Abstract

Optical imaging offers exquisite sensitivity and resolution for assessing biological tissue in microscopy applications; however, for samples that are greater than a few hundred microns in thickness (such as whole tissue biopsies), spatial resolution is substantially limited by the effects of light scattering. To improve resolution, time- and angular-domain methods have been developed to reject detection of highly scattered light. This work utilizes a modified version of a commonly used Monte Carlo light propagation software package (MCML) to present the first comparison of time- and angular-domain improvements in spatial resolution with respect to varying sample thickness and optical properties (absorption and scattering). Specific comparisons were made at various tissue thicknesses (1-6 mm) assuming either typical (average) soft tissue scattering properties, μs’ = 10 cm−1, or low scattering properties, μs’ = 3.4 cm−1, as measured in lymph nodes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-domain geometrical localization of point-like fluorescence inclusions in turbid media with early photon arrival times

Julien Pichette, Jorge Bouza Domínguez, and Yves Bérubé-Lauzière
Appl. Opt. 52(24) 5985-5999 (2013)

Diffuse photon density wavefront speed as a contrast for tomographic imaging of heterogeneous diffusive media

Julien Pichette, Simon Boucher, George Bouza Domínguez, and Yves Bérubé-Lauzière
Opt. Lett. 39(7) 2097-2100 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Tew, L. Irwig, A. Matthews, P. Crowe, and P. Macaskill, “Meta-analysis of sentinel node imprint cytology in breast cancer,” Br. J. Surg. 92(9), 1068–1080 (2005).
    [Crossref] [PubMed]
  2. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
    [Crossref] [PubMed]
  3. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005).
    [Crossref] [PubMed]
  4. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  5. Y. Pu and D. Psaltis, “Seeing through turbidity with harmonic holography [Invited],” Appl. Opt. 52(4), 567–578 (2013).
    [Crossref] [PubMed]
  6. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
    [Crossref] [PubMed]
  7. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
    [Crossref] [PubMed]
  8. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010).
    [Crossref] [PubMed]
  9. W. Tan, Z. Zhou, A. Lin, J. Si, P. Zhan, B. Wu, and X. Hou, “High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass,” Opt. Express 21(6), 7740–7747 (2013).
    [Crossref] [PubMed]
  10. M. S. Tank and G. H. Chapman, “Micromachined silicon collimating detector array to view objects in highly scattering medium,” Can. J. Electr. Comput. Eng. 25, 13–18 (2000).
  11. G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular Domain Imaging of Objects Within Highly Scattering Media Using Silicon Micromachined Collimating Arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
    [Crossref]
  12. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
    [Crossref] [PubMed]
  13. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  14. S. L. Jacques, “Monte Carlo modeling of light transport in tissue (steady state and time of flight),” in Optical-thermal response of laser-irradiated tissue (Springer, 2010), pp. 109–144.
  15. S. Jacques, (2007), retrieved https://omlc.org/software/mc/mcsub/index.html .
  16. B. H. Hokr, J. N. Bixler, G. Elpers, B. Zollars, R. J. Thomas, V. V. Yakovlev, and M. O. Scully, “Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations,” Opt. Express 23(7), 8699–8705 (2015).
    [Crossref] [PubMed]
  17. I. Kawrakow and M. Fippel, “Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC,” Phys. Med. Biol. 45(8), 2163–2183 (2000).
    [Crossref] [PubMed]
  18. D. B. Thomas, “THe MWC64X Random Number Generator”, retrieved http://cas.ee.ic.ac.uk/people/dt10/research/index.html .
  19. L. Sinha, M. Fogarty, W. Zhou, A. Giudice, J. G. Brankov, and K. M. Tichauer, “Design and characterization of a dead-time regime enhanced early photon projection imaging system,” Rev. Sci. Instrum. 89(4), 043707 (2018).
    [Crossref] [PubMed]
  20. A. D. Kim, C. Hayakawa, and V. Venugopalan, “Estimating optical properties in layered tissues by use of the Born approximation of the radiative transport equation,” Opt. Lett. 31(8), 1088–1090 (2006).
    [Crossref] [PubMed]
  21. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [Crossref] [PubMed]
  22. G. Hall, S. L. Jacques, K. W. Eliceiri, and P. J. Campagnola, “Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient,” Biomed. Opt. Express 3(11), 2707–2719 (2012).
    [Crossref] [PubMed]
  23. L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express 3(2), 366–379 (2012).
    [Crossref] [PubMed]
  24. J. P. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. Part 1--Error analysis of a time resolved transmittance characterization method,” Opt. Express 18(11), 11495–11507 (2010).
    [Crossref] [PubMed]
  25. A. N. S. Institute, ANSI Z136.3 - Safe Use of Lasers in Health Care (Laser Institute of America, 2018).
  26. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
    [Crossref] [PubMed]
  27. L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
    [Crossref] [PubMed]
  28. L. Pancheri, N. Massari, and D. Stoppa, “SPAD Image Sensor With Analog Counting Pixel for Time-Resolved Fluorescence Detection,” IEEE T Electron Dev 60(10), 3442–3449 (2013).
    [Crossref]
  29. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [Crossref] [PubMed]
  30. C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
    [Crossref] [PubMed]
  31. M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
    [Crossref] [PubMed]
  32. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
    [Crossref] [PubMed]
  33. A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
    [Crossref] [PubMed]
  34. L. Sinha, J. G. Brankov, and K. M. Tichauer, “Enhanced detection of early photons in time-domain optical imaging by running in the “dead-time” regime,” Opt. Lett. 41(14), 3225–3228 (2016).
    [Crossref] [PubMed]
  35. E. M. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photonics Rev. 3(1-2), 159–179 (2009).
    [Crossref] [PubMed]
  36. M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
    [Crossref] [PubMed]
  37. Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. W. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
    [Crossref] [PubMed]
  38. Q. Tang, Y. Liu, V. Tsytsarev, J. Lin, B. Wang, U. Kanniyappan, Z. Li, and Y. Chen, “High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT),” Biomed. Opt. Express 8(4), 2124–2137 (2017).
    [Crossref] [PubMed]
  39. M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
    [Crossref] [PubMed]
  40. L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
    [Crossref] [PubMed]
  41. F. Yang, M. S. Ozturk, R. Yao, and X. Intes, “Improving mesoscopic fluorescence molecular tomography through data reduction,” Biomed. Opt. Express 8(8), 3868–3881 (2017).
    [Crossref] [PubMed]
  42. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  43. E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1(2), 658–675 (2010).
    [Crossref] [PubMed]

