Abstract

The present work shows the capability of near infrared (NIR) light to reach the cerebral cortex through the frontal sinus using continuous-wave techniques (CW-DOT) in a dual study. On the one hand, changes in time during the tracking of a blood dye in the prefrontal cortex were monitored. On the other hand, hemodynamic changes induced by low frequency of transcranial magnetic stimulation applied on the prefrontal cortex were recorded. The results show how NIR light projected through the frontal sinus reaches the cerebral cortex target, providing enough information to have a reliable measurement of cortical hemodynamic changes using CW-DOT.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes

Anna Gerega, Daniel Milej, Wojciech Weigl, Michal Kacprzak, and Adam Liebert
Biomed. Opt. Express 9(7) 2974-2993 (2018)

Effect of task-related extracerebral circulation on diffuse optical tomography: experimental data and simulations on the forehead

Tiina Näsi, Hanna Mäki, Petri Hiltunen, Juha Heiskala, Ilkka Nissilä, Kalle Kotilahti, and Risto J. Ilmoniemi
Biomed. Opt. Express 4(3) 412-426 (2013)

Human skull translucency: post mortem studies

P. Sawosz, S. Wojtkiewicz, M. Kacprzak, W. Weigl, A. Borowska-Solonynko, P. Krajewski, K. Bejm, D. Milej, B. Ciszek, R. Maniewski, and A. Liebert
Biomed. Opt. Express 7(12) 5010-5020 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
    [Crossref] [PubMed]
  2. D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85, 1-15 (2014).
    [Crossref]
  3. A. Bluestone, G. Abdoulaev, C. Schmitz, R. Barbour, and A. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9(6), 272–286 (2001).
    [Crossref] [PubMed]
  4. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
    [Crossref] [PubMed]
  5. A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law for scattering media,” Phys. Med. Biol. 49(14), N255–N257 (2004).
    [Crossref] [PubMed]
  6. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18(12), 3018–3036 (2001).
    [Crossref] [PubMed]
  7. E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, and Y. Murata, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” in Oxygen Transport to Tissue XXXI (Springer, 2010), pp. 231–236.
  8. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
    [Crossref] [PubMed]
  9. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
    [Crossref] [PubMed]
  10. Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models,” Appl. Opt. 42(16), 2881–2887 (2003).
    [Crossref] [PubMed]
  11. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42(16), 2906–2914 (2003).
    [Crossref] [PubMed]
  12. K. Kurihara, H. Kawaguchi, T. Obata, H. Ito, K. Sakatani, and E. Okada, “The influence of frontal sinus in brain activation measurements by near-infrared spectroscopy analyzed by realistic head models,” Biomed. Opt. Express 3(9), 2121–2130 (2012).
    [Crossref] [PubMed]
  13. F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A.-C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS One 6(10), e26377 (2011).
    [Crossref] [PubMed]
  14. S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
    [Crossref] [PubMed]
  15. X. Cui, S. Bray, D. M. Bryant, G. H. Glover, and A. L. Reiss, “A quantitative comparison of NIRS and fMRI across multiple cognitive tasks,” Neuroimage 54(4), 2808–2821 (2011).
    [Crossref] [PubMed]
  16. M. Wolf, O. Weber, M. Keel, X. Golay, M. Scheidegger, H. U. Bucher, S. Kollias, P. Boesiger, and O. Baenziger, “Comparison of cerebral blood volume measured by near infrared spectroscopy and contrast enhanced magnetic resonance imaging,” in Oxygen Transport to Tissue XXI (Springer, 1999), pp. 767–773.
  17. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
    [Crossref] [PubMed]
  18. M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
    [Crossref] [PubMed]
  19. C. Habermehl, C. H. Schmitz, and J. Steinbrink, “Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG,” Opt. Express 19(19), 18636–18644 (2011).
    [Crossref] [PubMed]
  20. E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
    [Crossref] [PubMed]
  21. O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
    [Crossref] [PubMed]
  22. M. Hallett, “Transcranial magnetic stimulation: a primer,” Neuron 55(2), 187–199 (2007).
    [Crossref] [PubMed]
  23. M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
    [Crossref] [PubMed]
  24. K. J. Friston, A. P. Holmes, K. J. Worsley, J. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
    [Crossref]
  25. M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
    [Crossref] [PubMed]
  26. J. C. Rothwell, M. Hallett, A. Berardelli, A. Eisen, P. Rossini, W. Paulus, and The International Federation of Clinical Neurophysiology, “Magnetic stimulation: motor evoked potentials,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 97–103 (1999).
    [PubMed]
  27. G. G. Westin, B. D. Bassi, S. H. Lisanby, B. Luber, and N. Y. S. P. Institute, “Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications,” Clin. Neurophysiol. 125(1), 142–147 (2014).
    [Crossref] [PubMed]
  28. P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
    [Crossref] [PubMed]
  29. R. Chen, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, and L. G. Cohen, “Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation,” Neurology 48(5), 1398–1403 (1997).
    [Crossref] [PubMed]
  30. F. Maeda, M. Gangitano, M. Thall, and A. Pascual-Leone, “Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic stimulation (TMS),” Clin. Neurophysiol. 113(3), 376–382 (2002).
    [Crossref] [PubMed]
  31. G. H. Klem, H. O. Lüders, H. H. Jasper, C. Elger, and The International Federation of Clinical Neurophysiology, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52(3), 3–6 (1999).
    [PubMed]
  32. V. Strela, J. Portilla, and E. P. Simoncelli, “Image denoising using a local Gaussian scale mixture model in the wavelet domain,” in Wavelet Applications in Signal and Image Processing VIII (International Society for Optics and Photonics, 2000), 4119, pp. 363–372.
  33. F. Tian, H. Niu, B. Khan, G. Alexandrakis, K. Behbehani, and H. Liu, “Enhanced functional brain imaging by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography,” IEEE Trans. Med. Imaging 30(6), 1239–1251 (2011).
    [Crossref] [PubMed]
  34. S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693 (1989).
    [Crossref]
  35. E. Hernandez-Martin, F. Marcano, O. Casanova, C. Modroño, J. Plata-Bello, and J. L. González-Mora, “Comparing diffuse optical tomography and functional magnetic resonance imaging signals during a cognitive task: pilot study,” Neurophotonics 4, 015003 (2017).
    [Crossref]
  36. K. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather, and R. S. J. Frackowiak, “Spatial registration and normalization of images,” Hum. Brain Mapp. 3(3), 165–189 (1995).
    [Crossref]
  37. C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
    [Crossref] [PubMed]
  38. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).
    [Crossref] [PubMed]
  39. Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt. 40(31), 5755–5769 (2001).
    [Crossref] [PubMed]
  40. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22(6), 691–701 (1995).
    [Crossref] [PubMed]
  41. D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44(10), 1957–1968 (2005).
    [Crossref] [PubMed]
  42. A. Majos, P. Bogorodzki, E. Piątkowska-Janko, T. Wolak, R. Kurjata, and L. Stefańczyk, “Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent,” Eur. Radiol. 19(4), 898–903 (2009).
    [Crossref] [PubMed]
  43. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
    [Crossref] [PubMed]
  44. P. Van der Zee and D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo method,” in Oxygen Transport to Tissue IX (Springer, 1987), pp. 179–191.
  45. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
    [Crossref] [PubMed]
  46. R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
    [Crossref] [PubMed]
  47. N. Hanaoka, Y. Aoyama, M. Kameyama, M. Fukuda, and M. Mikuni, “Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study,” Neurosci. Lett. 414(2), 99–104 (2007).
    [Crossref] [PubMed]
  48. F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
    [Crossref] [PubMed]
  49. A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
    [Crossref] [PubMed]
  50. R. H. Thomson, T. J. Cleve, N. W. Bailey, N. C. Rogasch, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation,” Brain Stimul. 6(4), 576–581 (2013).
    [Crossref] [PubMed]
  51. R. H. Thomson, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation,” Cortex 48(4), 487–491 (2012).
    [Crossref] [PubMed]
  52. Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
    [Crossref] [PubMed]
  53. F. S. Racz, P. Mukli, Z. Nagy, and A. Eke, “Increased prefrontal cortex connectivity during cognitive challenge assessed by fNIRS imaging,” Biomed. Opt. Express 8(8), 3842–3855 (2017).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

