Abstract

Laser surgery provides clean, fast and accurate cutting of tissue. However, it is difficult to detect what kind of tissue is being cut. Therefore, a wrong cut may lead to iatrogenic damage of structures. A feedback system should automatically stop the cutting process when a nerve is reached or accidentally being cut to prevent its damage. This could increase the applicability and safety of using a laser scalpel in surgical procedures. In this study, random lasing (RL) is used to differentiate between skin, fat, muscle and nerve tissue. Among these tissue types, a special emphasis is made on the differentiation of nerve from the rest of the tissues, especially fat since nerve is covered by a fatty layer. The differentiation is done for ex-vivo tissues of a pig animal model. The results show that random lasing can be used to differentiate these tissue types also under room light conditions in open air.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-mode laparoscopic fluorescence image-guided surgery using a single camera

Daniel C. Gray, Evgenia M. Kim, Victoria E. Cotero, Anshika Bajaj, V. Paul Staudinger, Cristina A. Tan Hehir, and Siavash Yazdanfar
Biomed. Opt. Express 3(8) 1880-1890 (2012)

New fluorescent compounds produced by femtosecond laser surgery in biological tissues: the mechanisms

Zhongya Qin, Qiqi Sun, Yue Lin, Sicong He, Xuesong Li, Congping Chen, Wanjie Wu, Yi Luo, and Jianan Y. Qu
Biomed. Opt. Express 9(7) 3373-3390 (2018)

Random lasing in bone tissue

Qinghai Song, Shumin Xiao, Zhengbin Xu, Jingjing Liu, Xuanhao Sun, Vladimir Drachev, Vladimir M. Shalaev, Ozan Akkus, and Young L. Kim
Opt. Lett. 35(9) 1425-1427 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
    [Crossref] [PubMed]
  2. D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. opinion neurobiology 22, 24–33 (2012).
    [Crossref]
  3. R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-an approach on a feedback laser control mechanism,” Spectrochimica Acta Part B: At. Spectrosc. 87, 175–181 (2013).
    [Crossref]
  4. S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. journal ophthalmology 96, 710–715 (1983).
    [Crossref]
  5. S. Rupprecht, K. Tangermann-Gerk, J. Wiltfang, F. W. Neukam, and A. Schlegel, “Sensor-based laser ablation for tissue specific cutting: an experimental study,” Lasers medical science 19, 81–88 (2004).
    [Crossref]
  6. M. Midda and P. Renton-Harper, “Lasers in dentistry,” Br. dental journal 170, 343–346 (1991).
    [Crossref]
  7. S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
    [Crossref] [PubMed]
  8. J. Eberhard, A. Eisenbeiss, A. Braun, J. Hedderich, and S. Jepsen, “Evaluation of selective caries removal by a fluorescence feedback-controlled er: Yag laser in vitro,” Caries research 39, 496–504 (2005).
    [Crossref]
  9. V. A. Ulyanov, V. M. Gordienko, A. Dmitriev, V. Kortunov, V. Y. Panchenko, I. Y. Poutivski, and Y. A. Phischyuk, “Determination of biotissue type in the course of co 2 laser ablation using backscattered radiation,” in Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, vol. 3195 (International Society for Optics and Photonics, 1998), pp. 88–94.
    [Crossref]
  10. S. Rupprecht, K. Tangermann, P. Kessler, F. W. Neukam, and J. Wiltfang, “Er: Yag laser osteotomy directed by sensor controlled systems,” J. Cranio-Maxillofacial Surg. 31, 337–342 (2003).
    [Crossref]
  11. F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers surgery medicine 42, 319–325 (2010).
    [Crossref]
  12. F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
    [Crossref]
  13. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. physics letters 85, 1289–1291 (2004).
    [Crossref]
  14. R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “5a10 (b)-a laser with a nonresonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
    [Crossref]
  15. V. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. J. Exp. Theor. Phys. 26, 835 (1968).
  16. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
    [Crossref]
  17. D. S. Wiersma, “The physics and applications of random lasers,” Nat. physics 4, 359–367 (2008).
    [Crossref]
  18. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A: Math. Gen. 38, 10497 (2005).
    [Crossref]
  19. F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
    [Crossref]
  20. Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
    [Crossref]
  21. Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
    [Crossref]
  22. Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. optics express 1, 1401–1407 (2010).
    [Crossref]
  23. R. Polson and Z. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12, 024010 (2010).
    [Crossref]
  24. F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
    [Crossref]
  25. A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
    [Crossref]
  26. M. Hohmann, R. Kanawade, F. Klämpfl, A. Douplik, J. Mudter, M. Neurath, and H. Albrecht, “In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy,” J. biophotonics 10, 553–564 (2017).
    [Crossref]