2018 (1)

L. Sinha, M. Fogarty, W. Zhou, A. Giudice, J. G. Brankov, and K. M. Tichauer, “Design and characterization of a dead-time regime enhanced early photon projection imaging system,” Rev. Sci. Instrum. 89(4), 043707 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (2)

2015 (1)

2014 (1)

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

2013 (6)

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

L. Pancheri, N. Massari, and D. Stoppa, “SPAD Image Sensor With Analog Counting Pixel for Time-Resolved Fluorescence Detection,” IEEE T Electron Dev 60(10), 3442–3449 (2013).
[Crossref]

W. Tan, Z. Zhou, A. Lin, J. Si, P. Zhan, B. Wu, and X. Hou, “High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass,” Opt. Express 21(6), 7740–7747 (2013).
[Crossref] [PubMed]

Y. Pu and D. Psaltis, “Seeing through turbidity with harmonic holography [Invited],” Appl. Opt. 52(4), 567–578 (2013).
[Crossref] [PubMed]

2012 (4)

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

G. Hall, S. L. Jacques, K. W. Eliceiri, and P. J. Campagnola, “Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient,” Biomed. Opt. Express 3(11), 2707–2719 (2012).
[Crossref] [PubMed]

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express 3(2), 366–379 (2012).
[Crossref] [PubMed]

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (4)

2009 (2)

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

E. M. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photonics Rev. 3(1-2), 159–179 (2009).
[Crossref] [PubMed]

2008 (3)