2014 (1)

G. G. Westin, B. D. Bassi, S. H. Lisanby, B. Luber, and N. Y. S. P. Institute, “Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications,” Clin. Neurophysiol. 125(1), 142–147 (2014).
[Crossref] [PubMed]

2013 (3)

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

R. H. Thomson, T. J. Cleve, N. W. Bailey, N. C. Rogasch, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation,” Brain Stimul. 6(4), 576–581 (2013).
[Crossref] [PubMed]

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

2012 (4)

R. H. Thomson, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation,” Cortex 48(4), 487–491 (2012).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

K. Kurihara, H. Kawaguchi, T. Obata, H. Ito, K. Sakatani, and E. Okada, “The influence of frontal sinus in brain activation measurements by near-infrared spectroscopy analyzed by realistic head models,” Biomed. Opt. Express 3(9), 2121–2130 (2012).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

2011 (4)

F. Tian, H. Niu, B. Khan, G. Alexandrakis, K. Behbehani, and H. Liu, “Enhanced functional brain imaging by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography,” IEEE Trans. Med. Imaging 30(6), 1239–1251 (2011).
[Crossref] [PubMed]

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A.-C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS One 6(10), e26377 (2011).
[Crossref] [PubMed]

X. Cui, S. Bray, D. M. Bryant, G. H. Glover, and A. L. Reiss, “A quantitative comparison of NIRS and fMRI across multiple cognitive tasks,” Neuroimage 54(4), 2808–2821 (2011).
[Crossref] [PubMed]

C. Habermehl, C. H. Schmitz, and J. Steinbrink, “Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG,” Opt. Express 19(19), 18636–18644 (2011).
[Crossref] [PubMed]

2009 (3)

S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
[Crossref] [PubMed]

A. Majos, P. Bogorodzki, E. Piątkowska-Janko, T. Wolak, R. Kurjata, and L. Stefańczyk, “Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent,” Eur. Radiol. 19(4), 898–903 (2009).
[Crossref] [PubMed]

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

2007 (3)

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

N. Hanaoka, Y. Aoyama, M. Kameyama, M. Fukuda, and M. Mikuni, “Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study,” Neurosci. Lett. 414(2), 99–104 (2007).
[Crossref] [PubMed]

M. Hallett, “Transcranial magnetic stimulation: a primer,” Neuron 55(2), 187–199 (2007).
[Crossref] [PubMed]

2006 (1)

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

2003 (2)

2002 (3)

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

F. Maeda, M. Gangitano, M. Thall, and A. Pascual-Leone, “Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic stimulation (TMS),” Clin. Neurophysiol. 113(3), 376–382 (2002).
[Crossref] [PubMed]

D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[Crossref] [PubMed]

2001 (4)

2000 (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
[Crossref] [PubMed]

1999 (3)

J. C. Rothwell, M. Hallett, A. Berardelli, A. Eisen, P. Rossini, W. Paulus, and The International Federation of Clinical Neurophysiology, “Magnetic stimulation: motor evoked potentials,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 97–103 (1999).
[PubMed]

G. H. Klem, H. O. Lüders, H. H. Jasper, C. Elger, and The International Federation of Clinical Neurophysiology, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52(3), 3–6 (1999).
[PubMed]

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

1997 (2)

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[Crossref] [PubMed]

R. Chen, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, and L. G. Cohen, “Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation,” Neurology 48(5), 1398–1403 (1997).
[Crossref] [PubMed]

1995 (2)

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22(6), 691–701 (1995).
[Crossref] [PubMed]

K. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather, and R. S. J. Frackowiak, “Spatial registration and normalization of images,” Hum. Brain Mapp. 3(3), 165–189 (1995).
[Crossref]

1994 (2)

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

K. J. Friston, A. P. Holmes, K. J. Worsley, J. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).
[Crossref] [PubMed]

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

1976 (1)

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

Abdoulaev, G.