2017 (1)

M. Hohmann, R. Kanawade, F. Klämpfl, A. Douplik, J. Mudter, M. Neurath, and H. Albrecht, “In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy,” J. biophotonics 10, 553–564 (2017).
[Crossref]

2016 (2)

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
[Crossref]

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

2015 (2)

F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

2013 (1)

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-an approach on a feedback laser control mechanism,” Spectrochimica Acta Part B: At. Spectrosc. 87, 175–181 (2013).
[Crossref]

2012 (1)

D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. opinion neurobiology 22, 24–33 (2012).
[Crossref]

2010 (4)

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers surgery medicine 42, 319–325 (2010).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. optics express 1, 1401–1407 (2010).
[Crossref]

R. Polson and Z. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12, 024010 (2010).
[Crossref]

2008 (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. physics 4, 359–367 (2008).
[Crossref]

2005 (2)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A: Math. Gen. 38, 10497 (2005).
[Crossref]

J. Eberhard, A. Eisenbeiss, A. Braun, J. Hedderich, and S. Jepsen, “Evaluation of selective caries removal by a fluorescence feedback-controlled er: Yag laser in vitro,” Caries research 39, 496–504 (2005).
[Crossref]

2004 (2)

S. Rupprecht, K. Tangermann-Gerk, J. Wiltfang, F. W. Neukam, and A. Schlegel, “Sensor-based laser ablation for tissue specific cutting: an experimental study,” Lasers medical science 19, 81–88 (2004).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. physics letters 85, 1289–1291 (2004).
[Crossref]

2003 (1)

S. Rupprecht, K. Tangermann, P. Kessler, F. W. Neukam, and J. Wiltfang, “Er: Yag laser osteotomy directed by sensor controlled systems,” J. Cranio-Maxillofacial Surg. 31, 337–342 (2003).
[Crossref]

1999 (2)

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

1996 (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

1991 (1)

M. Midda and P. Renton-Harper, “Lasers in dentistry,” Br. dental journal 170, 343–346 (1991).
[Crossref]

1983 (1)

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. journal ophthalmology 96, 710–715 (1983).
[Crossref]

1968 (1)

V. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. J. Exp. Theor. Phys. 26, 835 (1968).

1966 (1)

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “5a10 (b)-a laser with a nonresonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

Adler, W.

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers surgery medicine 42, 319–325 (2010).
[Crossref]

Akkus, O.

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. optics express 1, 1401–1407 (2010).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
[Crossref]

Albrecht, H.

M. Hohmann, R. Kanawade, F. Klämpfl, A. Douplik, J. Mudter, M. Neurath, and H. Albrecht, “In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy,” J. biophotonics 10, 553–564 (2017).
[Crossref]

Ambartsumyan, R.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “5a10 (b)-a laser with a nonresonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

Basov, N.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “5a10 (b)-a laser with a nonresonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

Boppart, S. A.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

Boto, A.

F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Braren, B.

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. journal ophthalmology 96, 710–715 (1983).
[Crossref]

Braun, A.