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (2)

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005).
[Crossref] [PubMed]

K. Tew, L. Irwig, A. Matthews, P. Crowe, and P. Macaskill, “Meta-analysis of sentinel node imprint cytology in breast cancer,” Br. J. Surg. 92(9), 1068–1080 (2005).
[Crossref] [PubMed]

2003 (1)

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular Domain Imaging of Objects Within Highly Scattering Media Using Silicon Micromachined Collimating Arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[Crossref]

2002 (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

2000 (3)

M. S. Tank and G. H. Chapman, “Micromachined silicon collimating detector array to view objects in highly scattering medium,” Can. J. Electr. Comput. Eng. 25, 13–18 (2000).

I. Kawrakow and M. Fippel, “Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC,” Phys. Med. Biol. 45(8), 2163–2183 (2000).
[Crossref] [PubMed]

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1994 (1)

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

1989 (1)

Abu-Rustum, N. R.

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

Adang, E. M.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Aikawa, E.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Alerstam, E.

Alfano, R. R.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Andersson-Engels, S.

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Barakat, R. R.

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

Barber, E. L.

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

Barlin, J. N.

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

Bassi, A.

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010).
[Crossref] [PubMed]

Bixler, J. N.

Borm, G. F.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

Bouchard, J. P.

Brankov, J. G.

L. Sinha, M. Fogarty, W. Zhou, A. Giudice, J. G. Brankov, and K. M. Tichauer, “Design and characterization of a dead-time regime enhanced early photon projection imaging system,” Rev. Sci. Instrum. 89(4), 043707 (2018).
[Crossref] [PubMed]

L. Sinha, J. G. Brankov, and K. M. Tichauer, “Enhanced detection of early photons in time-domain optical imaging by running in the “dead-time” regime,” Opt. Lett. 41(14), 3225–3228 (2016).
[Crossref] [PubMed]

Brida, D.

Bult, P.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

Burgess, S. A.

E. M. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photonics Rev. 3(1-2), 159–179 (2009).
[Crossref] [PubMed]

Campagnola, P. J.

Carson, J. J.

Cerullo, G.

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010).
[Crossref] [PubMed]

Chance, B.

Chapman, G. H.

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
[Crossref] [PubMed]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular Domain Imaging of Objects Within Highly Scattering Media Using Silicon Micromachined Collimating Arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[Crossref]

M. S. Tank and G. H. Chapman, “Micromachined silicon collimating detector array to view objects in highly scattering medium,” Can. J. Electr. Comput. Eng. 25, 13–18 (2000).

Chen, C. W.

Chen, Y.

Chu, G.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular Domain Imaging of Objects Within Highly Scattering Media Using Silicon Micromachined Collimating Arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[Crossref]

Contini, D.

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Cotelli, F.

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

Cova, S.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Crowe, P.

K. Tew, L. Irwig, A. Matthews, P. Crowe, and P. Macaskill, “Meta-analysis of sentinel node imprint cytology in breast cancer,” Br. J. Surg. 92(9), 1068–1080 (2005).
[Crossref] [PubMed]

Cubeddu, R.

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

D’Andrea, C.

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010).
[Crossref] [PubMed]

Dai, G.

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Dalla Mora, A.

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

de Boer, M.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

de Kleine, R. H.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

De Silvestri, S.

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010).
[Crossref] [PubMed]

Eliceiri, K. W.

Elpers, G.

Feng, T. C.

Fieramonti, L.

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

Fippel, M.

I. Kawrakow and M. Fippel, “Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC,” Phys. Med. Biol. 45(8), 2163–2183 (2000).
[Crossref] [PubMed]

Fogarty, M.

L. Sinha, M. Fogarty, W. Zhou, A. Giudice, J. G. Brankov, and K. M. Tichauer, “Design and characterization of a dead-time regime enhanced early photon projection imaging system,” Rev. Sci. Instrum. 89(4), 043707 (2018).
[Crossref] [PubMed]

Foglia, E. A.

