Abstract

In this proof-of-concept study we combine two optical techniques to enable assessment of structure and composition of human skin in vivo: Pulsed photothermal radiometry (PPTR), which involves measurements of transient dynamics in mid-infrared emission from sample surface after exposure to a light pulse, and diffuse reflectance spectroscopy (DRS) in visible part of the spectrum. The analysis involves simultaneous fitting of measured PPTR signals and DRS with corresponding predictions of a Monte Carlo model of light-tissue interaction. By using a four-layer optical model of skin we obtain a good match between the experimental and model data when scattering properties of the epidermis and dermis are also optimized on an individual basis. The assessed parameter values correlate well with literature data and demonstrate the expected trends in controlled tests involving temporary obstruction of peripheral blood circulation using a pressure cuff, and acute as well as seasonal sun tanning.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive assessment of skin structure by combined photothermal radiometry and optical spectroscopy: coregistration with multiphoton microscopy

Nina Verdel, Griffin Lentsch, Mihaela Balu, Bruce J. Tromberg, and Boris Majaron
Appl. Opt. 57(18) D117-D122 (2018)

Suitability of diffusion approximation for an inverse analysis of diffuse reflectance spectra from human skin in vivo

Peter Naglič, Luka Vidovič, Matija Milanič, Lise L. Randeberg, and Boris Majaron
OSA Continuum 2(3) 905-922 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. E. Milner, D. M. Goodman, B. S. Tanenbaum, and J. S. Nelson, “Depth profiling of laser-heated chromophores in biological tissues by pulsed photothermal radiometry,” J. Opt. Soc. Am. A 12(7), 1479–1488 (1995).
    [Crossref] [PubMed]
  2. B. Choi, B. Majaron, and J. S. Nelson, “Computational model to evaluate port wine stain depth profiling using pulsed photothermal radiometry,” J. Biomed. Opt. 9(2), 299–307 (2004).
    [Crossref] [PubMed]
  3. M. Milanič, I. Serša, and B. Majaron, “A spectrally composite reconstruction approach for improved resolution of pulsed photothermal temperature profiling in water-based samples,” Phys. Med. Biol. 54(9), 2829–2844 (2009).
    [Crossref] [PubMed]
  4. M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
    [Crossref] [PubMed]
  5. L. Vidovič, M. Milanič, and B. Majaron, “Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling,” J. Biomed. Opt. 20(1), 017001 (2015).
    [Crossref] [PubMed]
  6. A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  7. L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Quantitative characterization of traumatic bruises by combined pulsed photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 9303, 930307 (2015).
    [Crossref]
  8. P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
    [Crossref]
  9. N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10037, 100370H (2017).
  10. T. E. Milner, D. M. Goodman, B. S. Tanenbaum, and J. S. Nelson, “Depth profiling of laser-heated chromophores in biological tissues by pulsed photothermal radiometry,” J. Opt. Soc. Am. A 12(7), 1479–1488 (1995).
    [Crossref] [PubMed]
  11. L. Vidovič and B. Majaron, “Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere,” J. Biomed. Opt. 19(2), 027006 (2014).
    [Crossref] [PubMed]
  12. L. Vidovič, M. Milanič, and B. Majaron, “Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy,” Proc. SPIE 9540, 95400E (2015).
    [Crossref]
  13. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  14. M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
    [Crossref] [PubMed]
  15. E.-J. Fiskerstrand, L. O. Svaasand, G. Kopstad, M. Dalaker, L. T. Norvang, and G. Volden, “Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters,” Br. J. Dermatol. 134(6), 1039–1043 (1996).
    [Crossref] [PubMed]
  16. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
    [Crossref] [PubMed]
  17. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Empirical model functions to calculate hematocrit-dependent optical properties of human blood,” Appl. Opt. 46(10), 1742–1753 (2007).
    [Crossref] [PubMed]
  18. S. L. Jacques, “Optical assessment of cutaneous blood volume depends on the vessel size distribution: a computer simulation study,” J. Biophotonics 3(1-2), 75–81 (2010).
    [Crossref] [PubMed]
  19. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
    [Crossref] [PubMed]
  20. A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
    [Crossref]
  21. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  22. T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
    [Crossref] [PubMed]
  23. L. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
    [Crossref]
  24. R. I. Kelly, R. Pearse, R. H. Bull, J.-L. Leveque, J. de Rigal, and P. S. Mortimer, “The effects of aging on the cutaneous microvasculature,” J. Am. Acad. Dermatol. 33(5), 749–756 (1995).
    [Crossref] [PubMed]
  25. D. Yudovsky and L. Pilon, “Retrieving skin properties from in vivo spectral reflectance measurements,” J. Biophotonics 4(5), 305–314 (2011).
    [Crossref] [PubMed]
  26. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).
  27. T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. Sterenborg, and B. H. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
    [Crossref] [PubMed]
  28. C. E. Thorn, S. J. Matcher, I. V. Meglinski, and A. C. Shore, “Is mean blood saturation a useful marker of tissue oxygenation?” Am. J. Physiol. Heart Circ. Physiol. 296(5), H1289–H1295 (2009).
    [Crossref] [PubMed]
  29. U. Merschbrock, J. Hoffmann, L. Caspary, J. Huber, U. Schmickaly, and D. W. Lübbers, “Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin,” Int. J. Microcirc. Clin. Exp. 14(5), 274–281 (1994).
    [Crossref] [PubMed]
  30. L. O. Svaasand, M. J. van Gemert, W. Verkruysse, E. J. Fiskerstrand, and L. Norvang, “Dosimetry for laser treatment of port-wine stains,” Proc. SPIE 3601, 463–472 (1999).
    [Crossref]
  31. W. Verkruysse, J. W. Pickering, J. F. Beek, M. Keijzer, and M. J. van Gemert, “Modeling the effect of wavelength on the pulsed dye laser treatment of port wine stains,” Appl. Opt. 32(4), 393–398 (1993).
    [Crossref] [PubMed]
  32. W.-F. Cheong, “Summary of optical properties,” Optical-Thermal Response of Laser-Irradiated Tissue, pp. 275–303 (Plenum, 1995).
  33. C. Mignon, D. J. Tobin, M. Zeitouny, and N. E. Uzunbajakava, “Shedding light on the variability of optical skin properties: finding a path towards more accurate prediction of light propagation in human cutaneous compartments,” Biomed. Opt. Express 9(2), 852–872 (2018).
    [Crossref] [PubMed]
  34. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34(31), 7410–7418 (1995).
    [Crossref] [PubMed]
  35. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
    [Crossref]
  36. G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D Appl. Phys. 38(15), 2732–2747 (2005).
    [Crossref]
  37. L. F. Douven and G. W. Lucassen, “Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance,” Proc. SPIE 3914, 312–323 (2000).
    [Crossref]
  38. G. N. Stamatas and N. Kollias, “Blood stasis contributions to the perception of skin pigmentation,” J. Biomed. Opt. 9(2), 315–322 (2004).
    [Crossref] [PubMed]
  39. X. Chen, W. Lin, C. Wang, S. Chen, J. Sheng, B. Zeng, and M. Xu, “In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light,” Biomed. Opt. Express 8(12), 5468–5482 (2017).
    [Crossref] [PubMed]
  40. J. K. Wagner, E. J. Parra, H. L Norton, C. Jovel, and M. D. Shriver, “Skin responses to ultraviolet radiation: effects of constitutive pigmentation, sex, and ancestry,” Pigment Cell Res. 15(5), 385–390 (2002).
    [Crossref] [PubMed]
  41. S.-H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
    [Crossref] [PubMed]
  42. M. Milanič and B. Majaron, “Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions,” J. Biomed. Opt. 16(12), 128002 (2011).
    [Crossref] [PubMed]
  43. A. Marin, M. Milanič, N. Verdel, L. Vidovič, and B. Majaron, “Dynamics of controllably induced bruises assessed by diffuse reflectance spectroscopy and pulsed photothermal radiometry,” Proc. SPIE 10467, 104670N (2018).
    [Crossref]
  44. N. Verdel, G. Lentsch, M. Balu, B. J. Tromberg, and B. Majaron, “Noninvasive assessment of skin structure by combined photothermal radiometry and optical spectroscopy: coregistration with multiphoton microscopy,” Appl. Opt. 57(18), D117–D122 (2018).
    [Crossref] [PubMed]
  45. M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hofer, R. Bückle, and K. Konig, “A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking,” Proc. SPIE 7589, 758908 (2010).
    [Crossref]
  46. B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
    [Crossref] [PubMed]
  47. T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
    [Crossref] [PubMed]
  48. N. Verdel and B. Majaron, “Monitoring of Hemodynamics in Human Skin Using Pulsed Photothermal Radiometry and Optical Spectroscopy,” Proceedings DGZfP BB, We.3.A.4 (2018).
    [Crossref]
  49. H. Jonasson, I. Fredriksson, S. Bergstrand, C. J. Östgren, M. Larsson, and T. Strömberg, “In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort,” J. Biomed. Opt. 23(12), 1–6 (2018).
    [Crossref] [PubMed]
  50. N. Verdel, A. Marin, M. Lukač, and B. Majaron, “Noninvasive assessment of changes in human skin upon fractional laser remodeling,” Lasers Surg. Med. 50, S5 (2018).
  51. N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “Analysis of hemodynamics in human skin using photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10413, 104130O (2017).
    [Crossref]