J. Eberhard, A. Eisenbeiss, A. Braun, J. Hedderich, and S. Jepsen, “Evaluation of selective caries removal by a fluorescence feedback-controlled er: Yag laser in vitro,” Caries research 39, 496–504 (2005).
[Crossref]

Brezinski, M. E.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

Cao, H.

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A: Math. Gen. 38, 10497 (2005).
[Crossref]

Choi, S. H.

Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. optics express 1, 1401–1407 (2010).
[Crossref]

De Araújo, C. B.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
[Crossref]

Díaz, M.

F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Dmitriev, A.

V. A. Ulyanov, V. M. Gordienko, A. Dmitriev, V. Kortunov, V. Y. Panchenko, I. Y. Poutivski, and Y. A. Phischyuk, “Determination of biotissue type in the course of co 2 laser ablation using backscattered radiation,” in Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, vol. 3195 (International Society for Optics and Photonics, 1998), pp. 88–94.
[Crossref]

Douplik, A.

M. Hohmann, R. Kanawade, F. Klämpfl, A. Douplik, J. Mudter, M. Neurath, and H. Albrecht, “In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy,” J. biophotonics 10, 553–564 (2017).
[Crossref]

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers surgery medicine 42, 319–325 (2010).
[Crossref]

Drachev, V.

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
[Crossref]

Eberhard, J.

J. Eberhard, A. Eisenbeiss, A. Braun, J. Hedderich, and S. Jepsen, “Evaluation of selective caries removal by a fluorescence feedback-controlled er: Yag laser in vitro,” Caries research 39, 496–504 (2005).
[Crossref]

Eisenbeiss, A.

J. Eberhard, A. Eisenbeiss, A. Braun, J. Hedderich, and S. Jepsen, “Evaluation of selective caries removal by a fluorescence feedback-controlled er: Yag laser in vitro,” Caries research 39, 496–504 (2005).
[Crossref]

Fewo, S. I.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
[Crossref]

Fujimoto, J. G.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

Gomes, A. S.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
[Crossref]

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Gordienko, V. M.

V. A. Ulyanov, V. M. Gordienko, A. Dmitriev, V. Kortunov, V. Y. Panchenko, I. Y. Poutivski, and Y. A. Phischyuk, “Determination of biotissue type in the course of co 2 laser ablation using backscattered radiation,” in Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, vol. 3195 (International Society for Optics and Photonics, 1998), pp. 88–94.
[Crossref]

Gu, B.

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Hedderich, J.

J. Eberhard, A. Eisenbeiss, A. Braun, J. Hedderich, and S. Jepsen, “Evaluation of selective caries removal by a fluorescence feedback-controlled er: Yag laser in vitro,” Caries research 39, 496–504 (2005).
[Crossref]

Herrmann, J.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

Hohmann, M.

M. Hohmann, R. Kanawade, F. Klämpfl, A. Douplik, J. Mudter, M. Neurath, and H. Albrecht, “In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy,” J. biophotonics 10, 553–564 (2017).
[Crossref]

Jeong, D. C.

D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. opinion neurobiology 22, 24–33 (2012).
[Crossref]

Jepsen, S.

J. Eberhard, A. Eisenbeiss, A. Braun, J. Hedderich, and S. Jepsen, “Evaluation of selective caries removal by a fluorescence feedback-controlled er: Yag laser in vitro,” Caries research 39, 496–504 (2005).
[Crossref]

Jerez, V.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
[Crossref]

Kanawade, R.

M. Hohmann, R. Kanawade, F. Klämpfl, A. Douplik, J. Mudter, M. Neurath, and H. Albrecht, “In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy,” J. biophotonics 10, 553–564 (2017).
[Crossref]

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-an approach on a feedback laser control mechanism,” Spectrochimica Acta Part B: At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Kessler, P.

S. Rupprecht, K. Tangermann, P. Kessler, F. W. Neukam, and J. Wiltfang, “Er: Yag laser osteotomy directed by sensor controlled systems,” J. Cranio-Maxillofacial Surg. 31, 337–342 (2003).
[Crossref]

Kim, Y.