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

Fortin, M.

Frank, A.

Giudice, A.

L. Sinha, M. Fogarty, W. Zhou, A. Giudice, J. G. Brankov, and K. M. Tichauer, “Design and characterization of a dead-time regime enhanced early photon projection imaging system,” Rev. Sci. Instrum. 89(4), 043707 (2018).
[Crossref] [PubMed]

Greenwald, B. D.

Gulinatti, A.

Hall, G.

Han, T. D.

Haskell, R. C.

Hayakawa, C.

Hecksher-Sørensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Hensley, M. L.

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

Hielscher, A. H.

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005).
[Crossref] [PubMed]

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Hillman, E. M.

E. M. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photonics Rev. 3(1-2), 159–179 (2009).
[Crossref] [PubMed]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Hokr, B. H.

Hou, X.

Intes, X.

F. Yang, M. S. Ozturk, R. Yao, and X. Intes, “Improving mesoscopic fluorescence molecular tomography through data reduction,” Biomed. Opt. Express 8(8), 3868–3881 (2017).
[Crossref] [PubMed]

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Irwig, L.

K. Tew, L. Irwig, A. Matthews, P. Crowe, and P. Macaskill, “Meta-analysis of sentinel node imprint cytology in breast cancer,” Br. J. Surg. 92(9), 1068–1080 (2005).
[Crossref] [PubMed]

Jacques, S. L.

Jedidi, R.

Jin, L.

Kaminska, B.

Kanniyappan, U.

Kawrakow, I.

I. Kawrakow and M. Fippel, “Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC,” Phys. Med. Biol. 45(8), 2163–2183 (2000).
[Crossref] [PubMed]

Khoury-Collado, F.

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

Kim, A. D.

Kim, C. H.

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

Kirsch, D. G.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Klyen, B. R.

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

Lee, D.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular Domain Imaging of Objects Within Highly Scattering Media Using Silicon Micromachined Collimating Arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[Crossref]

Lee, V. K.

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Li, Z.

Lilge, L.

Lin, A.

Lin, J.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Liu, Y.

Lo, W. C.

Macaskill, P.

K. Tew, L. Irwig, A. Matthews, P. Crowe, and P. Macaskill, “Meta-analysis of sentinel node imprint cytology in breast cancer,” Br. J. Surg. 92(9), 1068–1080 (2005).
[Crossref] [PubMed]

Martelli, F.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Mashimo, H.

Massari, N.

L. Pancheri, N. Massari, and D. Stoppa, “SPAD Image Sensor With Analog Counting Pixel for Time-Resolved Fluorescence Detection,” IEEE T Electron Dev 60(10), 3442–3449 (2013).
[Crossref]

Matthews, A.

K. Tew, L. Irwig, A. Matthews, P. Crowe, and P. Macaskill, “Meta-analysis of sentinel node imprint cytology in breast cancer,” Br. J. Surg. 92(9), 1068–1080 (2005).
[Crossref] [PubMed]

McAdams, M. S.

McLaughlin, R. A.

Menke-Pluymers, M. B.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

Mermut, O.

Niedre, M. J.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Noiseux, I.

Nortier, J. W.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Ozturk, M. S.

F. Yang, M. S. Ozturk, R. Yao, and X. Intes, “Improving mesoscopic fluorescence molecular tomography through data reduction,” Biomed. Opt. Express 8(8), 3868–3881 (2017).
[Crossref] [PubMed]

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

Pancheri, L.

L. Pancheri, N. Massari, and D. Stoppa, “SPAD Image Sensor With Analog Counting Pixel for Time-Resolved Fluorescence Detection,” IEEE T Electron Dev 60(10), 3442–3449 (2013).
[Crossref]

Park, K. J.

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

Patterson, M. S.

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Pfeiffer, N.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular Domain Imaging of Objects Within Highly Scattering Media Using Silicon Micromachined Collimating Arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[Crossref]

Pifferi, A.

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Pistocchi, A.

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

Psaltis, D.