Aisu, R.

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

Ajichi, Y.

Alexandrakis, G.

F. Tian, H. Niu, B. Khan, G. Alexandrakis, K. Behbehani, and H. Liu, “Enhanced functional brain imaging by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography,” IEEE Trans. Med. Imaging 30(6), 1239–1251 (2011).
[Crossref] [PubMed]

Amita, T.

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

Anzalone, N.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Aoyama, Y.

N. Hanaoka, Y. Aoyama, M. Kameyama, M. Fukuda, and M. Mikuni, “Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study,” Neurosci. Lett. 414(2), 99–104 (2007).
[Crossref] [PubMed]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Arridge, S. R.

Ashburner, J.

K. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather, and R. S. J. Frackowiak, “Spatial registration and normalization of images,” Hum. Brain Mapp. 3(3), 165–189 (1995).
[Crossref]

Bailey, N. W.

R. H. Thomson, T. J. Cleve, N. W. Bailey, N. C. Rogasch, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation,” Brain Stimul. 6(4), 576–581 (2013).
[Crossref] [PubMed]

Barbour, R.

Barbour, R. L.

Barker, A. T.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Bassi, B. D.

G. G. Westin, B. D. Bassi, S. H. Lisanby, B. Luber, and N. Y. S. P. Institute, “Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications,” Clin. Neurophysiol. 125(1), 142–147 (2014).
[Crossref] [PubMed]

Behbehani, K.

F. Tian, H. Niu, B. Khan, G. Alexandrakis, K. Behbehani, and H. Liu, “Enhanced functional brain imaging by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography,” IEEE Trans. Med. Imaging 30(6), 1239–1251 (2011).
[Crossref] [PubMed]

Berardelli, A.

J. C. Rothwell, M. Hallett, A. Berardelli, A. Eisen, P. Rossini, W. Paulus, and The International Federation of Clinical Neurophysiology, “Magnetic stimulation: motor evoked potentials,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 97–103 (1999).
[PubMed]

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Bluestone, A.

Boas, D.

Boas, D. A.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44(10), 1957–1968 (2005).
[Crossref] [PubMed]

Bogorodzki, P.

A. Majos, P. Bogorodzki, E. Piątkowska-Janko, T. Wolak, R. Kurjata, and L. Stefańczyk, “Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent,” Eur. Radiol. 19(4), 898–903 (2009).
[Crossref] [PubMed]

Bohning, D. E.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Bootz, F.

S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
[Crossref] [PubMed]

Bray, S.

X. Cui, S. Bray, D. M. Bryant, G. H. Glover, and A. L. Reiss, “A quantitative comparison of NIRS and fMRI across multiple cognitive tasks,” Neuroimage 54(4), 2808–2821 (2011).
[Crossref] [PubMed]

Bryant, D. M.

X. Cui, S. Bray, D. M. Bryant, G. H. Glover, and A. L. Reiss, “A quantitative comparison of NIRS and fMRI across multiple cognitive tasks,” Neuroimage 54(4), 2808–2821 (2011).
[Crossref] [PubMed]

Buckley, E. M.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

Caramia, M. D.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Caruso, G.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Celnik, P.

R. Chen, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, and L. G. Cohen, “Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation,” Neurology 48(5), 1398–1403 (1997).
[Crossref] [PubMed]

Cha, S.

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

Chance, B.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
[Crossref] [PubMed]

Chen, R.

R. Chen, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, and L. G. Cohen, “Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation,” Neurology 48(5), 1398–1403 (1997).
[Crossref] [PubMed]

Classen, J.

R. Chen, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, and L. G. Cohen, “Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation,” Neurology 48(5), 1398–1403 (1997).
[Crossref] [PubMed]

Cleve, T. J.

R. H. Thomson, T. J. Cleve, N. W. Bailey, N. C. Rogasch, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation,” Brain Stimul. 6(4), 576–581 (2013).
[Crossref] [PubMed]

Cohen, L. G.

R. Chen, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, and L. G. Cohen, “Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation,” Neurology 48(5), 1398–1403 (1997).
[Crossref] [PubMed]

Cope, M.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Cracco, R. Q.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Croarkin, P. E.

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

Cui, X.

X. Cui, S. Bray, D. M. Bryant, G. H. Glover, and A. L. Reiss, “A quantitative comparison of NIRS and fMRI across multiple cognitive tasks,” Neuroimage 54(4), 2808–2821 (2011).
[Crossref] [PubMed]

Culver, J.

Dale, A. M.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44(10), 1957–1968 (2005).
[Crossref] [PubMed]

Daskalakis, Z. J.

R. H. Thomson, T. J. Cleve, N. W. Bailey, N. C. Rogasch, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation,” Brain Stimul. 6(4), 576–581 (2013).
[Crossref] [PubMed]

R. H. Thomson, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation,” Cortex 48(4), 487–491 (2012).
[Crossref] [PubMed]

Delpy, D. T.

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42(16), 2906–2914 (2003).
[Crossref] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[Crossref] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Detre, J. A.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

Devor, A.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

Dhamne, S.

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

Dimitrijevic, M. R.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Dörfler, A.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Dunn, A.

Durduran, T.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

Ehlis, A.-C.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A.-C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS One 6(10), e26377 (2011).
[Crossref] [PubMed]

Eichhorn, K. W. G.

S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
[Crossref] [PubMed]

Eisen, A.

J. C. Rothwell, M. Hallett, A. Berardelli, A. Eisen, P. Rossini, W. Paulus, and The International Federation of Clinical Neurophysiology, “Magnetic stimulation: motor evoked potentials,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 97–103 (1999).
[PubMed]

Eke, A.

Elger, C.

G. H. Klem, H. O. Lüders, H. H. Jasper, C. Elger, and The International Federation of Clinical Neurophysiology, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52(3), 3–6 (1999).
[PubMed]

Elliott, A.

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

Enterline, D.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Erdmann, R.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Essig, M.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Fallgatter, A. J.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A.-C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS One 6(10), e26377 (2011).
[Crossref] [PubMed]

Fantini, S.