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
[Crossref]

Kim, Y. L.

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. optics express 1, 1401–1407 (2010).
[Crossref]

Klaempfl, F.

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

Klämpfl, F.

M. Hohmann, R. Kanawade, F. Klämpfl, A. Douplik, J. Mudter, M. Neurath, and H. Albrecht, “In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy,” J. biophotonics 10, 553–564 (2017).
[Crossref]

Kleinfeld, D.

D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. opinion neurobiology 22, 24–33 (2012).
[Crossref]

Knipfer, C.

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-an approach on a feedback laser control mechanism,” Spectrochimica Acta Part B: At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Kortunov, V.

V. A. Ulyanov, V. M. Gordienko, A. Dmitriev, V. Kortunov, V. Y. Panchenko, I. Y. Poutivski, and Y. A. Phischyuk, “Determination of biotissue type in the course of co 2 laser ablation using backscattered radiation,” in Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, vol. 3195 (International Society for Optics and Photonics, 1998), pp. 88–94.
[Crossref]

Kryukov, P.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “5a10 (b)-a laser with a nonresonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

Lagendijk, A.

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

Lahoz, F.

F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Letokhov, V.

V. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. J. Exp. Theor. Phys. 26, 835 (1968).

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “5a10 (b)-a laser with a nonresonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

Liu, J.

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
[Crossref]

Luan, F.

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Maia, L. J.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
[Crossref]

Marín, R.

F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Marrero-Alonso, J.

F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Martín, I.

F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Mehari, F.

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-an approach on a feedback laser control mechanism,” Spectrochimica Acta Part B: At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Midda, M.

M. Midda and P. Renton-Harper, “Lasers in dentistry,” Br. dental journal 170, 343–346 (1991).
[Crossref]

Moura, A. L.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
[Crossref]

Mudter, J.

M. Hohmann, R. Kanawade, F. Klämpfl, A. Douplik, J. Mudter, M. Neurath, and H. Albrecht, “In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy,” J. biophotonics 10, 553–564 (2017).
[Crossref]

Neukam, F. W.

S. Rupprecht, K. Tangermann-Gerk, J. Wiltfang, F. W. Neukam, and A. Schlegel, “Sensor-based laser ablation for tissue specific cutting: an experimental study,” Lasers medical science 19, 81–88 (2004).
[Crossref]

S. Rupprecht, K. Tangermann, P. Kessler, F. W. Neukam, and J. Wiltfang, “Er: Yag laser osteotomy directed by sensor controlled systems,” J. Cranio-Maxillofacial Surg. 31, 337–342 (2003).
[Crossref]

Neurath, M.

M. Hohmann, R. Kanawade, F. Klämpfl, A. Douplik, J. Mudter, M. Neurath, and H. Albrecht, “In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy,” J. biophotonics 10, 553–564 (2017).
[Crossref]

Nkenke, E.

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers surgery medicine 42, 319–325 (2010).
[Crossref]

Oetter, N.

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

Panchenko, V. Y.

V. A. Ulyanov, V. M. Gordienko, A. Dmitriev, V. Kortunov, V. Y. Panchenko, I. Y. Poutivski, and Y. A. Phischyuk, “Determination of biotissue type in the course of co 2 laser ablation using backscattered radiation,” in Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, vol. 3195 (International Society for Optics and Photonics, 1998), pp. 88–94.
[Crossref]

Phischyuk, Y. A.

V. A. Ulyanov, V. M. Gordienko, A. Dmitriev, V. Kortunov, V. Y. Panchenko, I. Y. Poutivski, and Y. A. Phischyuk, “Determination of biotissue type in the course of co 2 laser ablation using backscattered radiation,” in Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, vol. 3195 (International Society for Optics and Photonics, 1998), pp. 88–94.
[Crossref]

Pincheira, P. I.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
[Crossref]

Pitris, C.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

Polson, R.