Pu, Y.

Robbins, P. D.

Rohrbach, D.

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

Rose, J.

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Rutgers, E. J.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

Sampson, D. D.

Saunders, C. M.

Scolaro, L.

Scully, M. O.

Seynaeve, C.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

Sharpe, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Si, J.

Sinha, L.

L. Sinha, M. Fogarty, W. Zhou, A. Giudice, J. G. Brankov, and K. M. Tichauer, “Design and characterization of a dead-time regime enhanced early photon projection imaging system,” Rev. Sci. Instrum. 89(4), 043707 (2018).
[Crossref] [PubMed]

L. Sinha, J. G. Brankov, and K. M. Tichauer, “Enhanced detection of early photons in time-domain optical imaging by running in the “dead-time” regime,” Opt. Lett. 41(14), 3225–3228 (2016).
[Crossref] [PubMed]

Sonoda, Y.

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

Soslow, R. A.

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

Spinelli, L.

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Stoppa, D.

L. Pancheri, N. Massari, and D. Stoppa, “SPAD Image Sensor With Analog Counting Pixel for Time-Resolved Fluorescence Detection,” IEEE T Electron Dev 60(10), 3442–3449 (2013).
[Crossref]

Sunar, U.

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

Svaasand, L. O.

Tan, W.

Tang, Q.

Tank, M. S.

M. S. Tank and G. H. Chapman, “Micromachined silicon collimating detector array to view objects in highly scattering medium,” Can. J. Electr. Comput. Eng. 25, 13–18 (2000).

Tew, K.

K. Tew, L. Irwig, A. Matthews, P. Crowe, and P. Macaskill, “Meta-analysis of sentinel node imprint cytology in breast cancer,” Br. J. Surg. 92(9), 1068–1080 (2005).
[Crossref] [PubMed]

Thomas, R. J.

Tichauer, K. M.

L. Sinha, M. Fogarty, W. Zhou, A. Giudice, J. G. Brankov, and K. M. Tichauer, “Design and characterization of a dead-time regime enhanced early photon projection imaging system,” Rev. Sci. Instrum. 89(4), 043707 (2018).
[Crossref] [PubMed]

L. Sinha, J. G. Brankov, and K. M. Tichauer, “Enhanced detection of early photons in time-domain optical imaging by running in the “dead-time” regime,” Opt. Lett. 41(14), 3225–3228 (2016).
[Crossref] [PubMed]

Tjan-Heijnen, V. C.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

Torricelli, A.

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Tosi, A.

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Trinh, M.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular Domain Imaging of Objects Within Highly Scattering Media Using Silicon Micromachined Collimating Arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[Crossref]

Tromberg, B. J.

Tsay, T. T.

Tsytsarev, V.

Valentini, G.

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010).
[Crossref] [PubMed]

van Deurzen, C. H.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

van Diest, P. J.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

van Dijck, J. A.

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

Vasefi, F.

Veilleux, I.

Venugopalan, V.

Wang, B.

Wang, J.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Weissleder, R.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Wilson, B. C.

Wood, B. A.

Wu, B.

Wu, T.

Yakovlev, V. V.

Yang, F.

Yao, R.

Yoo, S. S.

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Zaccanti, G.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Zappa, F.

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Zhan, P.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Zhao, L.

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zhou, W.

L. Sinha, M. Fogarty, W. Zhou, A. Giudice, J. G. Brankov, and K. M. Tichauer, “Design and characterization of a dead-time regime enhanced early photon projection imaging system,” Rev. Sci. Instrum. 89(4), 043707 (2018).
[Crossref] [PubMed]

Zhou, Z.

Zollars, B.