A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law for scattering media,” Phys. Med. Biol. 49(14), N255–N257 (2004).
[Crossref] [PubMed]

Faseyitan, O. K.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Firbank, M.

Fitzgerald, P. B.

R. H. Thomson, T. J. Cleve, N. W. Bailey, N. C. Rogasch, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation,” Brain Stimul. 6(4), 576–581 (2013).
[Crossref] [PubMed]

R. H. Thomson, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation,” Cortex 48(4), 487–491 (2012).
[Crossref] [PubMed]

Frackowiak, R. S. J.

K. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather, and R. S. J. Frackowiak, “Spatial registration and normalization of images,” Hum. Brain Mapp. 3(3), 165–189 (1995).
[Crossref]

K. J. Friston, A. P. Holmes, K. J. Worsley, J. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Friston, K.

K. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather, and R. S. J. Frackowiak, “Spatial registration and normalization of images,” Hum. Brain Mapp. 3(3), 165–189 (1995).
[Crossref]

Friston, K. J.

K. J. Friston, A. P. Holmes, K. J. Worsley, J. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Frith, C. D.

K. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather, and R. S. J. Frackowiak, “Spatial registration and normalization of images,” Hum. Brain Mapp. 3(3), 165–189 (1995).
[Crossref]

K. J. Friston, A. P. Holmes, K. J. Worsley, J. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Fukuda, M.

N. Hanaoka, Y. Aoyama, M. Kameyama, M. Fukuda, and M. Mikuni, “Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study,” Neurosci. Lett. 414(2), 99–104 (2007).
[Crossref] [PubMed]

Fukui, Y.

Gangitano, M.

F. Maeda, M. Gangitano, M. Thall, and A. Pascual-Leone, “Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic stimulation (TMS),” Clin. Neurophysiol. 113(3), 376–382 (2002).
[Crossref] [PubMed]

George, M. S.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Gerloff, C.

R. Chen, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, and L. G. Cohen, “Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation,” Neurology 48(5), 1398–1403 (1997).
[Crossref] [PubMed]

Glover, G. H.

X. Cui, S. Bray, D. M. Bryant, G. H. Glover, and A. L. Reiss, “A quantitative comparison of NIRS and fMRI across multiple cognitive tasks,” Neuroimage 54(4), 2808–2821 (2011).
[Crossref] [PubMed]

Golfinos, J. G.

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

Graber, H. L.

Greenberg, J. H.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

Habermehl, C.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

C. Habermehl, C. H. Schmitz, and J. Steinbrink, “Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG,” Opt. Express 19(19), 18636–18644 (2011).
[Crossref] [PubMed]

Haeussinger, F. B.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A.-C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS One 6(10), e26377 (2011).
[Crossref] [PubMed]

Hahn, T.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A.-C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS One 6(10), e26377 (2011).
[Crossref] [PubMed]

Hallett, M.

M. Hallett, “Transcranial magnetic stimulation: a primer,” Neuron 55(2), 187–199 (2007).
[Crossref] [PubMed]

J. C. Rothwell, M. Hallett, A. Berardelli, A. Eisen, P. Rossini, W. Paulus, and The International Federation of Clinical Neurophysiology, “Magnetic stimulation: motor evoked potentials,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 97–103 (1999).
[PubMed]

R. Chen, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, and L. G. Cohen, “Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation,” Neurology 48(5), 1398–1403 (1997).
[Crossref] [PubMed]

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Hamilton, R. H.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

Hanaoka, N.

N. Hanaoka, Y. Aoyama, M. Kameyama, M. Fukuda, and M. Mikuni, “Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study,” Neurosci. Lett. 414(2), 99–104 (2007).
[Crossref] [PubMed]

Heather, J. D.

K. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather, and R. S. J. Frackowiak, “Spatial registration and normalization of images,” Hum. Brain Mapp. 3(3), 165–189 (1995).
[Crossref]

Heinzel, S.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A.-C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS One 6(10), e26377 (2011).
[Crossref] [PubMed]

Hielscher, A.

Hillman, E. M. C.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).
[Crossref] [PubMed]

Holmes, A. P.

K. J. Friston, A. P. Holmes, K. J. Worsley, J. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Holtze, S.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Husain, M. M.

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

Inoue, Y.

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

Institute, N. Y. S. P.

G. G. Westin, B. D. Bassi, S. H. Lisanby, B. Luber, and N. Y. S. P. Institute, “Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications,” Clin. Neurophysiol. 125(1), 142–147 (2014).
[Crossref] [PubMed]

Ito, H.

Jasper, H. H.

G. H. Klem, H. O. Lüders, H. H. Jasper, C. Elger, and The International Federation of Clinical Neurophysiology, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52(3), 3–6 (1999).
[PubMed]

Jiang, H.

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22(6), 691–701 (1995).
[Crossref] [PubMed]

Johnson, G.

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

Kameyama, M.

N. Hanaoka, Y. Aoyama, M. Kameyama, M. Fukuda, and M. Mikuni, “Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study,” Neurosci. Lett. 414(2), 99–104 (2007).
[Crossref] [PubMed]

Katayama, Y.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Kawaguchi, H.

Kelly, P. J.

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

Khan, B.

F. Tian, H. Niu, B. Khan, G. Alexandrakis, K. Behbehani, and H. Liu, “Enhanced functional brain imaging by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography,” IEEE Trans. Med. Imaging 30(6), 1239–1251 (2011).
[Crossref] [PubMed]

Kim, M. N.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

Kleinfeld, D.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

Klem, G. H.

G. H. Klem, H. O. Lüders, H. H. Jasper, C. Elger, and The International Federation of Clinical Neurophysiology, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52(3), 3–6 (1999).
[PubMed]

Knopp, E. A.

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

Koch, S. P.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Kohl-Bareis, M.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

Kozel, F. A.

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

Kricheff, I. I.

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

Kurihara, K.

Kurjata, R.

