Abstract

We present an optical coherence tomography (OCT) method that can deliver an en-face OCT image from a sample in real-time, irrespective of the tuning speed of the swept source. The method, based on the master slave interferometry technique, implements a coherence gate principle by requiring that the optical path difference (OPD) between the arms of an imaging interferometer is the same with the OPD in an interrogating interferometer. In this way, a real-time en-face OCT image can originate from a depth in the sample placed in the imaging interferometer, selected by actuating on the OPD in the interrogating interferometer, while laterally scanning the incident beam over the sample. The generation of the en-face image resembles time domain OCT, with the difference that here the signal is processed based on spectral domain OCT. The optoelectronic processor operates down-conversion of the chirped radio frequency signal delivered by the photo-detector. The down-conversion factor is equal to the ratio of the maximum frequency of the photo-detected signal due to an OPD value matching the coherence length of the swept source, to the sweeping rate. This factor can exceed 106 for long coherence swept sources.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography

Adrian Bradu and Adrian Gh. Podoleanu
Biomed. Opt. Express 5(4) 1233-1249 (2014)

En face optical coherence tomography: a technology review [Invited]

R. A. Leitgeb
Biomed. Opt. Express 10(5) 2177-2201 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Podoleanu and A. Bradu, “Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21(16), 19324–19338 (2013).
    [Crossref] [PubMed]
  2. S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24(3), 2885–2904 (2016).
    [Crossref] [PubMed]
  3. A. Bradu and A. G. Podoleanu, “Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography,” Biomed. Opt. Express 5(4), 1233–1249 (2014).
    [Crossref] [PubMed]
  4. A. Bradu, M. Maria, and A. G. Podoleanu, “Demonstration of tolerance to dispersion of master/slave interferometry,” Opt. Express 23(11), 14148–14161 (2015).
    [Crossref] [PubMed]
  5. A. Bradu, S. Rivet, and A. Podoleanu, “Master/slave interferometry - ideal tool for coherence revival swept source optical coherence tomography,” Biomed. Opt. Express 7(7), 2453–2468 (2016).
    [Crossref] [PubMed]
  6. S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24(3), 2885–2904 (2016).
    [Crossref] [PubMed]
  7. A. Bradu, K. Kapinchev, F. Barnes, and A. Podoleanu, “Master slave en-face OCT/SLO,” Biomed. Opt. Express 6(9), 3655–3669 (2015).
    [Crossref] [PubMed]
  8. C. Chin, A. Bradu, R. Lim, M. Khandwala, J. Schofield, L. Leick, and A. Podoleanu, “Master/slave optical coherence tomography imaging of eyelid basal cell carcinoma,” Appl. Opt. 55(26), 7378–7386 (2016).
    [Crossref] [PubMed]
  9. R. Cernat, A. Bradu, N. M. Israelsen, O. Bang, S. Rivet, P. A. Keane, D.-G. Heath, R. Rajendram, and A. Podoleanu, “Gabor fusion master slave optical coherence tomography,” Biomed. Opt. Express 8(2), 813–827 (2017).
    [Crossref] [PubMed]
  10. S. Caujolle, R. Cernat, G. Silvestri, M. J. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
    [Crossref] [PubMed]
  11. A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett. 22(13), 1039–1041 (1997).
    [Crossref] [PubMed]
  12. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008).
    [PubMed]
  13. http://downloads.axsun.com/public/datasheets/Axsun_OCT_laser_datasheet.pdf
  14. A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
    [Crossref] [PubMed]
  15. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  16. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16(18), 14095–14105 (2008).
    [Crossref] [PubMed]
  17. D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically-pumped 1050 nm MEMS-tunable VCSEL for ophthalmic imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
    [Crossref] [PubMed]
  18. A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
    [Crossref] [PubMed]
  19. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
    [Crossref] [PubMed]
  20. J. Kang, P. Feng, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Y. Wong, “102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography,” Opt. Express 26(4), 4370–4381 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

2016 (4)

2015 (3)

2014 (1)

2013 (2)

2012 (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[Crossref] [PubMed]

2008 (2)

2003 (1)

1998 (1)

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

1997 (1)

Adler, D. C.

Bang, O.

Barnes, F.

Biedermann, B. R.

Bradu, A.

R. Cernat, A. Bradu, N. M. Israelsen, O. Bang, S. Rivet, P. A. Keane, D.-G. Heath, R. Rajendram, and A. Podoleanu, “Gabor fusion master slave optical coherence tomography,” Biomed. Opt. Express 8(2), 813–827 (2017).
[Crossref] [PubMed]

S. Caujolle, R. Cernat, G. Silvestri, M. J. Marques, A. Bradu, T. Feuchter, G. Robinson, D. K. Griffin, and A. Podoleanu, “Speckle variance OCT for depth resolved assessment of the viability of bovine embryos,” Biomed. Opt. Express 8(11), 5139–5150 (2017).
[Crossref] [PubMed]

S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24(3), 2885–2904 (2016).
[Crossref] [PubMed]

S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, and A. Podoleanu, “Complex master slave interferometry,” Opt. Express 24(3), 2885–2904 (2016).
[Crossref] [PubMed]

A. Bradu, S. Rivet, and A. Podoleanu, “Master/slave interferometry - ideal tool for coherence revival swept source optical coherence tomography,” Biomed. Opt. Express 7(7), 2453–2468 (2016).
[Crossref] [PubMed]

C. Chin, A. Bradu, R. Lim, M. Khandwala, J. Schofield, L. Leick, and A. Podoleanu, “Master/slave optical coherence tomography imaging of eyelid basal cell carcinoma,” Appl. Opt. 55(26), 7378–7386 (2016).
[Crossref] [PubMed]

A. Bradu, K. Kapinchev, F. Barnes, and A. Podoleanu, “Master slave en-face OCT/SLO,” Biomed. Opt. Express 6(9), 3655–3669 (2015).
[Crossref] [PubMed]

A. Bradu, M. Maria, and A. G. Podoleanu, “Demonstration of tolerance to dispersion of master/slave interferometry,” Opt. Express 23(11), 14148–14161 (2015).
[Crossref] [PubMed]

A. Bradu and A. G. Podoleanu, “Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography,” Biomed. Opt. Express 5(4), 1233–1249 (2014).
[Crossref] [PubMed]

A. G. Podoleanu and A. Bradu, “Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography,” Opt. Express 21(16), 19324–19338 (2013).
[Crossref] [PubMed]

Burgner, C. B.

