Abstract

An optical-resolution photoacoustic microscope with modulated CW laser diodes allowing multi-channel imaging is presented that can be used for both imaging biological tissues and for targeted photo-dynamic therapy (PDT) varying the optical power and exposure time. The effects of this therapy are immediately monitored in order to optimize the time of irradiation. After the description of the experimental setup, in vitro and in vivo applications are presented on a synthetic sample and on the mouse ear using hemoglobin as endogenous and methylene blue as exogenous dye for imaging and PDT, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal optical imaging of microvessel network convective oxygen transport dynamics

Casey deDeugd, Mamta Wankhede, and Brian S. Sorg
Appl. Opt. 48(10) D187-D197 (2009)

Lowering photosensitizer doses and increasing fluences induce apoptosis in tumor bearing mice

Katja Haedicke, Susanna Graefe, Ulf Teichgraeber, and Ingrid Hilger
Biomed. Opt. Express 7(7) 2641-2649 (2016)

Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window

Chao Zhang, Wei Feng, Elena Vodovozova, Daria Tretiakova, Ivan Boldyrevd, Yusha Li, Jurgen Kürths, Tingting Yu, Oxana Semyachkina-Glushkovskaya, and Dan Zhu
Biomed. Opt. Express 9(10) 4850-4862 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Hamard, D. Ratel, L. Selek, F. Berger, B. van der Sanden, and D. Wion, “The brain tissue response to surgical injury and its possible contribution to glioma recurrence,” J. Neurooncol. 128(1), 1–8 (2016).
    [Crossref] [PubMed]
  2. M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
    [Crossref] [PubMed]
  3. C. Canal, A. Laugustin, A. Kohl, and O. Rabot, “Portable multiwavelength laser diode source for handheld photoacoustic devices,” Proc. SPIE 9887, 98872B (2016).
  4. P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
    [Crossref] [PubMed]
  5. G. Langer, B. Buchegger, J. Jacak, T. A. Klar, and T. Berer, “Frequency domain photoacoustic and fluorescence microscopy,” Biomed. Opt. Express 7(7), 2692–2702 (2016).
    [Crossref] [PubMed]
  6. C. Lange and P. J. Bednarski, “Photosensitizers for Photodynamic Therapy: Photochemistry in the Service of Oncology,” Curr. Pharm. Des. 22(46), 6956–6974 (2016).
    [Crossref] [PubMed]
  7. S. Mordon, P. Deleporte, and N. Reyns, “A novel device for intraoperative photodynamic therapy dedicated to glioblastoma treatment,” Future Oncol.  13, 2441–2454 (2017).
  8. A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
    [Crossref] [PubMed]
  9. B. Kofler, A. Romani, C. Pritz, T. B. Steinbichler, V. H. Schartinger, H. Riechelmann, and J. Dudas, “Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines,” Int. J. Mol. Sci. 19(4), 1107 (2018).
    [Crossref] [PubMed]
  10. M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
    [Crossref] [PubMed]
  11. L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. U.S.A. 110(15), 5759–5764 (2013).
    [Crossref] [PubMed]
  12. L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
    [Crossref] [PubMed]

2018 (2)

B. Kofler, A. Romani, C. Pritz, T. B. Steinbichler, V. H. Schartinger, H. Riechelmann, and J. Dudas, “Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines,” Int. J. Mol. Sci. 19(4), 1107 (2018).
[Crossref] [PubMed]

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

2017 (3)

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

S. Mordon, P. Deleporte, and N. Reyns, “A novel device for intraoperative photodynamic therapy dedicated to glioblastoma treatment,” Future Oncol.  13, 2441–2454 (2017).

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

2016 (4)

L. Hamard, D. Ratel, L. Selek, F. Berger, B. van der Sanden, and D. Wion, “The brain tissue response to surgical injury and its possible contribution to glioma recurrence,” J. Neurooncol. 128(1), 1–8 (2016).
[Crossref] [PubMed]

C. Canal, A. Laugustin, A. Kohl, and O. Rabot, “Portable multiwavelength laser diode source for handheld photoacoustic devices,” Proc. SPIE 9887, 98872B (2016).