A. Majos, P. Bogorodzki, E. Piątkowska-Janko, T. Wolak, R. Kurjata, and L. Stefańczyk, “Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent,” Eur. Radiol. 19(4), 898–903 (2009).
[Crossref] [PubMed]

Kwant, G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

Landsman, M. L.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

Law, M.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Li, X.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Liebert, A.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

Lisanby, S. H.

G. G. Westin, B. D. Bassi, S. H. Lisanby, B. Luber, and N. Y. S. P. Institute, “Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications,” Clin. Neurophysiol. 125(1), 142–147 (2014).
[Crossref] [PubMed]

Liu, H.

F. Tian, H. Niu, B. Khan, G. Alexandrakis, K. Behbehani, and H. Liu, “Enhanced functional brain imaging by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography,” IEEE Trans. Med. Imaging 30(6), 1239–1251 (2011).
[Crossref] [PubMed]

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

Lomarev, M.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Lorberbaum, J. P.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Luber, B.

G. G. Westin, B. D. Bassi, S. H. Lisanby, B. Luber, and N. Y. S. P. Institute, “Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications,” Clin. Neurophysiol. 125(1), 142–147 (2014).
[Crossref] [PubMed]

Lücking, C. H.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Lüders, H. O.

G. H. Klem, H. O. Lüders, H. H. Jasper, C. Elger, and The International Federation of Clinical Neurophysiology, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52(3), 3–6 (1999).
[PubMed]

Macdonald, R.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

Maeda, F.

F. Maeda, M. Gangitano, M. Thall, and A. Pascual-Leone, “Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic stimulation (TMS),” Clin. Neurophysiol. 113(3), 376–382 (2002).
[Crossref] [PubMed]

Maertens de Noordhout, A. L.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Majos, A.

A. Majos, P. Bogorodzki, E. Piątkowska-Janko, T. Wolak, R. Kurjata, and L. Stefańczyk, “Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent,” Eur. Radiol. 19(4), 898–903 (2009).
[Crossref] [PubMed]

Malak, J.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

Maller, J. J.

R. H. Thomson, T. J. Cleve, N. W. Bailey, N. C. Rogasch, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation,” Brain Stimul. 6(4), 576–581 (2013).
[Crossref] [PubMed]

R. H. Thomson, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation,” Cortex 48(4), 487–491 (2012).
[Crossref] [PubMed]

Mapes, K. S.

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

Marsden, C. D.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Mazumdar, A.

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

McClintock, S. M.

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

McConnell, K.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Mehnert, J.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Mesquita, R. C.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

Mikuni, M.

N. Hanaoka, Y. Aoyama, M. Kameyama, M. Fukuda, and M. Mikuni, “Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study,” Neurosci. Lett. 414(2), 99–104 (2007).
[Crossref] [PubMed]

Miller, D. C.

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

Möller, M.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

Mook, G. A.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

Mukli, P.

Murray, N. M. F.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Nagy, Z.

Nahas, Z.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Narayanan, S. N.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

Nguyen, T. B.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Nishimura, N.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

Niu, H.

F. Tian, H. Niu, B. Khan, G. Alexandrakis, K. Behbehani, and H. Liu, “Enhanced functional brain imaging by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography,” IEEE Trans. Med. Imaging 30(6), 1239–1251 (2011).
[Crossref] [PubMed]

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
[Crossref] [PubMed]

Obata, T.

Obrig, H.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

Okada, E.

Pascual-Leone, A.

F. Maeda, M. Gangitano, M. Thall, and A. Pascual-Leone, “Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic stimulation (TMS),” Clin. Neurophysiol. 113(3), 376–382 (2002).
[Crossref] [PubMed]

Paulsen, K. D.

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22(6), 691–701 (1995).
[Crossref] [PubMed]

Paulus, W.

J. C. Rothwell, M. Hallett, A. Berardelli, A. Eisen, P. Rossini, W. Paulus, and The International Federation of Clinical Neurophysiology, “Magnetic stimulation: motor evoked potentials,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 97–103 (1999).
[PubMed]

Pei, Y.

Piatkowska-Janko, E.

A. Majos, P. Bogorodzki, E. Piątkowska-Janko, T. Wolak, R. Kurjata, and L. Stefańczyk, “Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent,” Eur. Radiol. 19(4), 898–903 (2009).
[Crossref] [PubMed]

Pirner, S.

S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
[Crossref] [PubMed]

Poline, J.

K. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather, and R. S. J. Frackowiak, “Spatial registration and normalization of images,” Hum. Brain Mapp. 3(3), 165–189 (1995).
[Crossref]

K. J. Friston, A. P. Holmes, K. J. Worsley, J. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Provenzale, J. M.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Racz, F. S.

Reiss, A. L.

X. Cui, S. Bray, D. M. Bryant, G. H. Glover, and A. L. Reiss, “A quantitative comparison of NIRS and fMRI across multiple cognitive tasks,” Neuroimage 54(4), 2808–2821 (2011).
[Crossref] [PubMed]

Rilk, M.

S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
[Crossref] [PubMed]

Rinneberg, H.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

Roberts, D. R.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Rogasch, N. C.

R. H. Thomson, T. J. Cleve, N. W. Bailey, N. C. Rogasch, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation,” Brain Stimul. 6(4), 576–581 (2013).
[Crossref] [PubMed]

Rossini, P.

J. C. Rothwell, M. Hallett, A. Berardelli, A. Eisen, P. Rossini, W. Paulus, and The International Federation of Clinical Neurophysiology, “Magnetic stimulation: motor evoked potentials,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 97–103 (1999).
[PubMed]

Rossini, P. M.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Rothwell, J. C.

J. C. Rothwell, M. Hallett, A. Berardelli, A. Eisen, P. Rossini, W. Paulus, and The International Federation of Clinical Neurophysiology, “Magnetic stimulation: motor evoked potentials,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 97–103 (1999).
[PubMed]

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Rovira, A.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Saake, M.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Sakatani, K.

Sassaroli, A.

A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law for scattering media,” Phys. Med. Biol. 49(14), N255–N257 (2004).
[Crossref] [PubMed]

Sato, M. A.

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

Schecklmann, M.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A.-C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS One 6(10), e26377 (2011).
[Crossref] [PubMed]

Schmitz, C.