Cable, A. E.

Caujolle, S.

Cernat, R.

Chin, C.

Choi, W. J.

Choma, M.

Dobre, G. M.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett. 22(13), 1039–1041 (1997).
[Crossref] [PubMed]

Eigenwillig, C. M.

Feng, P.

Feuchter, T.

Fitzke, F. W.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

Fujimoto, J. G.

Griffin, D. K.

Gu, X.

Heath, D.-G.

Huber, R.

Israelsen, N. M.

Izatt, J.

Jackson, D. A.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett. 22(13), 1039–1041 (1997).
[Crossref] [PubMed]

Jayaraman, V.

John, D. D.

Kampik, A.

Kang, J.

Kapinchev, K.

Keane, P. A.

Khandwala, M.

Klein, T.

Lam, E. Y.

Lee, B. K.

Leick, L.

Lim, R.

Liu, G. Y.

Maria, M.

Mariampillai, A.

Marques, M. J.

Munce, N. R.

Neubauer, A.

Palte, G.

Podoleanu, A.

Podoleanu, A. G.

Potsaid, B.

Rajendram, R.

Reznicek, L.

Rivet, S.

Robertson, M. E.

Robinson, G.

Sarunic, M.

Schofield, J.

Seeger, M.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

Silvestri, G.

Srinivasan, V. J.

Standish, B. A.

Tsia, K. K.

Vitkin, I. A.

Webb, D. J.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett. 22(13), 1039–1041 (1997).
[Crossref] [PubMed]

Wei, X.

Wieser, W.

Wong, K. K. Y.

Yang, C.

Appl. Opt. (1)

Biomed. Opt. Express (6)

J. Biomed. Opt. (1)

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Microsc. (1)

A. G. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Other (1)

http://downloads.axsun.com/public/datasheets/Axsun_OCT_laser_datasheet.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental set-up. SC1, SC2, MC1, MC2: directional fiber couplers; SBPD, MBPD: balanced photo-detectors; STS, MTS: translation stages; SRM, MRM, MSM: metallic flat mirrors; MHPF, SHPF: high pass filters; LPF1, LPF2: low pass filters; M: M-method, D: D-method.
Fig. 2
Fig. 2 (a) RF spectrum of the photo-detected signal acquired with the Master Interferometer using the 200 kHz SS for 7 different values of the position, zM/2, of the translation stage, MTS. (b) Variation of the maximum frequency in the spectrum of the photo-detected signal with OPD.
Fig. 3
Fig. 3 Signal amplitude at the Q output of I&Q demodulator before and after the low pass filter LPF2 for: a) ΔOPD = 0 and b) ΔOPD = 50 µm.
Fig. 4
Fig. 4 Signal amplitude versus zM for all methods: M with the Broadband Mixer, D and CMS.
Fig. 5
Fig. 5 Axial resolutions produced by the M-method with the Broadband Mixer, D-method and the CMS-method using the 200 kHz SS
Fig. 6
Fig. 6 Temporal evolution of the axial resolution for the CMS, D and M-method using the broadband mixer over 10 minutes after the swept source was switched on. The data was evaluated for ZM = 3 mm.
Fig. 7
Fig. 7 En-face OCT images obtained from a tilted 5-pence coin using the CMS-Method, distance between images 50 µm. (a) ZM = 0.5 mm, (b) ZM = 5 mm, (c) ZM = 9.5 mm. Size: 2 x 2 mm2
Fig. 8
Fig. 8 En-face OCT images obtained from the same tilted 5-pence coin using the M-Method, distance between images 80 µm, for ZM = (a) 0.5 mm, (b) 5 mm, (c) 9.5 mm, (d) 12.5 mm, (e) 14 mm, (f) 16.5 mm. Image size 2 x 2 mm2.
Fig. 9
Fig. 9 En-face OCT images of human optic nerve, collected from different axial positions. Lateral scan size ~4 mm x 4 mm.
Fig. 10
Fig. 10 En-face OCT images obtained from a thumb, lateral scan size ~3 mm x 3 mm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R ( z ) = T ( k , z ) C S ( k ) .
Δ g = g M g m .
g = γ t + g m
C S S = A S cos [ g z S + h S ( k ) + θ s ] and C S M = A M cos [ g z M + h M ( k ) + θ M ]
s = A S A M cos [ g z S + h S ( k ) + θ S ] cos [ g z M + h M ( k ) + θ M ]
s = 1 2 A S A M { cos [ g Δ z + Δ h + Δ θ ] + cos [ g ( z S + z M ) + h S ( k ) + h M ( k ) + θ S + θ M ] }
s = 0.5 A S A M T 0 T cos ( g Δ z + Δ h + Δ θ ) d t
s 0.5 A S A M T 2 sin ( γ T Δ z 2 ) cos [ ( γ T 2 + g m ) Δ z ] γ Δ z
s M = 0.5 A S A M
Δ z = 2 π γ T = 2 π Δ g

Metrics