R. Polson and Z. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12, 024010 (2010).
[Crossref]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. physics letters 85, 1289–1291 (2004).
[Crossref]

Poutivski, I. Y.

V. A. Ulyanov, V. M. Gordienko, A. Dmitriev, V. Kortunov, V. Y. Panchenko, I. Y. Poutivski, and Y. A. Phischyuk, “Determination of biotissue type in the course of co 2 laser ablation using backscattered radiation,” in Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, vol. 3195 (International Society for Optics and Photonics, 1998), pp. 88–94.
[Crossref]

Prasad, P. N.

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Raposo, E. P.

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
[Crossref]

Renton-Harper, P.

M. Midda and P. Renton-Harper, “Lasers in dentistry,” Br. dental journal 170, 343–346 (1991).
[Crossref]

Rohde, M.

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-an approach on a feedback laser control mechanism,” Spectrochimica Acta Part B: At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Rupprecht, S.

S. Rupprecht, K. Tangermann-Gerk, J. Wiltfang, F. W. Neukam, and A. Schlegel, “Sensor-based laser ablation for tissue specific cutting: an experimental study,” Lasers medical science 19, 81–88 (2004).
[Crossref]

S. Rupprecht, K. Tangermann, P. Kessler, F. W. Neukam, and J. Wiltfang, “Er: Yag laser osteotomy directed by sensor controlled systems,” J. Cranio-Maxillofacial Surg. 31, 337–342 (2003).
[Crossref]

Saavedra, C.

F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Schlegel, A.

S. Rupprecht, K. Tangermann-Gerk, J. Wiltfang, F. W. Neukam, and A. Schlegel, “Sensor-based laser ablation for tissue specific cutting: an experimental study,” Lasers medical science 19, 81–88 (2004).
[Crossref]

Schmidt, M.

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-an approach on a feedback laser control mechanism,” Spectrochimica Acta Part B: At. Spectrosc. 87, 175–181 (2013).
[Crossref]

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers surgery medicine 42, 319–325 (2010).
[Crossref]

Shalaev, V. M.

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
[Crossref]

Song, Q.

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. optics express 1, 1401–1407 (2010).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
[Crossref]

Srinivasan, R.

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. journal ophthalmology 96, 710–715 (1983).
[Crossref]

Stamper, D. L.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

Stelzle, F.

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-an approach on a feedback laser control mechanism,” Spectrochimica Acta Part B: At. Spectrosc. 87, 175–181 (2013).
[Crossref]

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers surgery medicine 42, 319–325 (2010).
[Crossref]

Sun, X.

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. optics express 1, 1401–1407 (2010).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
[Crossref]

Tangermann, K.

S. Rupprecht, K. Tangermann, P. Kessler, F. W. Neukam, and J. Wiltfang, “Er: Yag laser osteotomy directed by sensor controlled systems,” J. Cranio-Maxillofacial Surg. 31, 337–342 (2003).
[Crossref]

Tangermann-Gerk, K.

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-an approach on a feedback laser control mechanism,” Spectrochimica Acta Part B: At. Spectrosc. 87, 175–181 (2013).
[Crossref]

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers surgery medicine 42, 319–325 (2010).
[Crossref]

S. Rupprecht, K. Tangermann-Gerk, J. Wiltfang, F. W. Neukam, and A. Schlegel, “Sensor-based laser ablation for tissue specific cutting: an experimental study,” Lasers medical science 19, 81–88 (2004).
[Crossref]

Trokel, S. L.

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. journal ophthalmology 96, 710–715 (1983).
[Crossref]

Tsai, P. S.

D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. opinion neurobiology 22, 24–33 (2012).
[Crossref]

Ulyanov, V. A.