Schmitz, C. H.

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
[Crossref] [PubMed]

Schweiger, M.

Shastri, A.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Shimokawa, T.

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

Shiroishi, M. S.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Stefanczyk, L.

A. Majos, P. Bogorodzki, E. Piątkowska-Janko, T. Wolak, R. Kurjata, and L. Stefańczyk, “Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent,” Eur. Radiol. 19(4), 898–903 (2009).
[Crossref] [PubMed]

Steinbrink, J.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

C. Habermehl, C. H. Schmitz, and J. Steinbrink, “Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG,” Opt. Express 19(19), 18636–18644 (2011).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

Stott, J.

Swash, M.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Teneback, C.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Teng, I. C.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

Thall, M.

F. Maeda, M. Gangitano, M. Thall, and A. Pascual-Leone, “Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic stimulation (TMS),” Clin. Neurophysiol. 113(3), 376–382 (2002).
[Crossref] [PubMed]

Thomas, A.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

Thomson, R. H.

R. H. Thomson, T. J. Cleve, N. W. Bailey, N. C. Rogasch, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation,” Brain Stimul. 6(4), 576–581 (2013).
[Crossref] [PubMed]

R. H. Thomson, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation,” Cortex 48(4), 487–491 (2012).
[Crossref] [PubMed]

Tian, F.

F. Tian, H. Niu, B. Khan, G. Alexandrakis, K. Behbehani, and H. Liu, “Enhanced functional brain imaging by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography,” IEEE Trans. Med. Imaging 30(6), 1239–1251 (2011).
[Crossref] [PubMed]

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

Tian, P.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

Tingelhoff, K.

S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
[Crossref] [PubMed]

Tomberg, C.

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Turkeltaub, P. E.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

Ulbert, I.

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

Uludag, K.

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Villringer, A.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

Vincent, D. J.

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Wabnitz, H.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

Wagner, I.

S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
[Crossref] [PubMed]

Wahl, F. M.

S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
[Crossref] [PubMed]

Wassermann, E. M.

R. Chen, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, and L. G. Cohen, “Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation,” Neurology 48(5), 1398–1403 (1997).
[Crossref] [PubMed]

Westin, G. G.

G. G. Westin, B. D. Bassi, S. H. Lisanby, B. Luber, and N. Y. S. P. Institute, “Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications,” Clin. Neurophysiol. 125(1), 142–147 (2014).
[Crossref] [PubMed]

Westphal, R.

S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
[Crossref] [PubMed]

Wintermark, M.

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Wolak, T.

A. Majos, P. Bogorodzki, E. Piątkowska-Janko, T. Wolak, R. Kurjata, and L. Stefańczyk, “Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent,” Eur. Radiol. 19(4), 898–903 (2009).
[Crossref] [PubMed]

Worsley, K. J.

K. J. Friston, A. P. Holmes, K. J. Worsley, J. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Yamashita, O.

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

Yodh, A. G.

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
[Crossref] [PubMed]

Zagzag, D.

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

Zhong, S.

Zijlstra, W. G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

AJR Am. J. Roentgenol. (1)

M. Essig, M. S. Shiroishi, T. B. Nguyen, M. Saake, J. M. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, A. Rovira, M. Wintermark, and M. Law, “Perfusion MRI: the five most frequently asked technical questions,” AJR Am. J. Roentgenol. 200(1), 24–34 (2013).
[Crossref] [PubMed]

Appl. Opt. (6)

Biol. Psychiatry (1)

Z. Nahas, M. Lomarev, D. R. Roberts, A. Shastri, J. P. Lorberbaum, C. Teneback, K. McConnell, D. J. Vincent, X. Li, M. S. George, and D. E. Bohning, “Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI,” Biol. Psychiatry 50(9), 712–720 (2001).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Brain Stimul. (1)

R. H. Thomson, T. J. Cleve, N. W. Bailey, N. C. Rogasch, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation,” Brain Stimul. 6(4), 576–581 (2013).
[Crossref] [PubMed]

Clin. Neurophysiol. (2)

G. G. Westin, B. D. Bassi, S. H. Lisanby, B. Luber, and N. Y. S. P. Institute, “Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications,” Clin. Neurophysiol. 125(1), 142–147 (2014).
[Crossref] [PubMed]

F. Maeda, M. Gangitano, M. Thall, and A. Pascual-Leone, “Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic stimulation (TMS),” Clin. Neurophysiol. 113(3), 376–382 (2002).
[Crossref] [PubMed]

Cortex (1)

R. H. Thomson, J. J. Maller, Z. J. Daskalakis, and P. B. Fitzgerald, “Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation,” Cortex 48(4), 487–491 (2012).
[Crossref] [PubMed]

Electroencephalogr. Clin. Neurophysiol. (1)

P. M. Rossini, A. T. Barker, A. Berardelli, M. D. Caramia, G. Caruso, R. Q. Cracco, M. R. Dimitrijević, M. Hallett, Y. Katayama, C. H. Lücking, A. L. Maertens de Noordhout, C. D. Marsden, N. M. F. Murray, J. C. Rothwell, M. Swash, and C. Tomberg, “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee,” Electroencephalogr. Clin. Neurophysiol. 91(2), 79–92 (1994).
[Crossref] [PubMed]

Electroencephalogr. Clin. Neurophysiol. Suppl. (2)

G. H. Klem, H. O. Lüders, H. H. Jasper, C. Elger, and The International Federation of Clinical Neurophysiology, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52(3), 3–6 (1999).
[PubMed]

J. C. Rothwell, M. Hallett, A. Berardelli, A. Eisen, P. Rossini, W. Paulus, and The International Federation of Clinical Neurophysiology, “Magnetic stimulation: motor evoked potentials,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 97–103 (1999).
[PubMed]

Eur. Arch. Otorhinolaryngol. (1)

S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F. M. Wahl, F. Bootz, and K. W. G. Eichhorn, “CT-based manual segmentation and evaluation of paranasal sinuses,” Eur. Arch. Otorhinolaryngol. 266(4), 507–518 (2009).
[Crossref] [PubMed]