G. Langer, B. Buchegger, J. Jacak, T. A. Klar, and T. Berer, “Frequency domain photoacoustic and fluorescence microscopy,” Biomed. Opt. Express 7(7), 2692–2702 (2016).
[Crossref] [PubMed]

C. Lange and P. J. Bednarski, “Photosensitizers for Photodynamic Therapy: Photochemistry in the Service of Oncology,” Curr. Pharm. Des. 22(46), 6956–6974 (2016).
[Crossref] [PubMed]

2013 (2)

P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
[Crossref] [PubMed]

L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. U.S.A. 110(15), 5759–5764 (2013).
[Crossref] [PubMed]

2011 (1)

Asao, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Báo, S. N.

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

Baptista, M. S.

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Bastos, A. P.

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

Bednarski, P. J.

C. Lange and P. J. Bednarski, “Photosensitizers for Photodynamic Therapy: Photochemistry in the Service of Oncology,” Curr. Pharm. Des. 22(46), 6956–6974 (2016).
[Crossref] [PubMed]

Berer, T.

Berger, F.

L. Hamard, D. Ratel, L. Selek, F. Berger, B. van der Sanden, and D. Wion, “The brain tissue response to surgical injury and its possible contribution to glioma recurrence,” J. Neurooncol. 128(1), 1–8 (2016).
[Crossref] [PubMed]

Bruni-Cardoso, A.

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Buchegger, B.

Canal, C.

C. Canal, A. Laugustin, A. Kohl, and O. Rabot, “Portable multiwavelength laser diode source for handheld photoacoustic devices,” Proc. SPIE 9887, 98872B (2016).

Damasceno, E. A. M.

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

de Azevedo, R. B.

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

de Moura, L. D.

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

de Souza, P. E. N.

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

Deleporte, P.

S. Mordon, P. Deleporte, and N. Reyns, “A novel device for intraoperative photodynamic therapy dedicated to glioblastoma treatment,” Future Oncol.  13, 2441–2454 (2017).

Dos Santos, A. F.

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Dos Santos, M. S. C.

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

Dudas, J.

B. Kofler, A. Romani, C. Pritz, T. B. Steinbichler, V. H. Schartinger, H. Riechelmann, and J. Dudas, “Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines,” Int. J. Mol. Sci. 19(4), 1107 (2018).
[Crossref] [PubMed]

Endo, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Fakhrejahani, E.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Gomes, V. M.

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Gouvêa, A. L.

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

Hamard, L.

L. Hamard, D. Ratel, L. Selek, F. Berger, B. van der Sanden, and D. Wion, “The brain tissue response to surgical injury and its possible contribution to glioma recurrence,” J. Neurooncol. 128(1), 1–8 (2016).
[Crossref] [PubMed]

Jacak, J.

Kanao, S.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Kataoka, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Kawaguchi-Sakita, N.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Kawashima, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Klar, T. A.

Kofler, B.

B. Kofler, A. Romani, C. Pritz, T. B. Steinbichler, V. H. Schartinger, H. Riechelmann, and J. Dudas, “Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines,” Int. J. Mol. Sci. 19(4), 1107 (2018).
[Crossref] [PubMed]

Kohl, A.

C. Canal, A. Laugustin, A. Kohl, and O. Rabot, “Portable multiwavelength laser diode source for handheld photoacoustic devices,” Proc. SPIE 9887, 98872B (2016).

Labriola, L.

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Lange, C.

C. Lange and P. J. Bednarski, “Photosensitizers for Photodynamic Therapy: Photochemistry in the Service of Oncology,” Curr. Pharm. Des. 22(46), 6956–6974 (2016).
[Crossref] [PubMed]

Langer, G.

Laugustin, A.