2018 (5)

C. Mignon, D. J. Tobin, M. Zeitouny, and N. E. Uzunbajakava, “Shedding light on the variability of optical skin properties: finding a path towards more accurate prediction of light propagation in human cutaneous compartments,” Biomed. Opt. Express 9(2), 852–872 (2018).
[Crossref] [PubMed]

A. Marin, M. Milanič, N. Verdel, L. Vidovič, and B. Majaron, “Dynamics of controllably induced bruises assessed by diffuse reflectance spectroscopy and pulsed photothermal radiometry,” Proc. SPIE 10467, 104670N (2018).
[Crossref]

N. Verdel, G. Lentsch, M. Balu, B. J. Tromberg, and B. Majaron, “Noninvasive assessment of skin structure by combined photothermal radiometry and optical spectroscopy: coregistration with multiphoton microscopy,” Appl. Opt. 57(18), D117–D122 (2018).
[Crossref] [PubMed]

H. Jonasson, I. Fredriksson, S. Bergstrand, C. J. Östgren, M. Larsson, and T. Strömberg, “In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort,” J. Biomed. Opt. 23(12), 1–6 (2018).
[Crossref] [PubMed]

N. Verdel, A. Marin, M. Lukač, and B. Majaron, “Noninvasive assessment of changes in human skin upon fractional laser remodeling,” Lasers Surg. Med. 50, S5 (2018).