V. A. Ulyanov, V. M. Gordienko, A. Dmitriev, V. Kortunov, V. Y. Panchenko, I. Y. Poutivski, and Y. A. Phischyuk, “Determination of biotissue type in the course of co 2 laser ablation using backscattered radiation,” in Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, vol. 3195 (International Society for Optics and Photonics, 1998), pp. 88–94.
[Crossref]

Urgellés, M.

F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Vardeny, Z.

R. Polson and Z. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12, 024010 (2010).
[Crossref]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. physics letters 85, 1289–1291 (2004).
[Crossref]

Wen, S.

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. physics 4, 359–367 (2008).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

Wiltfang, J.

S. Rupprecht, K. Tangermann-Gerk, J. Wiltfang, F. W. Neukam, and A. Schlegel, “Sensor-based laser ablation for tissue specific cutting: an experimental study,” Lasers medical science 19, 81–88 (2004).
[Crossref]

S. Rupprecht, K. Tangermann, P. Kessler, F. W. Neukam, and J. Wiltfang, “Er: Yag laser osteotomy directed by sensor controlled systems,” J. Cranio-Maxillofacial Surg. 31, 337–342 (2003).
[Crossref]

Xiao, S.

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. optics express 1, 1401–1407 (2010).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
[Crossref]

Xu, Z.

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. optics express 1, 1401–1407 (2010).
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
[Crossref]

Yong, K.-T.

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Zam, A.

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers surgery medicine 42, 319–325 (2010).
[Crossref]

Am. journal ophthalmology (1)

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. journal ophthalmology 96, 710–715 (1983).
[Crossref]

Appl. physics letters (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. physics letters 85, 1289–1291 (2004).
[Crossref]

Biomed. optics express (1)

Q. Song, Z. Xu, S. H. Choi, X. Sun, S. Xiao, O. Akkus, and Y. L. Kim, “Detection of nanoscale structural changes in bone using random lasers,” Biomed. optics express 1, 1401–1407 (2010).
[Crossref]

Br. dental journal (1)

M. Midda and P. Renton-Harper, “Lasers in dentistry,” Br. dental journal 170, 343–346 (1991).
[Crossref]

Caries research (1)

J. Eberhard, A. Eisenbeiss, A. Braun, J. Hedderich, and S. Jepsen, “Evaluation of selective caries removal by a fluorescence feedback-controlled er: Yag laser in vitro,” Caries research 39, 496–504 (2005).
[Crossref]

Curr. opinion neurobiology (1)

D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. opinion neurobiology 22, 24–33 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, “5a10 (b)-a laser with a nonresonant feedback,” IEEE J. Quantum Electron. 2, 442–446 (1966).
[Crossref]

J. biophotonics (1)

M. Hohmann, R. Kanawade, F. Klämpfl, A. Douplik, J. Mudter, M. Neurath, and H. Albrecht, “In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy,” J. biophotonics 10, 553–564 (2017).
[Crossref]

J. Cranio-Maxillofacial Surg. (1)

S. Rupprecht, K. Tangermann, P. Kessler, F. W. Neukam, and J. Wiltfang, “Er: Yag laser osteotomy directed by sensor controlled systems,” J. Cranio-Maxillofacial Surg. 31, 337–342 (2003).
[Crossref]

J. Opt. (1)

R. Polson and Z. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” J. Opt. 12, 024010 (2010).
[Crossref]

J. Phys. A: Math. Gen. (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A: Math. Gen. 38, 10497 (2005).
[Crossref]

J. Surg. Res. (2)

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue,” J. Surg. Res. 82, 275–284 (1999).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

F. Lahoz, I. Martín, M. Urgellés, J. Marrero-Alonso, R. Marín, C. Saavedra, A. Boto, and M. Díaz, “Random laser in biological tissues impregnated with a fluorescent anticancer drug,” Laser Phys. Lett. 12, 045805 (2015).
[Crossref]

Lasers medical science (1)

S. Rupprecht, K. Tangermann-Gerk, J. Wiltfang, F. W. Neukam, and A. Schlegel, “Sensor-based laser ablation for tissue specific cutting: an experimental study,” Lasers medical science 19, 81–88 (2004).
[Crossref]