Eur. Radiol. (1)

A. Majos, P. Bogorodzki, E. Piątkowska-Janko, T. Wolak, R. Kurjata, and L. Stefańczyk, “Functional imaging with MR T1 contrast: a feasibility study with blood-pool contrast agent,” Eur. Radiol. 19(4), 898–903 (2009).
[Crossref] [PubMed]

Hum. Brain Mapp. (2)

K. J. Friston, A. P. Holmes, K. J. Worsley, J. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

K. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather, and R. S. J. Frackowiak, “Spatial registration and normalization of images,” Hum. Brain Mapp. 3(3), 165–189 (1995).
[Crossref]

IEEE Trans. Med. Imaging (1)

F. Tian, H. Niu, B. Khan, G. Alexandrakis, K. Behbehani, and H. Liu, “Enhanced functional brain imaging by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography,” IEEE Trans. Med. Imaging 30(6), 1239–1251 (2011).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7(3), 464–470 (2002).
[Crossref] [PubMed]

R. C. Mesquita, O. K. Faseyitan, P. E. Turkeltaub, E. M. Buckley, A. Thomas, M. N. Kim, T. Durduran, J. H. Greenberg, J. A. Detre, A. G. Yodh, and R. H. Hamilton, “Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex,” J. Biomed. Opt. 18(6), 067006 (2013).
[Crossref] [PubMed]

J. Neurosci. (1)

A. Devor, P. Tian, N. Nishimura, I. C. Teng, E. M. C. Hillman, S. N. Narayanan, I. Ulbert, D. A. Boas, D. Kleinfeld, and A. M. Dale, “Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal,” J. Neurosci. 27(16), 4452–4459 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (2)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).
[Crossref] [PubMed]

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22(6), 691–701 (1995).
[Crossref] [PubMed]

Neuroimage (6)

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

F. A. Kozel, F. Tian, S. Dhamne, P. E. Croarkin, S. M. McClintock, A. Elliott, K. S. Mapes, M. M. Husain, and H. Liu, “Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity,” Neuroimage 47(4), 1177–1184 (2009).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

X. Cui, S. Bray, D. M. Bryant, G. H. Glover, and A. L. Reiss, “A quantitative comparison of NIRS and fMRI across multiple cognitive tasks,” Neuroimage 54(4), 2808–2821 (2011).
[Crossref] [PubMed]

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Neurology (1)

R. Chen, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, and L. G. Cohen, “Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation,” Neurology 48(5), 1398–1403 (1997).
[Crossref] [PubMed]

Neuron (1)

M. Hallett, “Transcranial magnetic stimulation: a primer,” Neuron 55(2), 187–199 (2007).
[Crossref] [PubMed]

Neurosci. Lett. (1)

N. Hanaoka, Y. Aoyama, M. Kameyama, M. Fukuda, and M. Mikuni, “Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study,” Neurosci. Lett. 414(2), 99–104 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Med. Biol. (2)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law for scattering media,” Phys. Med. Biol. 49(14), N255–N257 (2004).
[Crossref] [PubMed]

PLoS One (1)

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A.-C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS One 6(10), e26377 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
[Crossref] [PubMed]

Radiology (1)

E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging,” Radiology 211(3), 791–798 (1999).
[Crossref] [PubMed]

Other (7)

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85, 1-15 (2014).
[Crossref]

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, and Y. Murata, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” in Oxygen Transport to Tissue XXXI (Springer, 2010), pp. 231–236.

M. Wolf, O. Weber, M. Keel, X. Golay, M. Scheidegger, H. U. Bucher, S. Kollias, P. Boesiger, and O. Baenziger, “Comparison of cerebral blood volume measured by near infrared spectroscopy and contrast enhanced magnetic resonance imaging,” in Oxygen Transport to Tissue XXI (Springer, 1999), pp. 767–773.

S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693 (1989).
[Crossref]

E. Hernandez-Martin, F. Marcano, O. Casanova, C. Modroño, J. Plata-Bello, and J. L. González-Mora, “Comparing diffuse optical tomography and functional magnetic resonance imaging signals during a cognitive task: pilot study,” Neurophotonics 4, 015003 (2017).
[Crossref]

V. Strela, J. Portilla, and E. P. Simoncelli, “Image denoising using a local Gaussian scale mixture model in the wavelet domain,” in Wavelet Applications in Signal and Image Processing VIII (International Society for Optics and Photonics, 2000), 4119, pp. 363–372.

P. Van der Zee and D. T. Delpy, “Simulation of the point spread function for light in tissue by a Monte Carlo method,” in Oxygen Transport to Tissue IX (Springer, 1987), pp. 179–191.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Representation of the ROI positions on the prefrontal cortex behind of the frontal sinus (red), frontal sinus (gray), skull (yellow), skin (green) and on the right lateral prefrontal cortex (blue) of subject A in (a) axial and (b) sagittal view in a real space.
Fig. 2
Fig. 2 Scheme of the repetitive transcranial magnetic stimulation (rTMS) protocol. Black blocks indicate trains of rTMS and violet blocks indicate inter-train intervals. The upper row depicts the time of each block during rTMS at low frequency (≥1 Hz).
Fig. 3
Fig. 3 (a) Localization of the study’s target volume, partially covering the frontal cortex including the frontal sinus. (b) Localizations of the rectangular grid containing the optical fibers (dots) on the boundary. Red dots correspond to source and all of them act as detectors.
Fig. 4
Fig. 4 TMS-DOT setup. (a) Localizations of optical fibers inside the circular TMS coil to monitor the hemodynamic changes during rTMS probes. Optical fibers are co-located, all act as sources and as detectors providing 324 optical channels. (b) Position of TMS-DOT setup on a phantom.
Fig. 5
Fig. 5 Localizations of optical fibers (red dots) on the sub-mesh selected during rTMS monitoring. Each red dots correspond to co-located source and detectors pair on (a) the medial prefrontal cortex (MPC) and (b) on the right lateral side of the prefrontal cortex (RLPC) of subject B.
Fig. 6
Fig. 6 Changes in the magnetic signal intensity within the selected ROIs (bottom right image). The abscissas axis represents the time in seconds and the ordinate axis corresponds to the magnetic signal intensity normalized to basal time. The red line represents the change in the signal intensity during the Gd inflow within the selected medial prefrontal cortex, behind the frontal sinus (red), frontal sinus (grey), skull (yellow), skin (green) ROIs of subject A. The blue line represents the change in the signal intensity during the Gd inflow within the selected right lateral prefrontal cortex ROI of subject A. Dashed line represents the end of the injection time.
Fig. 7
Fig. 7 (a) Localizations of a rectangular grid containing the optical fibers on the boundary of the prefrontal cortex in a real space. (b) Representation of the fiber’s grid. Red dots correspond to source and all of them act as detectors. The NIR light, which follows a banana path (arrows), is detected to a 10 mm (ch1), 20 mm (ch2), 30 mm (ch3) and 40 mm (ch4) distance from a source (S) over the prefrontal cortex (rectangles).
Fig. 8
Fig. 8 (a) Localizations of a rectangular grid containing the optical fibers on the boundary of the right lateral prefrontal cortex whose scalp-brain distance was 8 mm (bottom right image). Representation of the time course of detector readings during the ICG-tracking with a distance from source of 10 mm, 20 mm, 30mm and 40 mm for both wavelengths (b) 760 nm and (c) 830 nm. The abscissas axis represents the experimental time in seconds and the ordinate axis corresponds to the changes in the NIR signal intensity normalized to basal time. Dashed lines represent the start and the end of the ICG injection period. Lower left graphics depict a zoom from the start of the injection (302 sec) to 350 sec.
Fig. 9
Fig. 9 (a) Localizations of a rectangular grid containing the optical fibers on the boundary of the superior medial prefrontal cortex whose scalp-brain distance was 9 mm (bottom right image). Representation of the time course of detector readings during the ICG-tracking with a distance from source of 10 mm, 20 mm, 30mm and 40 mm for both wavelengths (b) 760 nm and (c) 830 nm. The abscissas axis represents the experimental time in seconds and the ordinate axis corresponds to the changes in the NIR signal intensity normalized to basal time. Dashed lines represent the start and the end of the ICG injection period. Lower left graphics depict a zoom from the start of the injection (302 sec) to 350 sec.
Fig. 10
Fig. 10 (a) Localizations of a rectangular grid containing the optical fibers on the boundary of the inferior medial prefrontal cortex whose scalp-brain distance was 16 mm (bottom right image). Representation of the time course of detector readings during the ICG-tracking with a distance from source of 10 mm, 20 mm, 30mm and 40 mm for both wavelengths (b) 760 nm and (c) 830 nm. The abscissas axis represents the experimental time in seconds and the ordinate axis corresponds to the changes in the NIR signal intensity normalized to basal time. Dashed lines represent the start and the end of the ICG injection period. Lower left graphics depict a zoom from the start of the injection (302 sec) to 350 sec.
Fig. 11
Fig. 11 Representation of the marked cerebral blood dynamic measured by MRI and CW-DOT devices from t = 0 (the end of the injection). The max. signal peaks are shown for intracerebral areas behind the FS measured by a CW-DOT device (thick red line) and MRI device (fine red line). The max. signal peaks on the right lateral prefrontal cortex measured by a CW-DOT device (thick blue line) and MRI device (fine blue line). The abscissas axis represents the experimental time in seconds and the ordinate axis corresponds to the changes in the normalized signal intensities. The time of arrival for marked cerebral blood in intracerebral areas (dashed line).
Fig. 12
Fig. 12 (a) The histogram depicts the times for the max. peaks of absorption ICG for detectors placed 10, 20, 30 and 40 mm from one source on the right lateral prefrontal cortex (RLPC), superior medial prefrontal cortex (SMPC) and inferior medial prefrontal cortex (IMPC) of subject A (* p-value≤0.001; NS: no significative). (b) The histogram represents the times for the max. peaks of Gd within the selected skin, skull, frontal sinus and brain ROIs on the inferior medial prefrontal cortex of subject A.
Fig. 13
Fig. 13 Representation of (a) sagittal and (b) axial view of a reconstructed DOT volume co-registered to the subject’s anatomy from a pre-calculated FE-mesh. The TMS-DOT setup (red line) was placed over the medial prefrontal cortex to measure across the frontal sinus. The orange line depicts the distance from the cerebral cortex to the scalp in real space. The color bar indicates changes in HbT (10−5) within a train of rTMS at 1 Hz.
Fig. 14
Fig. 14 (a) ROI position on a slice from a reconstructed HbT to measure the hemodynamic changes behind the frontal sinus. (b) Representation of the time course of HbO (red line) and HbR (blue line) within the ROI selected during rTMS at 1 Hz. Blue bars represent the duration of each rTMS block (20 sec). The abscissas axis represents the time in seconds and the ordinate axis corresponds to micromolar concentration (10−6).
Fig. 15
Fig. 15 Representation of (a) sagittal and (b) axial view of a reconstructed DOT volume co-registered to the subject’s anatomy from a pre-calculated FE-mesh. The TMS-DOT setup (red line) was placed over the right lateral prefrontal cortex (RLPC). The orange line depicts the distance from the cerebral cortex to the scalp in real space. The color bar indicates changes in HbT (10−4) within a train of rTMS at 1 Hz.
Fig. 16
Fig. 16 (a) ROI position on a slice from reconstructed HbT to measure the hemodynamic changes on the right lateral prefrontal cortex (RLPC). (b) Representation of the time course of HbO (red line) and HbR (blue line) within the selected ROI during the rTMS at 1 Hz. Blue bars represent the duration of each rTMS block (20 sec). The abscissas axis represents the time in seconds and the ordinate axis corresponds to micromolar concentration (10−7).
Fig. 17
Fig. 17 Scheme of the marked cerebral blood dynamic measured by MRI and a DOT device in a real space. A few seconds after injection, the marked blood arrives in the cortex (red) followed by its arrival in the extracerebral region (violet) seconds later, due to a washout from the brain.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δy=JΔμ

Metrics