2017 (4)

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “Analysis of hemodynamics in human skin using photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10413, 104130O (2017).
[Crossref]

T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
[Crossref] [PubMed]

X. Chen, W. Lin, C. Wang, S. Chen, J. Sheng, B. Zeng, and M. Xu, “In vivo real-time imaging of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, melanin content, and epidermal thickness with visible spatially modulated light,” Biomed. Opt. Express 8(12), 5468–5482 (2017).
[Crossref] [PubMed]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10037, 100370H (2017).

2016 (1)

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

2015 (4)

L. Vidovič, M. Milanič, and B. Majaron, “Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy,” Proc. SPIE 9540, 95400E (2015).
[Crossref]

L. Vidovič, M. Milanič, and B. Majaron, “Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling,” J. Biomed. Opt. 20(1), 017001 (2015).
[Crossref] [PubMed]

L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Quantitative characterization of traumatic bruises by combined pulsed photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 9303, 930307 (2015).
[Crossref]

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. Sterenborg, and B. H. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref] [PubMed]

2014 (1)

L. Vidovič and B. Majaron, “Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere,” J. Biomed. Opt. 19(2), 027006 (2014).
[Crossref] [PubMed]

2013 (3)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

2012 (1)

S.-H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

2011 (3)

M. Milanič and B. Majaron, “Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions,” J. Biomed. Opt. 16(12), 128002 (2011).
[Crossref] [PubMed]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
[Crossref]

D. Yudovsky and L. Pilon, “Retrieving skin properties from in vivo spectral reflectance measurements,” J. Biophotonics 4(5), 305–314 (2011).
[Crossref] [PubMed]

2010 (2)

S. L. Jacques, “Optical assessment of cutaneous blood volume depends on the vessel size distribution: a computer simulation study,” J. Biophotonics 3(1-2), 75–81 (2010).
[Crossref] [PubMed]

M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hofer, R. Bückle, and K. Konig, “A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking,” Proc. SPIE 7589, 758908 (2010).
[Crossref]

2009 (2)

C. E. Thorn, S. J. Matcher, I. V. Meglinski, and A. C. Shore, “Is mean blood saturation a useful marker of tissue oxygenation?” Am. J. Physiol. Heart Circ. Physiol. 296(5), H1289–H1295 (2009).
[Crossref] [PubMed]

M. Milanič, I. Serša, and B. Majaron, “A spectrally composite reconstruction approach for improved resolution of pulsed photothermal temperature profiling in water-based samples,” Phys. Med. Biol. 54(9), 2829–2844 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (3)

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

2005 (3)

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D Appl. Phys. 38(15), 2732–2747 (2005).
[Crossref]

2004 (2)

B. Choi, B. Majaron, and J. S. Nelson, “Computational model to evaluate port wine stain depth profiling using pulsed photothermal radiometry,” J. Biomed. Opt. 9(2), 299–307 (2004).
[Crossref] [PubMed]

G. N. Stamatas and N. Kollias, “Blood stasis contributions to the perception of skin pigmentation,” J. Biomed. Opt. 9(2), 315–322 (2004).
[Crossref] [PubMed]

2002 (1)

J. K. Wagner, E. J. Parra, H. L Norton, C. Jovel, and M. D. Shriver, “Skin responses to ultraviolet radiation: effects of constitutive pigmentation, sex, and ancestry,” Pigment Cell Res. 15(5), 385–390 (2002).
[Crossref] [PubMed]

2000 (1)

L. F. Douven and G. W. Lucassen, “Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance,” Proc. SPIE 3914, 312–323 (2000).
[Crossref]

1999 (1)

L. O. Svaasand, M. J. van Gemert, W. Verkruysse, E. J. Fiskerstrand, and L. Norvang, “Dosimetry for laser treatment of port-wine stains,” Proc. SPIE 3601, 463–472 (1999).
[Crossref]

1998 (1)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

1996 (1)

E.-J. Fiskerstrand, L. O. Svaasand, G. Kopstad, M. Dalaker, L. T. Norvang, and G. Volden, “Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters,” Br. J. Dermatol. 134(6), 1039–1043 (1996).
[Crossref] [PubMed]

1995 (6)

T. E. Milner, D. M. Goodman, B. S. Tanenbaum, and J. S. Nelson, “Depth profiling of laser-heated chromophores in biological tissues by pulsed photothermal radiometry,” J. Opt. Soc. Am. A 12(7), 1479–1488 (1995).
[Crossref] [PubMed]

T. E. Milner, D. M. Goodman, B. S. Tanenbaum, and J. S. Nelson, “Depth profiling of laser-heated chromophores in biological tissues by pulsed photothermal radiometry,” J. Opt. Soc. Am. A 12(7), 1479–1488 (1995).
[Crossref] [PubMed]

I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34(31), 7410–7418 (1995).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

L. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

R. I. Kelly, R. Pearse, R. H. Bull, J.-L. Leveque, J. de Rigal, and P. S. Mortimer, “The effects of aging on the cutaneous microvasculature,” J. Am. Acad. Dermatol. 33(5), 749–756 (1995).
[Crossref] [PubMed]

1994 (1)

U. Merschbrock, J. Hoffmann, L. Caspary, J. Huber, U. Schmickaly, and D. W. Lübbers, “Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin,” Int. J. Microcirc. Clin. Exp. 14(5), 274–281 (1994).
[Crossref] [PubMed]

1993 (1)

Altmeyer, P.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

Altshuler, G.

G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D Appl. Phys. 38(15), 2732–2747 (2005).
[Crossref]

Balu, M.