Lasers surgery medicine (1)

F. Stelzle, K. Tangermann-Gerk, W. Adler, A. Zam, M. Schmidt, A. Douplik, and E. Nkenke, “Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery,” Lasers surgery medicine 42, 319–325 (2010).
[Crossref]

Nano Today (1)

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Nat. physics (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. physics 4, 359–367 (2008).
[Crossref]

Opt. letters (1)

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. letters 35, 1425–1427 (2010).
[Crossref]

Phys. Rev. E (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

Plasma Sci. Technol. (1)

F. Mehari, M. Rohde, C. Knipfer, R. Kanawade, F. Klaempfl, W. Adler, N. Oetter, F. Stelzle, and M. Schmidt, “Investigation of laser induced breakdown spectroscopy (libs) for the differentiation of nerve and gland tissue-a possible application for a laser surgery feedback control mechanism,” Plasma Sci. Technol. 18, 654 (2016).
[Crossref]

Sci. reports (1)

A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J. Maia, and C. B. De Araújo, “Observation of lévy distribution and replica symmetry breaking in random lasers from a single set of measurements,” Sci. reports 6, 27987 (2016).
[Crossref]

Sov. J. Exp. Theor. Phys. (1)

V. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. J. Exp. Theor. Phys. 26, 835 (1968).

Spectrochimica Acta Part B: At. Spectrosc. (1)

R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-an approach on a feedback laser control mechanism,” Spectrochimica Acta Part B: At. Spectrosc. 87, 175–181 (2013).
[Crossref]

Other (2)

V. A. Ulyanov, V. M. Gordienko, A. Dmitriev, V. Kortunov, V. Y. Panchenko, I. Y. Poutivski, and Y. A. Phischyuk, “Determination of biotissue type in the course of co 2 laser ablation using backscattered radiation,” in Laser-Tissue Interaction, Tissue Optics, and Laser Welding III, vol. 3195 (International Society for Optics and Photonics, 1998), pp. 88–94.
[Crossref]

Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. Kim, “Random lasing in bone tissue: potential as novel spectroscopy for dynamical analysis of nanostructures,” in Biomedical Optics, (Optical Society of America, 2010), p. BTuC7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Figure 1:
Figure 1: Experimental Set-up for RL. The laser is focused on the sample and the light is collected by the collection optics and coupled into a fibre, guiding the light to the spectrometer.
Figure 2:
Figure 2: Left and right graphs show typical example RL-spectra of fat, nerve, skin and muscle for two different animals.
Figure 3:
Figure 3: Mean spectra of all animals for fat, nerve, skin and muscle.
Figure 4:
Figure 4: Characterization of the RL. The top right and left show histogram of fluctuations in the spectral intensity for fat/skin and nerve/muscle, respectively. The lower left image shows the maximum position of the RL and the lower right image shows the corresponding FWHM. The black grid lines represent the cut between different animals.
Figure 5:
Figure 5: PC2 versus PC3 is shown for each single measurement (circles). Additionally, the mean for each animal and tissue type (in total 60) of PC2 versus PC3 are shown (’X’).

Tables (4)

Tables Icon

Table 1: Classification accuracy for all leave-one-out cases for RF, SVM and LDA. Green represents the best and red represents the worst results.

Tables Icon

Table 2: Confusion matrix for the analysis with LDA (top), RF (middle) and SVM (button).

Tables Icon

Table 3: Mean classification accuracy for the leave-one-out analysis for RF, SVM, LDA and RB between nerve and fat.

Tables Icon

Table 4: Mean classification accuracy for the leave-one-out analysis for RF, SVM, LDA and RB for nerve versus the rest.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

q γ , β = Σ k Δ γ ( k ) Δ β ( k ) Σ k Δ γ 2 ( k ) Σ k Δ β 2 ( k )

Metrics