C. Canal, A. Laugustin, A. Kohl, and O. Rabot, “Portable multiwavelength laser diode source for handheld photoacoustic devices,” Proc. SPIE 9887, 98872B (2016).

Leboulluec, P.

P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
[Crossref] [PubMed]

Liu, H.

P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
[Crossref] [PubMed]

Maslov, K.

L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. U.S.A. 110(15), 5759–5764 (2013).
[Crossref] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
[Crossref] [PubMed]

Matsumoto, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Meotti, F. C.

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Mineiro, M. F.

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Mordon, S.

S. Mordon, P. Deleporte, and N. Reyns, “A novel device for intraoperative photodynamic therapy dedicated to glioblastoma treatment,” Future Oncol.  13, 2441–2454 (2017).

Nakayama, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Oliveira, T. C.

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Paterno, L. G.

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

Pritz, C.

B. Kofler, A. Romani, C. Pritz, T. B. Steinbichler, V. H. Schartinger, H. Riechelmann, and J. Dudas, “Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines,” Int. J. Mol. Sci. 19(4), 1107 (2018).
[Crossref] [PubMed]

Rabot, O.

C. Canal, A. Laugustin, A. Kohl, and O. Rabot, “Portable multiwavelength laser diode source for handheld photoacoustic devices,” Proc. SPIE 9887, 98872B (2016).

Rao, B.

Ratel, D.

L. Hamard, D. Ratel, L. Selek, F. Berger, B. van der Sanden, and D. Wion, “The brain tissue response to surgical injury and its possible contribution to glioma recurrence,” J. Neurooncol. 128(1), 1–8 (2016).
[Crossref] [PubMed]

Reyns, N.

S. Mordon, P. Deleporte, and N. Reyns, “A novel device for intraoperative photodynamic therapy dedicated to glioblastoma treatment,” Future Oncol.  13, 2441–2454 (2017).

Riechelmann, H.

B. Kofler, A. Romani, C. Pritz, T. B. Steinbichler, V. H. Schartinger, H. Riechelmann, and J. Dudas, “Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines,” Int. J. Mol. Sci. 19(4), 1107 (2018).
[Crossref] [PubMed]

Romani, A.

B. Kofler, A. Romani, C. Pritz, T. B. Steinbichler, V. H. Schartinger, H. Riechelmann, and J. Dudas, “Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines,” Int. J. Mol. Sci. 19(4), 1107 (2018).
[Crossref] [PubMed]

Sakurai, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Schartinger, V. H.

B. Kofler, A. Romani, C. Pritz, T. B. Steinbichler, V. H. Schartinger, H. Riechelmann, and J. Dudas, “Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines,” Int. J. Mol. Sci. 19(4), 1107 (2018).
[Crossref] [PubMed]

Sekiguchi, H.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Selek, L.

L. Hamard, D. Ratel, L. Selek, F. Berger, B. van der Sanden, and D. Wion, “The brain tissue response to surgical injury and its possible contribution to glioma recurrence,” J. Neurooncol. 128(1), 1–8 (2016).
[Crossref] [PubMed]

Shiina, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Steinbichler, T. B.

B. Kofler, A. Romani, C. Pritz, T. B. Steinbichler, V. H. Schartinger, H. Riechelmann, and J. Dudas, “Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines,” Int. J. Mol. Sci. 19(4), 1107 (2018).
[Crossref] [PubMed]

Takada, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Terra, L. F.

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Togashi, K.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Toi, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Tokiwa, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Torii, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

van der Sanden, B.

L. Hamard, D. Ratel, L. Selek, F. Berger, B. van der Sanden, and D. Wion, “The brain tissue response to surgical injury and its possible contribution to glioma recurrence,” J. Neurooncol. 128(1), 1–8 (2016).
[Crossref] [PubMed]

Veiga-Souza, F. H.

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

Wailemann, R. A. M.

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Wang, L.

L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. U.S.A. 110(15), 5759–5764 (2013).
[Crossref] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
[Crossref] [PubMed]

Wang, L. V.