Bashkatov, A.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
[Crossref]

Beek, J. F.

Bergstrand, S.

H. Jonasson, I. Fredriksson, S. Bergstrand, C. J. Östgren, M. Larsson, and T. Strömberg, “In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort,” J. Biomed. Opt. 23(12), 1–6 (2018).
[Crossref] [PubMed]

T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
[Crossref] [PubMed]

Berns, M.

L. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Breunig, H. G.

M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hofer, R. Bückle, and K. Konig, “A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking,” Proc. SPIE 7589, 758908 (2010).
[Crossref]

Bückle, R.

M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hofer, R. Bückle, and K. Konig, “A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking,” Proc. SPIE 7589, 758908 (2010).
[Crossref]

Bull, R. H.

R. I. Kelly, R. Pearse, R. H. Bull, J.-L. Leveque, J. de Rigal, and P. S. Mortimer, “The effects of aging on the cutaneous microvasculature,” J. Am. Acad. Dermatol. 33(5), 749–756 (1995).
[Crossref] [PubMed]

Bydlon, T. M.

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. Sterenborg, and B. H. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref] [PubMed]

Calva, V.

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

Caspary, L.

U. Merschbrock, J. Hoffmann, L. Caspary, J. Huber, U. Schmickaly, and D. W. Lübbers, “Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin,” Int. J. Microcirc. Clin. Exp. 14(5), 274–281 (1994).
[Crossref] [PubMed]

Chen, S.

Chen, W. R.

S.-H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Chen, X.

Choi, B.

B. Choi, B. Majaron, and J. S. Nelson, “Computational model to evaluate port wine stain depth profiling using pulsed photothermal radiometry,” J. Biomed. Opt. 9(2), 299–307 (2004).
[Crossref] [PubMed]

Cimino, S.

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Correa, J. A.

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

Dalaker, M.

E.-J. Fiskerstrand, L. O. Svaasand, G. Kopstad, M. Dalaker, L. T. Norvang, and G. Volden, “Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters,” Br. J. Dermatol. 134(6), 1039–1043 (1996).
[Crossref] [PubMed]

de Muszka, F.

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

de Oliveira, A.

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

de Rigal, J.

R. I. Kelly, R. Pearse, R. H. Bull, J.-L. Leveque, J. de Rigal, and P. S. Mortimer, “The effects of aging on the cutaneous microvasculature,” J. Am. Acad. Dermatol. 33(5), 749–756 (1995).
[Crossref] [PubMed]

Douven, L. F.

L. F. Douven and G. W. Lucassen, “Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance,” Proc. SPIE 3914, 312–323 (2000).
[Crossref]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Fischer, P.

M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hofer, R. Bückle, and K. Konig, “A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking,” Proc. SPIE 7589, 758908 (2010).
[Crossref]

Fiskerstrand, E.

L. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Fiskerstrand, E. J.

L. O. Svaasand, M. J. van Gemert, W. Verkruysse, E. J. Fiskerstrand, and L. Norvang, “Dosimetry for laser treatment of port-wine stains,” Proc. SPIE 3601, 463–472 (1999).
[Crossref]

Fiskerstrand, E.-J.

E.-J. Fiskerstrand, L. O. Svaasand, G. Kopstad, M. Dalaker, L. T. Norvang, and G. Volden, “Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters,” Br. J. Dermatol. 134(6), 1039–1043 (1996).
[Crossref] [PubMed]

Forget, N. J.

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

Fredriksson, I.

H. Jonasson, I. Fredriksson, S. Bergstrand, C. J. Östgren, M. Larsson, and T. Strömberg, “In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort,” J. Biomed. Opt. 23(12), 1–6 (2018).
[Crossref] [PubMed]

Friebel, M.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Empirical model functions to calculate hematocrit-dependent optical properties of human blood,” Appl. Opt. 46(10), 1742–1753 (2007).
[Crossref] [PubMed]

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Gambichler, T.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

Genina, E.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
[Crossref]

Goodman, D. M.

Gregory, A.

M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hofer, R. Bückle, and K. Konig, “A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking,” Proc. SPIE 7589, 758908 (2010).
[Crossref]

Helfmann, J.

Hendriks, B. H.

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. Sterenborg, and B. H. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref] [PubMed]

Hoffmann, J.

U. Merschbrock, J. Hoffmann, L. Caspary, J. Huber, U. Schmickaly, and D. W. Lübbers, “Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin,” Int. J. Microcirc. Clin. Exp. 14(5), 274–281 (1994).
[Crossref] [PubMed]

Hoffmann, K.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

Hsu, C. K.

S.-H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Huber, J.

U. Merschbrock, J. Hoffmann, L. Caspary, J. Huber, U. Schmickaly, and D. W. Lübbers, “Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin,” Int. J. Microcirc. Clin. Exp. 14(5), 274–281 (1994).
[Crossref] [PubMed]

Hurtubise, T.

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical assessment of cutaneous blood volume depends on the vessel size distribution: a computer simulation study,” J. Biophotonics 3(1-2), 75–81 (2010).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34(31), 7410–7418 (1995).
[Crossref] [PubMed]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Jonasson, H.

H. Jonasson, I. Fredriksson, S. Bergstrand, C. J. Östgren, M. Larsson, and T. Strömberg, “In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort,” J. Biomed. Opt. 23(12), 1–6 (2018).
[Crossref] [PubMed]

Jovel, C.

J. K. Wagner, E. J. Parra, H. L Norton, C. Jovel, and M. D. Shriver, “Skin responses to ultraviolet radiation: effects of constitutive pigmentation, sex, and ancestry,” Pigment Cell Res. 15(5), 385–390 (2002).
[Crossref] [PubMed]

Keijzer, M.

Kellner-Hofer, M.

M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hofer, R. Bückle, and K. Konig, “A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking,” Proc. SPIE 7589, 758908 (2010).
[Crossref]

Kelly, R. I.

R. I. Kelly, R. Pearse, R. H. Bull, J.-L. Leveque, J. de Rigal, and P. S. Mortimer, “The effects of aging on the cutaneous microvasculature,” J. Am. Acad. Dermatol. 33(5), 749–756 (1995).
[Crossref] [PubMed]

Kochubey, V.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Kollias, N.

G. N. Stamatas and N. Kollias, “Blood stasis contributions to the perception of skin pigmentation,” J. Biomed. Opt. 9(2), 315–322 (2004).
[Crossref] [PubMed]

Konig, K.

M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hofer, R. Bückle, and K. Konig, “A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking,” Proc. SPIE 7589, 758908 (2010).
[Crossref]

Kopstad, G.

E.-J. Fiskerstrand, L. O. Svaasand, G. Kopstad, M. Dalaker, L. T. Norvang, and G. Volden, “Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters,” Br. J. Dermatol. 134(6), 1039–1043 (1996).
[Crossref] [PubMed]

L Norton, H.

J. K. Wagner, E. J. Parra, H. L Norton, C. Jovel, and M. D. Shriver, “Skin responses to ultraviolet radiation: effects of constitutive pigmentation, sex, and ancestry,” Pigment Cell Res. 15(5), 385–390 (2002).
[Crossref] [PubMed]

Larsson, M.

H. Jonasson, I. Fredriksson, S. Bergstrand, C. J. Östgren, M. Larsson, and T. Strömberg, “In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort,” J. Biomed. Opt. 23(12), 1–6 (2018).
[Crossref] [PubMed]

Legault, A.

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

Lentsch, G.

Leveque, J.-L.

R. I. Kelly, R. Pearse, R. H. Bull, J.-L. Leveque, J. de Rigal, and P. S. Mortimer, “The effects of aging on the cutaneous microvasculature,” J. Am. Acad. Dermatol. 33(5), 749–756 (1995).
[Crossref] [PubMed]

Liaw, Y. K.

S.-H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Lin, W.

Liu, W. L.

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

Lübbers, D. W.

U. Merschbrock, J. Hoffmann, L. Caspary, J. Huber, U. Schmickaly, and D. W. Lübbers, “Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin,” Int. J. Microcirc. Clin. Exp. 14(5), 274–281 (1994).
[Crossref] [PubMed]

Lucassen, G. W.

L. F. Douven and G. W. Lucassen, “Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance,” Proc. SPIE 3914, 312–323 (2000).
[Crossref]

Lukac, M.

N. Verdel, A. Marin, M. Lukač, and B. Majaron, “Noninvasive assessment of changes in human skin upon fractional laser remodeling,” Lasers Surg. Med. 50, S5 (2018).

Majaron, B.

N. Verdel, A. Marin, M. Lukač, and B. Majaron, “Noninvasive assessment of changes in human skin upon fractional laser remodeling,” Lasers Surg. Med. 50, S5 (2018).

A. Marin, M. Milanič, N. Verdel, L. Vidovič, and B. Majaron, “Dynamics of controllably induced bruises assessed by diffuse reflectance spectroscopy and pulsed photothermal radiometry,” Proc. SPIE 10467, 104670N (2018).
[Crossref]

N. Verdel, G. Lentsch, M. Balu, B. J. Tromberg, and B. Majaron, “Noninvasive assessment of skin structure by combined photothermal radiometry and optical spectroscopy: coregistration with multiphoton microscopy,” Appl. Opt. 57(18), D117–D122 (2018).
[Crossref] [PubMed]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “Analysis of hemodynamics in human skin using photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10413, 104130O (2017).
[Crossref]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10037, 100370H (2017).

L. Vidovič, M. Milanič, and B. Majaron, “Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling,” J. Biomed. Opt. 20(1), 017001 (2015).
[Crossref] [PubMed]

L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Quantitative characterization of traumatic bruises by combined pulsed photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 9303, 930307 (2015).
[Crossref]

L. Vidovič, M. Milanič, and B. Majaron, “Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy,” Proc. SPIE 9540, 95400E (2015).
[Crossref]

L. Vidovič and B. Majaron, “Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere,” J. Biomed. Opt. 19(2), 027006 (2014).
[Crossref] [PubMed]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

M. Milanič and B. Majaron, “Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions,” J. Biomed. Opt. 16(12), 128002 (2011).
[Crossref] [PubMed]

M. Milanič, I. Serša, and B. Majaron, “A spectrally composite reconstruction approach for improved resolution of pulsed photothermal temperature profiling in water-based samples,” Phys. Med. Biol. 54(9), 2829–2844 (2009).
[Crossref] [PubMed]

B. Choi, B. Majaron, and J. S. Nelson, “Computational model to evaluate port wine stain depth profiling using pulsed photothermal radiometry,” J. Biomed. Opt. 9(2), 299–307 (2004).
[Crossref] [PubMed]

Marin, A.

A. Marin, M. Milanič, N. Verdel, L. Vidovič, and B. Majaron, “Dynamics of controllably induced bruises assessed by diffuse reflectance spectroscopy and pulsed photothermal radiometry,” Proc. SPIE 10467, 104670N (2018).
[Crossref]

N. Verdel, A. Marin, M. Lukač, and B. Majaron, “Noninvasive assessment of changes in human skin upon fractional laser remodeling,” Lasers Surg. Med. 50, S5 (2018).

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “Analysis of hemodynamics in human skin using photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10413, 104130O (2017).
[Crossref]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10037, 100370H (2017).

Matcher, S. J.

C. E. Thorn, S. J. Matcher, I. V. Meglinski, and A. C. Shore, “Is mean blood saturation a useful marker of tissue oxygenation?” Am. J. Physiol. Heart Circ. Physiol. 296(5), H1289–H1295 (2009).
[Crossref] [PubMed]

Matip, R.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

Meglinski, I. V.

C. E. Thorn, S. J. Matcher, I. V. Meglinski, and A. C. Shore, “Is mean blood saturation a useful marker of tissue oxygenation?” Am. J. Physiol. Heart Circ. Physiol. 296(5), H1289–H1295 (2009).
[Crossref] [PubMed]

Meinke, M.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Empirical model functions to calculate hematocrit-dependent optical properties of human blood,” Appl. Opt. 46(10), 1742–1753 (2007).
[Crossref] [PubMed]

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Merschbrock, U.

U. Merschbrock, J. Hoffmann, L. Caspary, J. Huber, U. Schmickaly, and D. W. Lübbers, “Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin,” Int. J. Microcirc. Clin. Exp. 14(5), 274–281 (1994).
[Crossref] [PubMed]

Mignon, C.

Milanic, M.

A. Marin, M. Milanič, N. Verdel, L. Vidovič, and B. Majaron, “Dynamics of controllably induced bruises assessed by diffuse reflectance spectroscopy and pulsed photothermal radiometry,” Proc. SPIE 10467, 104670N (2018).
[Crossref]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “Analysis of hemodynamics in human skin using photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10413, 104130O (2017).
[Crossref]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10037, 100370H (2017).

L. Vidovič, M. Milanič, and B. Majaron, “Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy,” Proc. SPIE 9540, 95400E (2015).
[Crossref]

L. Vidovič, M. Milanič, and B. Majaron, “Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling,” J. Biomed. Opt. 20(1), 017001 (2015).
[Crossref] [PubMed]

L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Quantitative characterization of traumatic bruises by combined pulsed photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 9303, 930307 (2015).
[Crossref]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

M. Milanič and B. Majaron, “Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions,” J. Biomed. Opt. 16(12), 128002 (2011).
[Crossref] [PubMed]

M. Milanič, I. Serša, and B. Majaron, “A spectrally composite reconstruction approach for improved resolution of pulsed photothermal temperature profiling in water-based samples,” Phys. Med. Biol. 54(9), 2829–2844 (2009).
[Crossref] [PubMed]

Milner, T. E.

Mortimer, P. S.

R. I. Kelly, R. Pearse, R. H. Bull, J.-L. Leveque, J. de Rigal, and P. S. Mortimer, “The effects of aging on the cutaneous microvasculature,” J. Am. Acad. Dermatol. 33(5), 749–756 (1995).
[Crossref] [PubMed]

Moussa, G.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

Müller, G.

M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Empirical model functions to calculate hematocrit-dependent optical properties of human blood,” Appl. Opt. 46(10), 1742–1753 (2007).
[Crossref] [PubMed]

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Nachabé, R.

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. Sterenborg, and B. H. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref] [PubMed]

Naglic, P.

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

Nedelec, B.

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

Nelson, J.

L. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Nelson, J. S.

Norvang, L.

L. O. Svaasand, M. J. van Gemert, W. Verkruysse, E. J. Fiskerstrand, and L. Norvang, “Dosimetry for laser treatment of port-wine stains,” Proc. SPIE 3601, 463–472 (1999).
[Crossref]

L. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Norvang, L. T.

E.-J. Fiskerstrand, L. O. Svaasand, G. Kopstad, M. Dalaker, L. T. Norvang, and G. Volden, “Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters,” Br. J. Dermatol. 134(6), 1039–1043 (1996).
[Crossref] [PubMed]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Östgren, C. J.

H. Jonasson, I. Fredriksson, S. Bergstrand, C. J. Östgren, M. Larsson, and T. Strömberg, “In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort,” J. Biomed. Opt. 23(12), 1–6 (2018).
[Crossref] [PubMed]

Parra, E. J.

J. K. Wagner, E. J. Parra, H. L Norton, C. Jovel, and M. D. Shriver, “Skin responses to ultraviolet radiation: effects of constitutive pigmentation, sex, and ancestry,” Pigment Cell Res. 15(5), 385–390 (2002).
[Crossref] [PubMed]

Pearse, R.

R. I. Kelly, R. Pearse, R. H. Bull, J.-L. Leveque, J. de Rigal, and P. S. Mortimer, “The effects of aging on the cutaneous microvasculature,” J. Am. Acad. Dermatol. 33(5), 749–756 (1995).
[Crossref] [PubMed]

Pickering, J. W.

Pilon, L.

D. Yudovsky and L. Pilon, “Retrieving skin properties from in vivo spectral reflectance measurements,” J. Biophotonics 4(5), 305–314 (2011).
[Crossref] [PubMed]

Ramanujam, N.

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. Sterenborg, and B. H. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref] [PubMed]

Randeberg, L. L.

L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Quantitative characterization of traumatic bruises by combined pulsed photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 9303, 930307 (2015).
[Crossref]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

Roggan, A.

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Saidi, I. S.

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Schmickaly, U.

U. Merschbrock, J. Hoffmann, L. Caspary, J. Huber, U. Schmickaly, and D. W. Lübbers, “Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin,” Int. J. Microcirc. Clin. Exp. 14(5), 274–281 (1994).
[Crossref] [PubMed]

Serša, I.

M. Milanič, I. Serša, and B. Majaron, “A spectrally composite reconstruction approach for improved resolution of pulsed photothermal temperature profiling in water-based samples,” Phys. Med. Biol. 54(9), 2829–2844 (2009).
[Crossref] [PubMed]

Sheng, J.

Shore, A. C.

C. E. Thorn, S. J. Matcher, I. V. Meglinski, and A. C. Shore, “Is mean blood saturation a useful marker of tissue oxygenation?” Am. J. Physiol. Heart Circ. Physiol. 296(5), H1289–H1295 (2009).
[Crossref] [PubMed]

Shriver, M. D.

J. K. Wagner, E. J. Parra, H. L Norton, C. Jovel, and M. D. Shriver, “Skin responses to ultraviolet radiation: effects of constitutive pigmentation, sex, and ancestry,” Pigment Cell Res. 15(5), 385–390 (2002).
[Crossref] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Sjöberg, F.

T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
[Crossref] [PubMed]

Smirnov, M.

G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D Appl. Phys. 38(15), 2732–2747 (2005).
[Crossref]

Stamatas, G. N.

G. N. Stamatas and N. Kollias, “Blood stasis contributions to the perception of skin pigmentation,” J. Biomed. Opt. 9(2), 315–322 (2004).
[Crossref] [PubMed]

Sterenborg, H. J.

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. Sterenborg, and B. H. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref] [PubMed]

Stopps, E.

L. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Strömberg, T.

H. Jonasson, I. Fredriksson, S. Bergstrand, C. J. Östgren, M. Larsson, and T. Strömberg, “In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort,” J. Biomed. Opt. 23(12), 1–6 (2018).
[Crossref] [PubMed]

T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
[Crossref] [PubMed]

Svaasand, L.

L. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Svaasand, L. O.

L. O. Svaasand, M. J. van Gemert, W. Verkruysse, E. J. Fiskerstrand, and L. Norvang, “Dosimetry for laser treatment of port-wine stains,” Proc. SPIE 3601, 463–472 (1999).
[Crossref]

E.-J. Fiskerstrand, L. O. Svaasand, G. Kopstad, M. Dalaker, L. T. Norvang, and G. Volden, “Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters,” Br. J. Dermatol. 134(6), 1039–1043 (1996).
[Crossref] [PubMed]

Tanenbaum, B. S.

Thorn, C. E.

C. E. Thorn, S. J. Matcher, I. V. Meglinski, and A. C. Shore, “Is mean blood saturation a useful marker of tissue oxygenation?” Am. J. Physiol. Heart Circ. Physiol. 296(5), H1289–H1295 (2009).
[Crossref] [PubMed]

Tittel, F. K.

Tobin, D. J.

Tromberg, B. J.

Tseng, S.-H.

S.-H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Tuchin, V.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
[Crossref]

Tzeng, S. Y.

S.-H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Uzunbajakava, N. E.

van Gemert, M. J.

L. O. Svaasand, M. J. van Gemert, W. Verkruysse, E. J. Fiskerstrand, and L. Norvang, “Dosimetry for laser treatment of port-wine stains,” Proc. SPIE 3601, 463–472 (1999).
[Crossref]

W. Verkruysse, J. W. Pickering, J. F. Beek, M. Keijzer, and M. J. van Gemert, “Modeling the effect of wavelength on the pulsed dye laser treatment of port wine stains,” Appl. Opt. 32(4), 393–398 (1993).
[Crossref] [PubMed]

Verdel, N.

N. Verdel, G. Lentsch, M. Balu, B. J. Tromberg, and B. Majaron, “Noninvasive assessment of skin structure by combined photothermal radiometry and optical spectroscopy: coregistration with multiphoton microscopy,” Appl. Opt. 57(18), D117–D122 (2018).
[Crossref] [PubMed]

A. Marin, M. Milanič, N. Verdel, L. Vidovič, and B. Majaron, “Dynamics of controllably induced bruises assessed by diffuse reflectance spectroscopy and pulsed photothermal radiometry,” Proc. SPIE 10467, 104670N (2018).
[Crossref]

N. Verdel, A. Marin, M. Lukač, and B. Majaron, “Noninvasive assessment of changes in human skin upon fractional laser remodeling,” Lasers Surg. Med. 50, S5 (2018).

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “Analysis of hemodynamics in human skin using photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10413, 104130O (2017).
[Crossref]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10037, 100370H (2017).

Verkruysse, W.

L. O. Svaasand, M. J. van Gemert, W. Verkruysse, E. J. Fiskerstrand, and L. Norvang, “Dosimetry for laser treatment of port-wine stains,” Proc. SPIE 3601, 463–472 (1999).
[Crossref]

W. Verkruysse, J. W. Pickering, J. F. Beek, M. Keijzer, and M. J. van Gemert, “Modeling the effect of wavelength on the pulsed dye laser treatment of port wine stains,” Appl. Opt. 32(4), 393–398 (1993).
[Crossref] [PubMed]

Vidovic, L.

A. Marin, M. Milanič, N. Verdel, L. Vidovič, and B. Majaron, “Dynamics of controllably induced bruises assessed by diffuse reflectance spectroscopy and pulsed photothermal radiometry,” Proc. SPIE 10467, 104670N (2018).
[Crossref]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “Analysis of hemodynamics in human skin using photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10413, 104130O (2017).
[Crossref]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10037, 100370H (2017).

L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Quantitative characterization of traumatic bruises by combined pulsed photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 9303, 930307 (2015).
[Crossref]

L. Vidovič, M. Milanič, and B. Majaron, “Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling,” J. Biomed. Opt. 20(1), 017001 (2015).
[Crossref] [PubMed]

L. Vidovič, M. Milanič, and B. Majaron, “Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy,” Proc. SPIE 9540, 95400E (2015).
[Crossref]

L. Vidovič and B. Majaron, “Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere,” J. Biomed. Opt. 19(2), 027006 (2014).
[Crossref] [PubMed]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

Volden, G.

E.-J. Fiskerstrand, L. O. Svaasand, G. Kopstad, M. Dalaker, L. T. Norvang, and G. Volden, “Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters,” Br. J. Dermatol. 134(6), 1039–1043 (1996).
[Crossref] [PubMed]

Wagner, J. K.

J. K. Wagner, E. J. Parra, H. L Norton, C. Jovel, and M. D. Shriver, “Skin responses to ultraviolet radiation: effects of constitutive pigmentation, sex, and ancestry,” Pigment Cell Res. 15(5), 385–390 (2002).
[Crossref] [PubMed]

Wang, C.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Weinigel, M.

M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hofer, R. Bückle, and K. Konig, “A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking,” Proc. SPIE 7589, 758908 (2010).
[Crossref]

Xu, M.

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Yaroslavsky, I.

G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D Appl. Phys. 38(15), 2732–2747 (2005).
[Crossref]

Yudovsky, D.

D. Yudovsky and L. Pilon, “Retrieving skin properties from in vivo spectral reflectance measurements,” J. Biophotonics 4(5), 305–314 (2011).
[Crossref] [PubMed]

Yu-Yun Lee, J.

S.-H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Zeitouny, M.

Zeng, B.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

C. E. Thorn, S. J. Matcher, I. V. Meglinski, and A. C. Shore, “Is mean blood saturation a useful marker of tissue oxygenation?” Am. J. Physiol. Heart Circ. Physiol. 296(5), H1289–H1295 (2009).
[Crossref] [PubMed]

Appl. Opt. (4)

Biomed. Opt. Express (2)

Br. J. Dermatol. (1)

E.-J. Fiskerstrand, L. O. Svaasand, G. Kopstad, M. Dalaker, L. T. Norvang, and G. Volden, “Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters,” Br. J. Dermatol. 134(6), 1039–1043 (1996).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Int. J. Microcirc. Clin. Exp. (1)

U. Merschbrock, J. Hoffmann, L. Caspary, J. Huber, U. Schmickaly, and D. W. Lübbers, “Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin,” Int. J. Microcirc. Clin. Exp. 14(5), 274–281 (1994).
[Crossref] [PubMed]

J. Am. Acad. Dermatol. (1)

R. I. Kelly, R. Pearse, R. H. Bull, J.-L. Leveque, J. de Rigal, and P. S. Mortimer, “The effects of aging on the cutaneous microvasculature,” J. Am. Acad. Dermatol. 33(5), 749–756 (1995).
[Crossref] [PubMed]

J. Biomed. Opt. (9)

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

L. Vidovič and B. Majaron, “Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere,” J. Biomed. Opt. 19(2), 027006 (2014).
[Crossref] [PubMed]

B. Choi, B. Majaron, and J. S. Nelson, “Computational model to evaluate port wine stain depth profiling using pulsed photothermal radiometry,” J. Biomed. Opt. 9(2), 299–307 (2004).
[Crossref] [PubMed]

L. Vidovič, M. Milanič, and B. Majaron, “Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling,” J. Biomed. Opt. 20(1), 017001 (2015).
[Crossref] [PubMed]

G. N. Stamatas and N. Kollias, “Blood stasis contributions to the perception of skin pigmentation,” J. Biomed. Opt. 9(2), 315–322 (2004).
[Crossref] [PubMed]

S.-H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

M. Milanič and B. Majaron, “Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions,” J. Biomed. Opt. 16(12), 128002 (2011).
[Crossref] [PubMed]

H. Jonasson, I. Fredriksson, S. Bergstrand, C. J. Östgren, M. Larsson, and T. Strömberg, “In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort,” J. Biomed. Opt. 23(12), 1–6 (2018).
[Crossref] [PubMed]

J. Biophotonics (3)

S. L. Jacques, “Optical assessment of cutaneous blood volume depends on the vessel size distribution: a computer simulation study,” J. Biophotonics 3(1-2), 75–81 (2010).
[Crossref] [PubMed]

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. Sterenborg, and B. H. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophotonics 8(1-2), 9–24 (2015).
[Crossref] [PubMed]

D. Yudovsky and L. Pilon, “Retrieving skin properties from in vivo spectral reflectance measurements,” J. Biophotonics 4(5), 305–314 (2011).
[Crossref] [PubMed]

J. Dermatol. Sci. (1)

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. D Appl. Phys. (2)

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

G. Altshuler, M. Smirnov, and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D Appl. Phys. 38(15), 2732–2747 (2005).
[Crossref]

Lasers Med. Sci. (1)

L. