Abstract

We describe recent technological progress in multimodal en face full-field optical coherence tomography that has allowed detection of slow and fast dynamic processes in the eye. We show that by combining static, dynamic and fluorescence contrasts we can achieve label-free high-resolution imaging of the retina and anterior eye with temporal resolution from milliseconds to several hours, allowing us to probe biological activity at subcellular scales inside 3D bulk tissue. Our setups combine high lateral resolution over a large field of view with acquisition at several hundreds of frames per second which make it a promising tool for clinical applications and biomedical studies. Its contactless and non-destructive nature is shown to be effective for both following in vitro sample evolution over long periods of time and for imaging of the human eye in vivo.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis

Clement Apelian, Fabrice Harms, Olivier Thouvenin, and A. Claude Boccara
Biomed. Opt. Express 7(4) 1511-1524 (2016)

In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography

Kate Grieve, Arnaud Dubois, Manuel Simonutti, Michel Paques, José Sahel, Jean-François Le Gargasson, and Claude Boccara
Opt. Express 13(16) 6286-6295 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. W. Drexler and J. G. Fujimoto, eds., Optical coherence tomography: technology and applications (Springer, 2015), 2nd ed.
    [Crossref]
  3. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [Crossref]
  4. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
    [Crossref]
  5. J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
    [Crossref]
  6. M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J. Pathol. Informatics 2, 28 (2011).
    [Crossref]
  7. C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7, 1511–1524 (2016).
    [Crossref] [PubMed]
  8. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
    [Crossref]
  9. C.-E. Leroux, F. Bertillot, O. Thouvenin, and A.-C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7, 4501–4513 (2016).
    [Crossref]
  10. O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography,” Investig. Opthalmology & Vis. Sci. 58, 4605 (2017).
    [Crossref]
  11. A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18, 18(2013).
    [Crossref]
  12. J. Binding, J. B. Arous, J.-F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-na defocus-corrected full-field oct and consequences for two-photon microscopy,” Opt. Express 19, 4833–4847 (2011).
    [Crossref] [PubMed]
  13. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
    [Crossref]
  14. J. Mertz, Introduction to Optical Microscopy, vol. 138 (W. H. Freeman, 2009).
  15. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. 102, 13081–13086 (2005).
    [Crossref]
  16. E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3, 661–666 (2012).
    [Crossref]
  17. O. Thouvenin, M. Fink, and A. C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22, 22 (2017).
    [Crossref]
  18. P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41, 3920–3923 (2016).
    [Crossref]
  19. P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field oct,” Optica 5, 409–412 (2018).
    [Crossref]
  20. K. Grieve, L. Palazzo, E. Dalimier, P. Vielh, and M. Fabre, “A feasibility study of full-field optical coherence tomography for rapid evaluation of EUS-guided microbiopsy specimens,” Gastrointest. Endosc. 81, 342–350 (2015).
    [Crossref]
  21. K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 45, 4126 (2004).
    [Crossref]
  22. K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the retina with full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 57, OCT96 (2016).
    [Crossref]
  23. V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
    [Crossref]
  24. M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. research 79, 109–113 (2010).
    [Crossref]
  25. A. Wartak, R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Active-passive path-length encoded (apple) doppler oct,” Biomed. optics express 7, 5233–5251 (2016).
    [Crossref]
  26. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded doppler optical coherence tomography,” Opt. letters 32, 506–508 (2007).
    [Crossref]
  27. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3, 2611–2622 (2012).
    [Crossref]
  28. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for oct imaging with tracking slo,” Biomed. Opt. Express 3, 2950–2963 (2012).
    [Crossref]
  29. B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
    [Crossref]
  30. B. R. Munson, D. F. Young, T. H. Okiishi, and W. W. Huebsch, “Fundamentals of fluid mechanics. hoboken,” John Wiley & Sons, Inc69, 520 (2006).
  31. E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
    [Crossref]
  32. R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Investig. Ophthalmol. & Vis. Sci. 57, 632 (2016).
    [Crossref]
  33. B. D. Ashby, Q. Garrett, and M. Dp, “Corneal Injuries and Wound Healing – Review of Processes and Therapies,” Austin J. Clin. Ophthalmol. p. 25 (2014).
  34. M. Gonzalez-Andrades, L. Alonso-Pastor, J. Mauris, A. Cruzat, C. H. Dohlman, and P. Argüeso, “Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function,” Sci. Reports 6, 19395 (2016).
  35. J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, “The imagej ecosystem: An open platform for biomedical image analysis,” Mol. Reproduction Dev. 82, 518–529 (2015).
    [Crossref]
  36. Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Théry, “Spatial organization of the extracellular matrix regulates cell–cell junction positioning,” Proc. Natl. Acad. Sci. 109, 1506–1511 (2012).
    [Crossref]
  37. L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
    [Crossref]
  38. F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, “Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology,” Proc.SPIE 8216, 8216 (2012).
  39. H. Makhlouf, K. Perronet, G. Dupuis, S. Lévêque-Fort, and A. Dubois, “Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination,” Opt. Lett. 37, 1613–1615 (2012).
    [Crossref]
  40. O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: Recent progress with multimodal imaging,” Appl. Sci. 7, 236 (2017).
    [Crossref]

2018 (2)

2017 (3)

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: Recent progress with multimodal imaging,” Appl. Sci. 7, 236 (2017).
[Crossref]

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography,” Investig. Opthalmology & Vis. Sci. 58, 4605 (2017).
[Crossref]

O. Thouvenin, M. Fink, and A. C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22, 22 (2017).
[Crossref]

2016 (8)

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the retina with full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 57, OCT96 (2016).
[Crossref]

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Investig. Ophthalmol. & Vis. Sci. 57, 632 (2016).
[Crossref]

M. Gonzalez-Andrades, L. Alonso-Pastor, J. Mauris, A. Cruzat, C. H. Dohlman, and P. Argüeso, “Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function,” Sci. Reports 6, 19395 (2016).

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

A. Wartak, R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Active-passive path-length encoded (apple) doppler oct,” Biomed. optics express 7, 5233–5251 (2016).
[Crossref]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7, 1511–1524 (2016).
[Crossref] [PubMed]

P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41, 3920–3923 (2016).
[Crossref]

C.-E. Leroux, F. Bertillot, O. Thouvenin, and A.-C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7, 4501–4513 (2016).
[Crossref]

2015 (2)

J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, “The imagej ecosystem: An open platform for biomedical image analysis,” Mol. Reproduction Dev. 82, 518–529 (2015).
[Crossref]

K. Grieve, L. Palazzo, E. Dalimier, P. Vielh, and M. Fabre, “A feasibility study of full-field optical coherence tomography for rapid evaluation of EUS-guided microbiopsy specimens,” Gastrointest. Endosc. 81, 342–350 (2015).
[Crossref]

2013 (2)

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18, 18(2013).
[Crossref]

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

2012 (7)

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, “Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology,” Proc.SPIE 8216, 8216 (2012).

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Théry, “Spatial organization of the extracellular matrix regulates cell–cell junction positioning,” Proc. Natl. Acad. Sci. 109, 1506–1511 (2012).
[Crossref]

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3, 661–666 (2012).
[Crossref]

H. Makhlouf, K. Perronet, G. Dupuis, S. Lévêque-Fort, and A. Dubois, “Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination,” Opt. Lett. 37, 1613–1615 (2012).
[Crossref]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
[Crossref]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3, 2611–2622 (2012).
[Crossref]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for oct imaging with tracking slo,” Biomed. Opt. Express 3, 2950–2963 (2012).
[Crossref]

2011 (3)

J. Binding, J. B. Arous, J.-F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-na defocus-corrected full-field oct and consequences for two-photon microscopy,” Opt. Express 19, 4833–4847 (2011).
[Crossref] [PubMed]

J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
[Crossref]

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J. Pathol. Informatics 2, 28 (2011).
[Crossref]

2010 (1)

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. research 79, 109–113 (2010).
[Crossref]

2007 (1)

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded doppler optical coherence tomography,” Opt. letters 32, 506–508 (2007).
[Crossref]

2005 (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. 102, 13081–13086 (2005).
[Crossref]

2004 (2)

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 45, 4126 (2004).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
[Crossref]

1998 (1)

1997 (1)

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1981 (1)

B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[Crossref]

Alonso-Pastor, L.

M. Gonzalez-Andrades, L. Alonso-Pastor, J. Mauris, A. Cruzat, C. H. Dohlman, and P. Argüeso, “Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function,” Sci. Reports 6, 19395 (2016).

Apelian, C.

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: Recent progress with multimodal imaging,” Appl. Sci. 7, 236 (2017).
[Crossref]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7, 1511–1524 (2016).
[Crossref] [PubMed]

Aranda, J.

Arathorn, D. W.

Argüeso, P.

M. Gonzalez-Andrades, L. Alonso-Pastor, J. Mauris, A. Cruzat, C. H. Dohlman, and P. Argüeso, “Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function,” Sci. Reports 6, 19395 (2016).

Arnault, E.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Arous, J. B.

Ashby, B. D.

B. D. Ashby, Q. Garrett, and M. Dp, “Corneal Injuries and Wound Healing – Review of Processes and Therapies,” Austin J. Clin. Ophthalmol. p. 25 (2014).

Auksorius, E.

Balland, M.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Théry, “Spatial organization of the extracellular matrix regulates cell–cell junction positioning,” Proc. Natl. Acad. Sci. 109, 1506–1511 (2012).
[Crossref]

Barrau, C.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Baumann, B.

A. Wartak, R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Active-passive path-length encoded (apple) doppler oct,” Biomed. optics express 7, 5233–5251 (2016).
[Crossref]

Beaurepaire, E.

Ben Arous, J.

J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
[Crossref]

Bertillot, F.

Bigot, K.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Binding, J.

J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
[Crossref]

J. Binding, J. B. Arous, J.-F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-na defocus-corrected full-field oct and consequences for two-photon microscopy,” Opt. Express 19, 4833–4847 (2011).
[Crossref] [PubMed]

Blanchot, L.

Boas, D. A.

Boccara, A. C.

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field oct,” Optica 5, 409–412 (2018).
[Crossref]

O. Thouvenin, M. Fink, and A. C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22, 22 (2017).
[Crossref]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7, 1511–1524 (2016).
[Crossref] [PubMed]

P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41, 3920–3923 (2016).
[Crossref]

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18, 18(2013).
[Crossref]

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, “Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology,” Proc.SPIE 8216, 8216 (2012).

J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
[Crossref]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
[Crossref]

Boccara, A.-C.

Boccara, C.

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: Recent progress with multimodal imaging,” Appl. Sci. 7, 236 (2017).
[Crossref]

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography,” Investig. Opthalmology & Vis. Sci. 58, 4605 (2017).
[Crossref]

J. Binding, J. B. Arous, J.-F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-na defocus-corrected full-field oct and consequences for two-photon microscopy,” Opt. Express 19, 4833–4847 (2011).
[Crossref] [PubMed]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
[Crossref]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 45, 4126 (2004).
[Crossref]

Borderie, V. M.

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the retina with full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 57, OCT96 (2016).
[Crossref]

Bouma, B. E.

Bourdieu, L.

J. Binding, J. B. Arous, J.-F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-na defocus-corrected full-field oct and consequences for two-photon microscopy,” Opt. Express 19, 4833–4847 (2011).
[Crossref] [PubMed]

J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
[Crossref]

Braaf, B.

Bromberg, Y.

Casado, M.

J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
[Crossref]

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chassot, J.-M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18, 18(2013).
[Crossref]

Cintrón-Colón, H. R.

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

Cohen-Tannoudji, D.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Coron, E.

Cruzat, A.

M. Gonzalez-Andrades, L. Alonso-Pastor, J. Mauris, A. Cruzat, C. H. Dohlman, and P. Argüeso, “Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function,” Sci. Reports 6, 19395 (2016).

Dalimier, E.

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

K. Grieve, L. Palazzo, E. Dalimier, P. Vielh, and M. Fabre, “A feasibility study of full-field optical coherence tomography for rapid evaluation of EUS-guided microbiopsy specimens,” Gastrointest. Endosc. 81, 342–350 (2015).
[Crossref]

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, “Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology,” Proc.SPIE 8216, 8216 (2012).

de Boer, J. F.

DeBuc, D. C.

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

Deshiere, A.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Théry, “Spatial organization of the extracellular matrix regulates cell–cell junction positioning,” Proc. Natl. Acad. Sci. 109, 1506–1511 (2012).
[Crossref]

Dohlman, C. H.

M. Gonzalez-Andrades, L. Alonso-Pastor, J. Mauris, A. Cruzat, C. H. Dohlman, and P. Argüeso, “Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function,” Sci. Reports 6, 19395 (2016).

Dp, M.

B. D. Ashby, Q. Garrett, and M. Dp, “Corneal Injuries and Wound Healing – Review of Processes and Therapies,” Austin J. Clin. Ophthalmol. p. 25 (2014).

Dubois, A.

Duchemin-Pelletier, E.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Théry, “Spatial organization of the extracellular matrix regulates cell–cell junction positioning,” Proc. Natl. Acad. Sci. 109, 1506–1511 (2012).
[Crossref]

Dupuis, G.

Eliceiri, K. W.

J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, “The imagej ecosystem: An open platform for biomedical image analysis,” Mol. Reproduction Dev. 82, 518–529 (2015).
[Crossref]

Fabre, M.

K. Grieve, L. Palazzo, E. Dalimier, P. Vielh, and M. Fabre, “A feasibility study of full-field optical coherence tomography for rapid evaluation of EUS-guided microbiopsy specimens,” Gastrointest. Endosc. 81, 342–350 (2015).
[Crossref]

Feuer, W. J.

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

Filhol, O.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Théry, “Spatial organization of the extracellular matrix regulates cell–cell junction positioning,” Proc. Natl. Acad. Sci. 109, 1506–1511 (2012).
[Crossref]

Fink, M.

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field oct,” Optica 5, 409–412 (2018).
[Crossref]

O. Thouvenin, M. Fink, and A. C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22, 22 (2017).
[Crossref]

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: Recent progress with multimodal imaging,” Appl. Sci. 7, 236 (2017).
[Crossref]

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography,” Investig. Opthalmology & Vis. Sci. 58, 4605 (2017).
[Crossref]

P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41, 3920–3923 (2016).
[Crossref]

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18, 18(2013).
[Crossref]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fontaine, V.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Fragola, A.

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, “Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology,” Proc.SPIE 8216, 8216 (2012).

Garrett, Q.

B. D. Ashby, Q. Garrett, and M. Dp, “Corneal Injuries and Wound Healing – Review of Processes and Therapies,” Austin J. Clin. Ophthalmol. p. 25 (2014).

Gaynes, B.

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. research 79, 109–113 (2010).
[Crossref]

Gigan, S.

J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
[Crossref]

J. Binding, J. B. Arous, J.-F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-na defocus-corrected full-field oct and consequences for two-photon microscopy,” Opt. Express 19, 4833–4847 (2011).
[Crossref] [PubMed]

Goldstein, A. M.

Gondouin, P.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Gonzalez-Andrades, M.

M. Gonzalez-Andrades, L. Alonso-Pastor, J. Mauris, A. Cruzat, C. H. Dohlman, and P. Argüeso, “Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function,” Sci. Reports 6, 19395 (2016).

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Grieve, K.

P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field oct,” Optica 5, 409–412 (2018).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography,” Investig. Opthalmology & Vis. Sci. 58, 4605 (2017).
[Crossref]

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the retina with full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 57, OCT96 (2016).
[Crossref]

K. Grieve, L. Palazzo, E. Dalimier, P. Vielh, and M. Fabre, “A feasibility study of full-field optical coherence tomography for rapid evaluation of EUS-guided microbiopsy specimens,” Gastrointest. Endosc. 81, 342–350 (2015).
[Crossref]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 45, 4126 (2004).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
[Crossref]

Guillou, H.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Théry, “Spatial organization of the extracellular matrix regulates cell–cell junction positioning,” Proc. Natl. Acad. Sci. 109, 1506–1511 (2012).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. 102, 13081–13086 (2005).
[Crossref]

Gutman, E.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Haindl, R.

A. Wartak, R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Active-passive path-length encoded (apple) doppler oct,” Biomed. optics express 7, 5233–5251 (2016).
[Crossref]

Harms, F.

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7, 1511–1524 (2016).
[Crossref] [PubMed]

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, “Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology,” Proc.SPIE 8216, 8216 (2012).

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hiner, M. C.

J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, “The imagej ecosystem: An open platform for biomedical image analysis,” Mol. Reproduction Dev. 82, 518–529 (2015).
[Crossref]

Hitzenberger, C. K.

A. Wartak, R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Active-passive path-length encoded (apple) doppler oct,” Biomed. optics express 7, 5233–5251 (2016).
[Crossref]

Horn, B. K.

B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[Crossref]

Huang, D.

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded doppler optical coherence tomography,” Opt. letters 32, 506–508 (2007).
[Crossref]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Huebsch, W. W.

B. R. Munson, D. F. Young, T. H. Okiishi, and W. W. Huebsch, “Fundamentals of fluid mechanics. hoboken,” John Wiley & Sons, Inc69, 520 (2006).

Hunter, J. J.

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Investig. Ophthalmol. & Vis. Sci. 57, 632 (2016).
[Crossref]

Irsch, K.

Jain, M.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J. Pathol. Informatics 2, 28 (2011).
[Crossref]

Jiang, H.

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

Jiang, J. Y.

Juškaitis, R.

Kazlauskas, A.

Le Gargasson, J.-F.

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 45, 4126 (2004).
[Crossref]

Lebec, M.

Lecaque, R.

Lee, J.

Léger, J.-F.

J. Binding, J. B. Arous, J.-F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-na defocus-corrected full-field oct and consequences for two-photon microscopy,” Opt. Express 19, 4833–4847 (2011).
[Crossref] [PubMed]

J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
[Crossref]

Leroux, C.-E.

Lévêque-Fort, S.

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Liu, L.

Makhlouf, H.

Manzoor, M.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J. Pathol. Informatics 2, 28 (2011).
[Crossref]

Mauris, J.

M. Gonzalez-Andrades, L. Alonso-Pastor, J. Mauris, A. Cruzat, C. H. Dohlman, and P. Argüeso, “Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function,” Sci. Reports 6, 19395 (2016).

Mazlin, V.

Mertz, J.

J. Mertz, Introduction to Optical Microscopy, vol. 138 (W. H. Freeman, 2009).

Moneron, G.

Motiejunaite, R.

Mukherjee, S.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J. Pathol. Informatics 2, 28 (2011).
[Crossref]

Munson, B. R.

B. R. Munson, D. F. Young, T. H. Okiishi, and W. W. Huebsch, “Fundamentals of fluid mechanics. hoboken,” John Wiley & Sons, Inc69, 520 (2006).

Nadolny, S.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J. Pathol. Informatics 2, 28 (2011).
[Crossref]

Nahas, A.

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: Recent progress with multimodal imaging,” Appl. Sci. 7, 236 (2017).
[Crossref]

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18, 18(2013).
[Crossref]

Nanteau, C.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Neil, M. A. A.

Nguyen, T.-M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18, 18(2013).
[Crossref]

Okiishi, T. H.

B. R. Munson, D. F. Young, T. H. Okiishi, and W. W. Huebsch, “Fundamentals of fluid mechanics. hoboken,” John Wiley & Sons, Inc69, 520 (2006).

Palazzo, L.

K. Grieve, L. Palazzo, E. Dalimier, P. Vielh, and M. Fabre, “A feasibility study of full-field optical coherence tomography for rapid evaluation of EUS-guided microbiopsy specimens,” Gastrointest. Endosc. 81, 342–350 (2015).
[Crossref]

Palczewska, G.

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Investig. Ophthalmol. & Vis. Sci. 57, 632 (2016).
[Crossref]

Palczewski, K.

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Investig. Ophthalmol. & Vis. Sci. 57, 632 (2016).
[Crossref]

Paques, M.

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the retina with full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 57, OCT96 (2016).
[Crossref]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 45, 4126 (2004).
[Crossref]

Pâques, M.

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography,” Investig. Opthalmology & Vis. Sci. 58, 4605 (2017).
[Crossref]

Pedersen, C. J.

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded doppler optical coherence tomography,” Opt. letters 32, 506–508 (2007).
[Crossref]

Perez, V. L.

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

Perronet, K.

Picaud, S.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Pieretti, A.

Pircher, M.

A. Wartak, R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Active-passive path-length encoded (apple) doppler oct,” Biomed. optics express 7, 5233–5251 (2016).
[Crossref]

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Rollins, A. M.

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded doppler optical coherence tomography,” Opt. letters 32, 506–508 (2007).
[Crossref]

Roorda, A.

Rueden, C. T.

J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, “The imagej ecosystem: An open platform for biomedical image analysis,” Mol. Reproduction Dev. 82, 518–529 (2015).
[Crossref]

Sahel, J.

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography,” Investig. Opthalmology & Vis. Sci. 58, 4605 (2017).
[Crossref]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 45, 4126 (2004).
[Crossref]

Sahel, J.-A.

P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field oct,” Optica 5, 409–412 (2018).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Saint-Jalmes, H.

Schindelin, J.

J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, “The imagej ecosystem: An open platform for biomedical image analysis,” Mol. Reproduction Dev. 82, 518–529 (2015).
[Crossref]

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Schunck, B. G.

B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[Crossref]

Sengupta, A.

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the retina with full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 57, OCT96 (2016).
[Crossref]

Shahidi, M.

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. research 79, 109–113 (2010).
[Crossref]

Sharma, R.

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Investig. Ophthalmol. & Vis. Sci. 57, 632 (2016).
[Crossref]

Sheehy, C. K.

Shukla, N.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J. Pathol. Informatics 2, 28 (2011).
[Crossref]

Shure, M. A.

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded doppler optical coherence tomography,” Opt. letters 32, 506–508 (2007).
[Crossref]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Tanter, M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18, 18(2013).
[Crossref]

Tearney, G. J.

Théry, M.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Théry, “Spatial organization of the extracellular matrix regulates cell–cell junction positioning,” Proc. Natl. Acad. Sci. 109, 1506–1511 (2012).
[Crossref]

Thouvenin, O.

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: Recent progress with multimodal imaging,” Appl. Sci. 7, 236 (2017).
[Crossref]

O. Thouvenin, M. Fink, and A. C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22, 22 (2017).
[Crossref]

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography,” Investig. Opthalmology & Vis. Sci. 58, 4605 (2017).
[Crossref]

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the retina with full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 57, OCT96 (2016).
[Crossref]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7, 1511–1524 (2016).
[Crossref] [PubMed]

C.-E. Leroux, F. Bertillot, O. Thouvenin, and A.-C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7, 4501–4513 (2016).
[Crossref]

Tiruveedhula, P.

Topilko, P.

J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
[Crossref]

Trasischker, W.

A. Wartak, R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Active-passive path-length encoded (apple) doppler oct,” Biomed. optics express 7, 5233–5251 (2016).
[Crossref]

Tseng, Q.

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Théry, “Spatial organization of the extracellular matrix regulates cell–cell junction positioning,” Proc. Natl. Acad. Sci. 109, 1506–1511 (2012).
[Crossref]

Vabre, L.

Vermeulen, P.

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, “Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology,” Proc.SPIE 8216, 8216 (2012).

Vielh, P.

K. Grieve, L. Palazzo, E. Dalimier, P. Vielh, and M. Fabre, “A feasibility study of full-field optical coherence tomography for rapid evaluation of EUS-guided microbiopsy specimens,” Gastrointest. Endosc. 81, 342–350 (2015).
[Crossref]

Vienola, K. V.

Viénot, F.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Villette, T.

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Wanek, J.

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. research 79, 109–113 (2010).
[Crossref]

Wang, J.

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

Wang, L.

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

Wartak, A.

A. Wartak, R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Active-passive path-length encoded (apple) doppler oct,” Biomed. optics express 7, 5233–5251 (2016).
[Crossref]

Williams, D. R.

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Investig. Ophthalmol. & Vis. Sci. 57, 632 (2016).
[Crossref]

Wilson, T.

Wu, T.

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. research 79, 109–113 (2010).
[Crossref]

Wu, W.

Xiao, P.

Yan, W.

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

Yang, Q.

Young, D. F.

B. R. Munson, D. F. Young, T. H. Okiishi, and W. W. Huebsch, “Fundamentals of fluid mechanics. hoboken,” John Wiley & Sons, Inc69, 520 (2006).

Yuan, J.

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

Zhu, B.

Appl. Opt. (1)

Appl. Sci. (1)

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, “Full-field optical coherence tomography as a diagnosis tool: Recent progress with multimodal imaging,” Appl. Sci. 7, 236 (2017).
[Crossref]

Artif. Intell. (1)

B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[Crossref]

Biomed. Opt. Express (6)

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3, 661–666 (2012).
[Crossref]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3, 2611–2622 (2012).
[Crossref]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for oct imaging with tracking slo,” Biomed. Opt. Express 3, 2950–2963 (2012).
[Crossref]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7, 1511–1524 (2016).
[Crossref] [PubMed]

C.-E. Leroux, F. Bertillot, O. Thouvenin, and A.-C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7, 4501–4513 (2016).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9, 557–568 (2018).
[Crossref]

Biomed. optics express (1)

A. Wartak, R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Active-passive path-length encoded (apple) doppler oct,” Biomed. optics express 7, 5233–5251 (2016).
[Crossref]

Eye & contact lens (1)

L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature,” Eye & contact lens 42, 135 (2016).
[Crossref]

Gastrointest. Endosc. (1)

K. Grieve, L. Palazzo, E. Dalimier, P. Vielh, and M. Fabre, “A feasibility study of full-field optical coherence tomography for rapid evaluation of EUS-guided microbiopsy specimens,” Gastrointest. Endosc. 81, 342–350 (2015).
[Crossref]

Investig. Ophthalmol. & Vis. Sci. (3)

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 45, 4126 (2004).
[Crossref]

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the retina with full-field optical coherence tomography,” Investig. Ophthalmol. & Vis. Sci. 57, OCT96 (2016).
[Crossref]

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Investig. Ophthalmol. & Vis. Sci. 57, 632 (2016).
[Crossref]

Investig. Opthalmology & Vis. Sci. (1)

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques, and K. Grieve, “Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography,” Investig. Opthalmology & Vis. Sci. 58, 4605 (2017).
[Crossref]

J. Biomed. Opt. (2)

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18, 18(2013).
[Crossref]

O. Thouvenin, M. Fink, and A. C. Boccara, “Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy,” J. Biomed. Opt. 22, 22 (2017).
[Crossref]

J. Pathol. Informatics (1)

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, “Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues,” J. Pathol. Informatics 2, 28 (2011).
[Crossref]

Journal of Biomedical Optics (1)

J. Ben Arous, J. Binding, J.-F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” Journal of Biomedical Optics 16, 116012 (2011).
[Crossref]

Microvasc. research (1)

M. Shahidi, J. Wanek, B. Gaynes, and T. Wu, “Quantitative assessment of conjunctival microvascular circulation of the human eye,” Microvasc. research 79, 109–113 (2010).
[Crossref]

Mol. Reproduction Dev. (1)

J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, “The imagej ecosystem: An open platform for biomedical image analysis,” Mol. Reproduction Dev. 82, 518–529 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. letters (1)

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded doppler optical coherence tomography,” Opt. letters 32, 506–508 (2007).
[Crossref]

Optica (1)

PLOS ONE (1)

E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Viénot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J.-A. Sahel, and S. Picaud, “Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions,” PLOS ONE 8, 1–12 (2013).
[Crossref]

Proc. Natl. Acad. Sci. (2)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. 102, 13081–13086 (2005).
[Crossref]

Q. Tseng, E. Duchemin-Pelletier, A. Deshiere, M. Balland, H. Guillou, O. Filhol, and M. Théry, “Spatial organization of the extracellular matrix regulates cell–cell junction positioning,” Proc. Natl. Acad. Sci. 109, 1506–1511 (2012).
[Crossref]

Proc.SPIE (1)

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, “Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology,” Proc.SPIE 8216, 8216 (2012).

Sci. Reports (1)

M. Gonzalez-Andrades, L. Alonso-Pastor, J. Mauris, A. Cruzat, C. H. Dohlman, and P. Argüeso, “Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function,” Sci. Reports 6, 19395 (2016).

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Other (4)

W. Drexler and J. G. Fujimoto, eds., Optical coherence tomography: technology and applications (Springer, 2015), 2nd ed.
[Crossref]

J. Mertz, Introduction to Optical Microscopy, vol. 138 (W. H. Freeman, 2009).

B. D. Ashby, Q. Garrett, and M. Dp, “Corneal Injuries and Wound Healing – Review of Processes and Therapies,” Austin J. Clin. Ophthalmol. p. 25 (2014).

B. R. Munson, D. F. Young, T. H. Okiishi, and W. W. Huebsch, “Fundamentals of fluid mechanics. hoboken,” John Wiley & Sons, Inc69, 520 (2006).

Supplementary Material (2)

NameDescription
» Visualization 1       Corneal dynamique full field optical coherence tomography time lapse showing healing mechanism.
» Visualization 2       Full field optical coherence tomography movie of conjunctival blood flow near the limbal region of the in vivo anterior human eye.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 PZT: piezoelectric translation - TS: translation stage - LPM: low pass dichroic filter - HPM: high pass dichroic filter - (a) Multimodal static and dynamic FFOCT combined with fluorescence side view. The camera used for FFOCT in all setups is an ADIMEC Quartz 2A750. The camera used for fluorescence is a PCO Edge 5.5. Microscope objectives are Nikon NIR APO 40× 0.8 NA. (b) Multimodal static and dynamic FFOCT inverted system top view. Microscope objectives are Olympus UPlanSApo 30× 1.05 NA. (c) In vivo FFOCT setup for anterior eye imaging (with Olympus 10× 0.3 NA objectives in place) and retinal imaging top view (with sample objective removed, at the location indicated by the dashed line box), which is capable of imaging both anterior and posterior eye, in both static mode to image morphology or time-lapse mode to image blood flow. (d) Locking plane procedure. FFOCT images are acquired over an axial extension of 10 μm with 0.5 μm steps and are then cross-correlated with the target image. The sample is then axially translated to the position corresponding to the maximum of the cross-correlation. This example is illustrated with retinal cells.
Fig. 2
Fig. 2 (a) 3D reconstruction of a D-FFOCT image stack in explanted macaque retina over a 120 by 120 μm field of view. Note that FFOCT signal is damped with increasing penetration depth, so that upper retinal layers are more clearly visible than lower ones. (b, c, e) En-face images of the (b) inner nuclear layer, (c) outer nuclear layer and (e) photoreceptor layer presenting a similar appearance to two-photon fluorescence imaging [32] and (d) reconstructed cross-section at the location represented by the red dotted line in (a). The cross-section in (d) was linearly interpolated to obtain a unitary pixel size ratio. (f) D-FFOCT image of a porcine retinal pigment epithelium cell culture [31]. (g) Overlay of colored D-FFOCT and FFOCT at the interface between the layers of the nerve fibers (white arrows point to nerve bundles that are very bright in static and invisible in dynamic mode), ganglion cells (blue and green cells, visible in dynamic mode) and inner plexiform (fibrous network, bottom left, visible in static mode). Samples were maintained in vitro in culture medium at room temperature during imaging.
Fig. 3
Fig. 3 (a) Dynamic grayscale image of a wounded macaque cornea - the red box shows where the computation is done, see Visualization 1 (b) Same dynamic image superimposed with colors coding for the cell migration velocity averaged over the 112 minute acquisition. Each arrow represents the mean motion in a pixel - (c) Velocity errors for different Horn-Shunk smoothness terms α. The curve represents the mean error we found by comparing the optical flow computation with 200 manually tracked voxels. Error-bars represent the error standard deviation. The optimal α was found to be 100.
Fig. 4
Fig. 4 (a) Single FFOCT-frame of conjunctival blood flow near the limbal region of the in vivo anterior human eye. See Visualization 2 for a movie of blood flow in the drawn box. (b) Kymograph plot (space-time domain) inside the blood vessel at x = 10 μm. Grayscale is inverted so that the black particles indicated by the red arrows are red blood cells flowing into the vessel. The slope corresponds to the particle speed. (c) Raw velocity profile inside the blood vessel (blue) computed along the dotted line in (a) with the method explained in Section 2.6. The standard error is calculated at each position and ranges around 50 μm.s−1 at the center of the profile and 200 μm.s−1 on the sides. The smoothed profile (red) with the fit to a Poiseuille flow profile (black dashed line) are superimposed and voluntarily shifted up for increased visibility.
Fig. 5
Fig. 5 Multimodal binary merging. Static FFOCT is represented in blue, dynamic FFOCT in red and living labeled cells in green, imaged with the fluorescence setup presented Fig. 1(a). White arrows show active cells without fluorescence suggesting that apoptosis was occuring. Red arrows show inactive cells without fluorescence indicating that these cells were dead.

Tables (1)

Tables Icon

Table 1 Setup characteristics.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I Φ = 0 = η I 0 4 ( R + R incoh + α + 2 R α cos ( Δ ϕ ) )
I Φ = π = η I 0 4 ( R + R incoh + α 2 R α cos ( Δ ϕ ) )
I 2 phase = η I 0 R α | cos ( Δ ϕ ) |
< I FFOCT > = η I 0 R α 1 2 π 0 2 π | cos ( Δ ϕ ) | d Δ ϕ = 2 η I 0 R α π
I sat η I 0 4 ( α + R incoh )
< I FFOCT > = 8 I sat R α π ( α + R incoh )
SNR 2 phase ~ 8 R α I sat π ( α + R incoh ) I sat
I dynamic = SD ( η I 0 2 R ( t ) α cos ( Δ ϕ ( t ) ) )
= 2 I sat α + R incoh S D ( R ( t ) α cos ( Δ ϕ ( t ) ) )
SNR dynamic ~ 2 I sat α + R incoh S D ( R ( t ) α cos ( Δ ϕ ( t ) ) ) I sat
I x u + I y v + I t = 0
= ( I x u + I y v + I t ) 2 d x d y + α { ( u x ) 2 + ( u y ) 2 + ( v x ) 2 + ( v y ) 2 } d x d y
[ u , v ] T = argmin u , v ( )
v ( r ) = v max ( 1 r 2 R cap 2 )

Metrics