L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. U.S.A. 110(15), 5759–5764 (2013).
[Crossref] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
[Crossref] [PubMed]

Wion, D.

L. Hamard, D. Ratel, L. Selek, F. Berger, B. van der Sanden, and D. Wion, “The brain tissue response to surgical injury and its possible contribution to glioma recurrence,” J. Neurooncol. 128(1), 1–8 (2016).
[Crossref] [PubMed]

Yagi, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Yamaga, I.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Yao, J.

Yoshikawa, A.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Yuan, B.

P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
[Crossref] [PubMed]

Am. J. Phys. (1)

P. Leboulluec, H. Liu, and B. Yuan, “A cost-efficient frequency-domain photoacoustic imaging system,” Am. J. Phys. 81(9), 712–717 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

BMC Cancer (1)

A. F. Dos Santos, L. F. Terra, R. A. M. Wailemann, T. C. Oliveira, V. M. Gomes, M. F. Mineiro, F. C. Meotti, A. Bruni-Cardoso, M. S. Baptista, and L. Labriola, “Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells,” BMC Cancer 17(1), 194 (2017).
[Crossref] [PubMed]

Curr. Pharm. Des. (1)

C. Lange and P. J. Bednarski, “Photosensitizers for Photodynamic Therapy: Photochemistry in the Service of Oncology,” Curr. Pharm. Des. 22(46), 6956–6974 (2016).
[Crossref] [PubMed]

Future Oncol (1)

S. Mordon, P. Deleporte, and N. Reyns, “A novel device for intraoperative photodynamic therapy dedicated to glioblastoma treatment,” Future Oncol.  13, 2441–2454 (2017).

Int. J. Mol. Sci. (1)

B. Kofler, A. Romani, C. Pritz, T. B. Steinbichler, V. H. Schartinger, H. Riechelmann, and J. Dudas, “Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines,” Int. J. Mol. Sci. 19(4), 1107 (2018).
[Crossref] [PubMed]

J. Nanobiotechnology (1)

M. S. C. Dos Santos, A. L. Gouvêa, L. D. de Moura, L. G. Paterno, P. E. N. de Souza, A. P. Bastos, E. A. M. Damasceno, F. H. Veiga-Souza, R. B. de Azevedo, and S. N. Báo, “Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model,” J. Nanobiotechnology 16(1), 9 (2018).
[Crossref] [PubMed]

J. Neurooncol. (1)

L. Hamard, D. Ratel, L. Selek, F. Berger, B. van der Sanden, and D. Wion, “The brain tissue response to surgical injury and its possible contribution to glioma recurrence,” J. Neurooncol. 128(1), 1–8 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

L. Wang, K. Maslov, and L. V. Wang, “Single-cell label-free photoacoustic flowoxigraphy in vivo,” Proc. Natl. Acad. Sci. U.S.A. 110(15), 5759–5764 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

C. Canal, A. Laugustin, A. Kohl, and O. Rabot, “Portable multiwavelength laser diode source for handheld photoacoustic devices,” Proc. SPIE 9887, 98872B (2016).

Sci. Rep. (1)

