M.

C.-H. Liu, M. N. Skryabina, J. Li, M. Singh, E. N. Sobol, and K. V. Larin, “Measurement of the temperature dependence of Young’s modulus of cartilage by phase-sensitive optical coherence elastography,” Quantum Electron. 44(8), 751–756 (2014).
[Crossref]

Skryabina, M. N.

C.-H. Liu, M. N. Skryabina, J. Li, M. Singh, E. N. Sobol, and K. V. Larin, “Measurement of the temperature dependence of Young’s modulus of cartilage by phase-sensitive optical coherence elastography,” Quantum Electron. 44(8), 751–756 (2014).
[Crossref]

Sobh, N. A.

A. Ahmad, P.-C. Huang, N. A. Sobh, P. Pande, J. Kim, and S. A. Boppart, “Mechanical contrast in spectroscopic magnetomotive optical coherence elastography,” Phys. Med. Biol. 60(17), 6655–6668 (2015).
[Crossref] [PubMed]

A. Ahmad, J. Kim, N. A. Sobh, N. D. Shemonski, and S. A. Boppart, “Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves,” Biomed. Opt. Express 5(7), 2349–2361 (2014).
[Crossref] [PubMed]

Sobol, E. N.

C.-H. Liu, M. N. Skryabina, J. Li, M. Singh, E. N. Sobol, and K. V. Larin, “Measurement of the temperature dependence of Young’s modulus of cartilage by phase-sensitive optical coherence elastography,” Quantum Electron. 44(8), 751–756 (2014).
[Crossref]

Sofocleous, C. T.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Solbiati, L.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Solomon, S. B.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Souchon, R.

R. Souchon, O. Rouvière, A. Gelet, V. Detti, S. Srinivasan, J. Ophir, and J. Y. Chapelon, “Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results,” Ultrasound Med. Biol. 29(7), 1007–1015 (2003).
[Crossref] [PubMed]

Soulen, M. C.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

South, F. A.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Spillman, D. R.

P.-C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 104–119 (2016).
[Crossref] [PubMed]

W.-C. Kuo, J. Kim, N. D. Shemonski, E. J. Chaney, D. R. Spillman, and S. A. Boppart, “Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system,” Biomed. Opt. Express 3(6), 1149–1161 (2012).
[Crossref] [PubMed]

Srinivasan, S.

R. Souchon, O. Rouvière, A. Gelet, V. Detti, S. Srinivasan, J. Ophir, and J. Y. Chapelon, “Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results,” Ultrasound Med. Biol. 29(7), 1007–1015 (2003).
[Crossref] [PubMed]

Stamper, D. L.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Sun, G. F.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Sundaram, M.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Takagi, R.

R. Iwasaki, R. Takagi, R. Nagaoka, H. Jimbo, S. Yoshizawa, Y. Saijo, and S.-i. Umemura, “Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer,” Jpn. J. Appl. Phys. 55(7S1), 07KF05 (2016).
[Crossref]

Tanaka, M.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Tang, J. T.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Tanter, M.

E. S. Brosses, M. Pernot, and M. Tanter, “The link between tissue elasticity and thermal dose in vivo,” Phys. Med. Biol. 56(24), 7755–7765 (2011).
[Crossref] [PubMed]

E. Sapin-de Brosses, J. L. Gennisson, M. Pernot, M. Fink, and M. Tanter, “Temperature dependence of the shear modulus of soft tissues assessed by ultrasound,” Phys. Med. Biol. 55(6), 1701–1718 (2010).
[Crossref] [PubMed]

Terentjev, E. M.

R. H. Pritchard, P. Lava, D. Debruyne, and E. M. Terentjev, “Precise determination of the Poisson ratio in soft materials with 2D digital image correlation,” Soft Matter 9(26), 6037–6045 (2013).
[Crossref]

Thomas, S. D.

A. K. Robertson, P. S. Basran, S. D. Thomas, and D. Wells, “CT, MR, and ultrasound image artifacts from prostate brachytherapy seed implants: the impact of seed size,” Med. Phys. 39(4), 2061–2068 (2012).
[Crossref] [PubMed]

Tohnai, I.

I. Tohnai, Y. Goto, Y. Hayashi, M. Ueda, T. Kobayashi, and M. Matsui, “Preoperative thermochemotherapy of oral cancer using magnetic induction hyperthermia (Implant Heating System: IHS),” Int. J. Hyperthermia 12(1), 37–47 (1996).
[Crossref] [PubMed]

Tubiana, M.

M. Tubiana, “The future of hyperthermia,” Natl. Cancer Inst. Monogr. 61, 539–543 (1982).
[PubMed]

Tucker, R. D.

R. D. Tucker, “Use of interstitial temperature self-regulating thermal rods in the treatment of prostate cancer,” J. Endourol. 17(8), 601–607 (2003).
[Crossref] [PubMed]

J. A. Paulus, J. S. Richardson, R. D. Tucker, and J. B. Park, “Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia,” IEEE Trans. Biomed. Eng. 43(4), 406–413 (1996).
[Crossref] [PubMed]

Türk, I.

S. Deger, D. Boehmer, I. Türk, J. Roigas, V. Budach, and S. A. Loening, “Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy,” Eur. Urol. 42(2), 147–153 (2002).
[Crossref] [PubMed]

Ueda, M.

I. Tohnai, Y. Goto, Y. Hayashi, M. Ueda, T. Kobayashi, and M. Matsui, “Preoperative thermochemotherapy of oral cancer using magnetic induction hyperthermia (Implant Heating System: IHS),” Int. J. Hyperthermia 12(1), 37–47 (1996).
[Crossref] [PubMed]

Umemura, S.-i.

R. Iwasaki, R. Takagi, R. Nagaoka, H. Jimbo, S. Yoshizawa, Y. Saijo, and S.-i. Umemura, “Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer,” Jpn. J. Appl. Phys. 55(7S1), 07KF05 (2016).
[Crossref]

Untracht, G. R.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

van Rhoon, G. C.

G. C. van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld, and N. Kuster, “CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?” Eur. Radiol. 23(8), 2215–2227 (2013).
[Crossref] [PubMed]

Varghese, T.

R. J. Dewall, T. Varghese, and C. L. Brace, “Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography,” Med. Phys. 39(11), 6692–6700 (2012).
[Crossref] [PubMed]

T. Varghese, J. A. Zagzebski, and F. T. Lee, “Elastographic imaging of thermal lesions in the liver in vivo following radiofrequency ablation: preliminary results,” Ultrasound Med. Biol. 28(11-12), 1467–1473 (2002).
[Crossref] [PubMed]

Viglianti, B. L.

P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: an update,” Int. J. Hyperthermia 27(4), 320–343 (2011).
[Crossref] [PubMed]

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

Vogl, T. J.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Wait, J.

S. A. Haider, T. Cetas, J. Wait, and J.-S. Chen, “Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization,” IEEE Trans. Microw. Theory Tech. 39(11), 1817–1827 (1991).
[Crossref]

Wang, H.

Wang, R. K.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express 19(11), 10153–10163 (2011).
[Crossref] [PubMed]

Warrell, G.

G. Warrell, D. Shvydka, and E. I. Parsai, “Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments,” Med. Phys. 43(11), 6033–6048 (2016).
[Crossref] [PubMed]

Wells, D.

A. K. Robertson, P. S. Basran, S. D. Thomas, and D. Wells, “CT, MR, and ultrasound image artifacts from prostate brachytherapy seed implants: the impact of seed size,” Med. Phys. 39(4), 2061–2068 (2012).
[Crossref] [PubMed]

Wood, B. J.

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Wu, T.

T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, “Assessment of thermal tissue ablation with MR elastography,” Magn. Reson. Med. 45(1), 80–87 (2001).
[Crossref] [PubMed]

Xia, Q.-S.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Xiang, Q.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Xu, B.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Yao, J.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 35010 (2017).
[Crossref] [PubMed]

Yarmolenko, P. S.

G. C. van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld, and N. Kuster, “CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?” Eur. Radiol. 23(8), 2215–2227 (2013).
[Crossref] [PubMed]

P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: an update,” Int. J. Hyperthermia 27(4), 320–343 (2011).
[Crossref] [PubMed]

Yoshizawa, S.

R. Iwasaki, R. Takagi, R. Nagaoka, H. Jimbo, S. Yoshizawa, Y. Saijo, and S.-i. Umemura, “Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer,” Jpn. J. Appl. Phys. 55(7S1), 07KF05 (2016).
[Crossref]

Zagzebski, J. A.

T. Varghese, J. A. Zagzebski, and F. T. Lee, “Elastographic imaging of thermal lesions in the liver in vivo following radiofrequency ablation: preliminary results,” Ultrasound Med. Biol. 28(11-12), 1467–1473 (2002).
[Crossref] [PubMed]

Zhao, T.-D.

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Zhou, K.

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref] [PubMed]

Zvietcovich, F.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 35010 (2017).
[Crossref] [PubMed]

Zysk, A. M.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Cancer Res. (1)

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Curr. Treat. Options Oncol. (1)

L. H. Lindner and R. D. Issels, “Hyperthermia in soft tissue sarcoma,” Curr. Treat. Options Oncol. 12(1), 12–20 (2011).
[Crossref] [PubMed]

Eur. J. Ultrasound (1)

S. N. Goldberg, “Radiofrequency tumor ablation: principles and techniques,” Eur. J. Ultrasound 13(2), 129–147 (2001).
[Crossref] [PubMed]

Eur. Radiol. (1)

G. C. van Rhoon, T. Samaras, P. S. Yarmolenko, M. W. Dewhirst, E. Neufeld, and N. Kuster, “CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?” Eur. Radiol. 23(8), 2215–2227 (2013).
[Crossref] [PubMed]

Eur. Urol. (1)

S. Deger, D. Boehmer, I. Türk, J. Roigas, V. Budach, and S. A. Loening, “Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy,” Eur. Urol. 42(2), 147–153 (2002).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (3)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

P.-C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive optical coherence elastography for magnetic hyperthermia dosimetry based on dynamic tissue biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 104–119 (2016).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. A. Paulus, J. S. Richardson, R. D. Tucker, and J. B. Park, “Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia,” IEEE Trans. Biomed. Eng. 43(4), 406–413 (1996).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory Tech. (1)

S. A. Haider, T. Cetas, J. Wait, and J.-S. Chen, “Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization,” IEEE Trans. Microw. Theory Tech. 39(11), 1817–1827 (1991).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. Orescanin and M. Insana, “Shear modulus estimation with vibrating needle stimulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1358–1367 (2010).
[Crossref] [PubMed]

Int. J. Hyperthermia (3)

I. Tohnai, Y. Goto, Y. Hayashi, M. Ueda, T. Kobayashi, and M. Matsui, “Preoperative thermochemotherapy of oral cancer using magnetic induction hyperthermia (Implant Heating System: IHS),” Int. J. Hyperthermia 12(1), 37–47 (1996).
[Crossref] [PubMed]

M. W. Dewhirst, B. L. Viglianti, M. Lora-Michiels, M. Hanson, and P. J. Hoopes, “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia,” Int. J. Hyperthermia 19(3), 267–294 (2003).
[Crossref] [PubMed]

P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: an update,” Int. J. Hyperthermia 27(4), 320–343 (2011).
[Crossref] [PubMed]

Int. J. Radiat. Oncol. Biol. Phys. (1)

S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

J.-L. Gennisson, S. Catheline, S. Chaffaï, and M. Fink, “Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles,” J. Acoust. Soc. Am. 114(1), 536–541 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

P.-C. Huang, P. Pande, R. L. Shelton, F. Joa, D. Moore, E. Gillman, K. Kidd, R. M. Nolan, M. Odio, A. Carr, and S. A. Boppart, “Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography,” J. Biomed. Opt. 22(3), 34001 (2017).
[Crossref] [PubMed]

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 35010 (2017).
[Crossref] [PubMed]

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
[Crossref] [PubMed]

J. Biophotonics (1)

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref] [PubMed]

J. Endourol. (1)

R. D. Tucker, “Use of interstitial temperature self-regulating thermal rods in the treatment of prostate cancer,” J. Endourol. 17(8), 601–607 (2003).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

J. Surg. Res. (1)

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

J. Vasc. Interv. Radiol. (1)

M. Ahmed, L. Solbiati, C. L. Brace, D. J. Breen, M. R. Callstrom, J. W. Charboneau, M.-H. Chen, B. I. Choi, T. de Baère, G. D. Dodd, D. E. Dupuy, D. A. Gervais, D. Gianfelice, A. R. Gillams, F. T. Lee, E. Leen, R. Lencioni, P. J. Littrup, T. Livraghi, D. S. Lu, J. P. McGahan, M. F. Meloni, B. Nikolic, P. L. Pereira, P. Liang, H. Rhim, S. C. Rose, R. Salem, C. T. Sofocleous, S. B. Solomon, M. C. Soulen, M. Tanaka, T. J. Vogl, B. J. Wood, S. N. Goldberg, International Working Group on Image-Guided Tumor AblationInterventional Oncology Sans Frontières Expert PanelTechnology Assessment Committee of the Society of Interventional RadiologyStandard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe, “Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update,” J. Vasc. Interv. Radiol. 25(11), 1691–1705 (2014).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

R. Iwasaki, R. Takagi, R. Nagaoka, H. Jimbo, S. Yoshizawa, Y. Saijo, and S.-i. Umemura, “Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer,” Jpn. J. Appl. Phys. 55(7S1), 07KF05 (2016).
[Crossref]

Liver Cancer (1)

T. W. Kang and H. Rhim, “Recent advances in tumor ablation for hepatocellular carcinoma,” Liver Cancer 4(3), 176–187 (2015).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, “Assessment of thermal tissue ablation with MR elastography,” Magn. Reson. Med. 45(1), 80–87 (2001).
[Crossref] [PubMed]

Med. Phys. (3)

G. Warrell, D. Shvydka, and E. I. Parsai, “Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments,” Med. Phys. 43(11), 6033–6048 (2016).
[Crossref] [PubMed]

R. J. Dewall, T. Varghese, and C. L. Brace, “Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography,” Med. Phys. 39(11), 6692–6700 (2012).
[Crossref] [PubMed]

A. K. Robertson, P. S. Basran, S. D. Thomas, and D. Wells, “CT, MR, and ultrasound image artifacts from prostate brachytherapy seed implants: the impact of seed size,” Med. Phys. 39(4), 2061–2068 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref] [PubMed]

Natl. Cancer Inst. Monogr. (1)

M. Tubiana, “The future of hyperthermia,” Natl. Cancer Inst. Monogr. 61, 539–543 (1982).
[PubMed]

Oncol. Rep. (1)

Q.-S. Xia, X. Liu, B. Xu, T.-D. Zhao, H.-Y. Li, Z.-H. Chen, Q. Xiang, C.-Y. Geng, L. Pan, R.-L. Hu, Y. J. Qi, G. F. Sun, and J. T. Tang, “Feasibility study of high-temperature thermoseed inductive hyperthermia in melanoma treatment,” Oncol. Rep. 25(4), 953–962 (2011).
[PubMed]

Opt. Express (4)

Phys. Med. Biol. (5)

A. L. Oldenburg and S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol. 55(4), 1189–1201 (2010).
[Crossref] [PubMed]

A. Ahmad, P.-C. Huang, N. A. Sobh, P. Pande, J. Kim, and S. A. Boppart, “Mechanical contrast in spectroscopic magnetomotive optical coherence elastography,” Phys. Med. Biol. 60(17), 6655–6668 (2015).
[Crossref] [PubMed]

N. Benech and C. A. Negreira, “Monitoring heat-induced changes in soft tissues with 1D transient elastography,” Phys. Med. Biol. 55(6), 1753–1765 (2010).
[Crossref] [PubMed]

E. S. Brosses, M. Pernot, and M. Tanter, “The link between tissue elasticity and thermal dose in vivo,” Phys. Med. Biol. 56(24), 7755–7765 (2011).
[Crossref] [PubMed]

E. Sapin-de Brosses, J. L. Gennisson, M. Pernot, M. Fink, and M. Tanter, “Temperature dependence of the shear modulus of soft tissues assessed by ultrasound,” Phys. Med. Biol. 55(6), 1701–1718 (2010).
[Crossref] [PubMed]

Quantum Electron. (1)

C.-H. Liu, M. N. Skryabina, J. Li, M. Singh, E. N. Sobol, and K. V. Larin, “Measurement of the temperature dependence of Young’s modulus of cartilage by phase-sensitive optical coherence elastography,” Quantum Electron. 44(8), 751–756 (2014).
[Crossref]

Soft Matter (1)

R. H. Pritchard, P. Lava, D. Debruyne, and E. M. Terentjev, “Precise determination of the Poisson ratio in soft materials with 2D digital image correlation,” Soft Matter 9(26), 6037–6045 (2013).
[Crossref]

Ultrasound Med. Biol. (2)

R. Souchon, O. Rouvière, A. Gelet, V. Detti, S. Srinivasan, J. Ophir, and J. Y. Chapelon, “Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results,” Ultrasound Med. Biol. 29(7), 1007–1015 (2003).
[Crossref] [PubMed]

T. Varghese, J. A. Zagzebski, and F. T. Lee, “Elastographic imaging of thermal lesions in the liver in vivo following radiofrequency ablation: preliminary results,” Ultrasound Med. Biol. 28(11-12), 1467–1473 (2002).
[Crossref] [PubMed]

Other (1)

M. Dewhirst, P. R. Stauffer, S. Das, O. I. Craciunescu, and Z. Vujaskovic, “Hyperthermia,” in Clinical Radiation Oncology, L. L. Gunderson, and J. E. Tepper, eds. (Elsevier, 2015), pp. 381–398.

Supplementary Material (3)

NameDescription
» Visualization 1       Representative shear wave propagation video (displayed at 120 fps) of (I) uniformly stiff, (II) uniformly soft, and (III) heterogeneous soft-stiff (left-right) PDMS tissue-mimicking phantoms. The data were acquired with magnetomotive optical coherenc
» Visualization 2       Representative shear wave propagation video (displayed at 120 fps) of (a) interstitial magnetic thermotherapy (iMT)-treated and (b) non-treated porcine liver specimens. The data were acquired with magnetomotive optical coherence elastography (MM-OCE)
» Visualization 3       Representative shear wave propagation video (displayed at 120 fps) of a canine soft tissue sarcoma specimen (a) before, (b) after first interstitial magnetic thermotherapy (iMT), and (c) after second iMT. The data were acquired with magnetomotive opt

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics and experimental setup of MM-OCE and interstitial magnetic thermotherapy (iMT). (a) Schematics of shear-wave MM-OCE. (b) Illustration of the iMT coil and (c) photograph of the iMT system. (d) (Left) illustration of the placement of the magnetic thermoseed in tissues and (right) photograph of the magnetic thermoseed.
Fig. 2
Fig. 2 Representative PDMS phantom results. (a) Space-time plots, (b) reconstructed Young’s modulus (E) maps, (c) structural OCT images, and (d) shear wave propagation (full video shown in Visualization 1 at 120 fps) of the (I) uniformly stiff, (II) uniformly soft, and (III) heterogeneous soft-stiff (left-right) samples.
Fig. 3
Fig. 3 Comparison between MM-OCE and indentation measurements performed on homogeneous PDMS phantoms. (a) Young’s modulus values obtained by both methods showed a good linear correlation (Pearson’s r = 0.965) and agreement (slope = 1.047, with a negligible offset = −1.325 kPa) with each other. (b) Bland-Altman plot also showed a good agreement between the two measurements (mean difference = 0.558 kPa). Sample size N = 16.
Fig. 4
Fig. 4 Representative results of (a) iMT-treated and (b) non-treated porcine liver specimens. (I) Photographs obtained (left) before and (right) after treatment; thermal images acquired at the (left) 0th and (right) 4th min of the treatment. (II) Structural OCT images and (III) reconstructed Young’s modulus (E) maps obtained (left) before and (right) after iMT treatment. White arrows in (I) and (II) indicate the locations of the magnetic thermoseed. (IV) (Left) Post-treatment Masson Trichrome-stained histology and (right) a zoomed-in area. Collagen is stained blue. The ablation zone was delineated with the dashed line. (V) Shear wave propagation captured at different temporal instants were also visualized (full video shown in Visualization 2 at 120 fps).
Fig. 5
Fig. 5 Correlation between (a) Young’s modulus ratio (Eratio) and CEM43 (Pearson’s r = 0.799), and (b) E ratio and squared magnetic field strength ( | H 0 | 2 ) (Pearson’s r = 0.938) in porcine liver specimens. Note that outliers (indicated in gray) were excluded from the fitting and ‘ + ’ denotes the non-treated tissues. The outliers were defined as the datapoints which deviated from the baseline model by 1.5 standard deviations. Sample size of the non-treated and treated samples were 4 and 23, respectively.
Fig. 6
Fig. 6 Representative results of a canine soft tissue sarcoma (STS) specimen (a) before treatment, (b) after 1st iMT, and (c) after 2nd iMT. (I) Structural OCT images and (II) reconstructed Young’s modulus (E) maps. (III) Photographs obtained (left) before and (right) after each treatment; thermal images acquired at the (left) 0th and (right) 4th min of each treatment. White arrows in (I) and (III) indicate the locations of the magnetic thermoseed. (IV) (Bottom) Post-treatment Masson Trichrome-stained histology and (top) a zoomed-in area. Collagen is stained blue. The ablation zone was delineated with the dashed line. (V) Shear wave propagation captured at three temporal instants were also visualized (full video shown in Visualization 3 at 120 fps).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CEM43= t=0 t= t f R 43 T ¯ Δt , where R={ 0.25 if T ¯ <43°C 0.5 if T ¯ 43°C .

Metrics