Acad. Radiol. (1)

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomaterials (1)

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

F. Yang, M. S. Ozturk, R. Yao, and X. Intes, “Improving mesoscopic fluorescence molecular tomography through data reduction,” Biomed. Opt. Express 8(8), 3868–3881 (2017).
[Crossref] [PubMed]

E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1(2), 658–675 (2010).
[Crossref] [PubMed]

G. Hall, S. L. Jacques, K. W. Eliceiri, and P. J. Campagnola, “Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient,” Biomed. Opt. Express 3(11), 2707–2719 (2012).
[Crossref] [PubMed]

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express 3(2), 366–379 (2012).
[Crossref] [PubMed]

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. W. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref] [PubMed]

Q. Tang, Y. Liu, V. Tsytsarev, J. Lin, B. Wang, U. Kanniyappan, Z. Li, and Y. Chen, “High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT),” Biomed. Opt. Express 8(4), 2124–2137 (2017).
[Crossref] [PubMed]

Br. J. Surg. (1)

K. Tew, L. Irwig, A. Matthews, P. Crowe, and P. Macaskill, “Meta-analysis of sentinel node imprint cytology in breast cancer,” Br. J. Surg. 92(9), 1068–1080 (2005).
[Crossref] [PubMed]

Can. J. Electr. Comput. Eng. (1)

M. S. Tank and G. H. Chapman, “Micromachined silicon collimating detector array to view objects in highly scattering medium,” Can. J. Electr. Comput. Eng. 25, 13–18 (2000).

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular Domain Imaging of Objects Within Highly Scattering Media Using Silicon Micromachined Collimating Arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[Crossref]

IEEE T Electron Dev (1)

L. Pancheri, N. Massari, and D. Stoppa, “SPAD Image Sensor With Analog Counting Pixel for Time-Resolved Fluorescence Detection,” IEEE T Electron Dev 60(10), 3442–3449 (2013).
[Crossref]

Int. J. Gynecol. Cancer (1)

C. H. Kim, R. A. Soslow, K. J. Park, E. L. Barber, F. Khoury-Collado, J. N. Barlin, Y. Sonoda, M. L. Hensley, R. R. Barakat, and N. R. Abu-Rustum, “Pathologic ultrastaging improves micrometastasis detection in sentinel lymph nodes during endometrial cancer staging,” Int. J. Gynecol. Cancer 23(5), 964–970 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

E. M. Hillman and S. A. Burgess, “Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography,” Laser Photonics Rev. 3(1-2), 159–179 (2009).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-Pluymers, P. Bult, and V. C. Tjan-Heijnen, “Micrometastases or isolated tumor cells and the outcome of breast cancer,” N. Engl. J. Med. 361(7), 653–663 (2009).
[Crossref] [PubMed]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Med. Biol. (2)

I. Kawrakow and M. Fippel, “Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC,” Phys. Med. Biol. 45(8), 2163–2183 (2000).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

PLoS One (1)

L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS One 7(11), e50744 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

L. Sinha, M. Fogarty, W. Zhou, A. Giudice, J. G. Brankov, and K. M. Tichauer, “Design and characterization of a dead-time regime enhanced early photon projection imaging system,” Rev. Sci. Instrum. 89(4), 043707 (2018).
[Crossref] [PubMed]

Science (2)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002).
[Crossref] [PubMed]

Other (4)

D. B. Thomas, “THe MWC64X Random Number Generator”, retrieved http://cas.ee.ic.ac.uk/people/dt10/research/index.html .

S. L. Jacques, “Monte Carlo modeling of light transport in tissue (steady state and time of flight),” in Optical-thermal response of laser-irradiated tissue (Springer, 2010), pp. 109–144.

S. Jacques, (2007), retrieved https://omlc.org/software/mc/mcsub/index.html .

A. N. S. Institute, ANSI Z136.3 - Safe Use of Lasers in Health Care (Laser Institute of America, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Detected photons’ transported density maps determined by Monte Carlo simulation plotted as a function of axial distance (z-axis; along the direction of the illumination vector) and the radial distance (x-axis; perpendicular to the direction of the illumination vector). This figure provides a subset of results for the low scattering tissue (similar to lymph node tissue; μa = 0.3 cm−1, μs = 43 cm−1, g = 0.92), for object thickness between 3 and 6 mm, angular-restriction between NA = 0.005-0.124, and time-domain restriction for 0.1-1 ps. All simulations were based on a 100-μm FWHM Gaussian light source incident on the object at its waist and a 100-μm diameter detector.
Fig. 2
Fig. 2 Monte Carlo simulation results estimating the amount of light energy required at illumination to detect 600 fJ of energy (~2.4 × 106 photons at 780 nm) at various thickness of a lymph node-like tissue (μa = 0.3 cm−1, μs = 43 cm−1, g = 0.92), assuming a 100-μm FWHM Gaussian light source incident on the object at its waist and a 100-μm diameter detector at three example restrictions along with the no restriction case.
Fig. 3
Fig. 3 Transverse plane images of 3D scatter-rejection optical projection tomography reconstructions. Two, 200x200x200 μm3 inclusions with a 10% increase in attenuation coefficient were simulated, separated by 200 μm. Projections were simulated at 10 μm spacing in a d x d grid (d = thickness of object) for 72 evenly spaced projections about each object. The detected energy of light at each detector location was assumed to be 600 fJ. Poisson noise was estimated and results for one noise-realization using standard filtered backprojection reconstruction are shown in under all conditions. The top row of images pertains to results from a 3 mm thick average soft tissue (μa = 0.2 cm−1, μs = 100 cm−1, g = 0.9) object. The second row pertains to a 6 mm thick lymph node like tissue (μa = 0.3 cm−1, μs = 43 cm−1, g = 0.92; at 780 nm). The first column of images is for the case with no scatter-restriction, the second column represents images for an angular restriction of NA = 0.059, the third column represents images for an angular-domain restriction of NA = 0.005, the fourth column represents images for a time-domain restriction of 1 ps, and the fifth column represents images for a time-domain restriction of 0.1 ps. Units are in cm−1 (attenuation).
Fig. 4
Fig. 4 Contrast values obtained for different sample types with different restrictions. The values are plotted for average tissue optical properties (μa = 0.2 cm−1, μs = 100 cm−1, g = 0.9; column 1), and for lymph node-like optical properties (μa = 0.3 cm−1, μs = 43 cm−1, g = 0.92; column 2). All simulations were based on a 100-μm FWHM Gaussian light source incident on the object at its waist and a 100-μm diameter detector, for 2D plane images of 3D scatter-rejection optical projection tomography reconstructions. Two, 200x200x200 μm3 inclusions with a 10% increase in attenuation coefficient were simulated, separated by 200 μm. Projections were simulated at 10 μm spacing in a d x d grid (d = thickness of object) for 72 evenly spaced projections about each object. Variations in time- and angular-domain restriction are presented in rows 1 and 2, respectively.
Fig. 5
Fig. 5 Mean squared error values obtained for different sample types with different restrictions. The values are plotted for average tissue optical properties (μa = 0.2 cm−1, μs = 100 cm−1, g = 0.9; column 1), and for lymph node-like optical properties (μa = 0.3 cm−1, μs = 43 cm−1, g = 0.92; column 2). All simulations were based on a 100-μm FWHM Gaussian light source incident on the object at its waist and a 100-μm diameter detector, for 2D plane images of 3D scatter-rejection optical projection tomography reconstructions. Two, 200x200x200 μm3 inclusions with a 10% increase in attenuation coefficient were simulated, separated by 200 μm. Projections were simulated at 10 μm spacing in a d x d grid (d = thickness of object) for 72 evenly spaced projections about each object. Variations in time- and angular-domain restriction are presented in rows 1 and 2, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N( m,n )= N 0 i,j,k D( x i x m , y j y n , z k )( 1 δμ( x i , y j , z k ) μ a + μ s ) , m,n,
contrast= I 1 I 2 I 1 + I 2
MSE= 1 N i,k ( δμ( x i , y 0 , z k ) δμ( x i , y 0 , z k ) ¯ μ a +μ ) 2
ϕ( t )= ϕ 0 ( t )a t 3 2 exp( 3( μ a + μ s ) d 2 4vt μ a vt ),
P= P 0 exp( μ t d ),

Metrics