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of the multi-wavelength PA microscope.
Fig. 2
Fig. 2 Description and utilization of a synthetic test sample for the validation of the multi-wavelength PA microscope. (a) Pattern for testing the PA signal as a function of the dyes surface concentration. (b) PA images of the yellow dye at 100% and 20% concentrations with the excitation wavelength λ1 = 415 nm and λ2 = 660 nm. (c) Surface average of the PA amplitude ± the standard deviation for all concentrations. Results of the linear regression are depicted (R2 = 0.91) with 95% confidence intervals (dotted line). (d) Pattern for testing the PA signal specificity with a dye mix. On the PA images on the right side, there is no visible response for the yellow dye at 660 nm and for the cyan dye at 415 nm. One can see that the images of the green area (yellow and cyan dyes mix) are complementary.
Fig. 3
Fig. 3 (a) Normalized absorption spectra of the yellow and the cyan dyes. At λ1 = 415 nm, the absorption of the yellow dye is close to its maximum, the cyan dye has a small absorption peak but hardly detectable with the current photo-acoustic sensitivity of the piezo-electric transducer. At λ2 = 660 nm, there is no absorption of the yellow dye. (b) Normalized absorption spectra of HbO2, Hb and MB. The maximum absorption of HbO2 is at 415 nm and at 660 nm for methylene blue (MB) (see website of the Oregon Medical Laser Center in Portland https://omlc.org/spectra/index.html).
Fig. 4
Fig. 4 Control of possible laser damage on the microvasculature in mouse ear for the imaging mode. The diode laser at 415 nm was set to 2.3 mW. The scale bar in (a) = 50 µm. (a) The sum of the first 25 images in the time series after background correction (rolling ball radius = 20 pixels). (b) The sum of 25 images (125-150) near the end of the time series with background correction, see (a). (c) Composite image of (a) in red and (b) in green showing most vessels in yellow ( = red + green), which means no change in RBC distribution. (d) Graph of the Hb PA signal to noise ratios in time for the depicted vessel (see region of interest ROIvessel).
Fig. 5
Fig. 5 Effect of single point laser irradiation (λex = 415 nm) during 1 minute inside a vessel of the mouse ear at different laser powers. (a) 2.3 mW, (b) 3.6 mW and (c) 6.1 mW, which is the maximum diode laser power. PA images are composite images of the sumslices before (red) and after (green) single point laser irradiation. Scale bar in (a) = 30 µm. For region of interest covering the red signal, the instant decrease of the Hb PA signal to noise ratios in time are shown in (d). This decrease was related to the laser powers.
Fig. 6
Fig. 6 PA-microscopic images (128 × 128 pixels) of vessels in a mouse ear after dual excitation and detection of hemoglobin and methylene blue (MB), scale bar in (f) = 50 µm. (a) The sum of the Hb PA signal intensities of all slices in time series of 133 images. (b) The sum of the last 40 images after the infusion of MB for the detection channel: λ1 = 660 nm. Photo-activation of MB caused a denaturation of plasma proteins that formed blood clots and closed the vessels. (c) The sum of the last 40 Hb images after the infusion of MB (0.2 ml, 10 mg/ml, during 1 minute). Different vessels show a reduced or complete hemostasis, loss of hemoglobin signal, after photo-activation of MB, see white arrows. (d) Composite image of sum of Hb PA signal intensities before ( = red, number of images = 53) and after MB photoactivation ( = green, number of images = 53). Green stained vessel regions showed an increase of the RBC concentrations (see ROI-1), red vessel regions had a complete blocking of RBC flux (see ROI-3), yellow (see ROI-2) = no change, bg = background. (e) Plot of Hb PA signal to noise ratios changes in time for the ROI’s in (d). (f) Sum of all slices in both channels: composite image, where Hb = red and MB = cyan. The yellow line defines the orthogonal view of X in time as shown in (g). (h) The normalized PA signal to noise changes in time for both channels for all vessels in all slices in time after background correction (rolling ball algorithm, radius = 20 pixel).
Fig. 7
Fig. 7 Control of methylene blue infusion on the Hb distribution. The diode lasers at 415 nm and 660 nm were respectively set to 2.3 mW and 4.2 mW to avoid photo-activation of MB. The scale bar = 50 µm. (a) The sum of all 50 Hb PA images in the time series after background correction (rolling ball radius = 20). (b) The sum of the last 30 MB PA images after 1 minute MB infusion (0.2 ml, 10 mg/ml). (c) Composite image of 20 Hb PA images in red before MB infusion and 20 Hb PA images at the end of the times series in green after MB infusion showing most vessels in yellow ( = red + green), which means no change in RBC distribution. (d) Graph of the normalized PA signal to noise ratios in time for the depicted vessel (ROI-1) and background noise level (ROI-bg) in (c) that confirms the yellow color code in (c).

Metrics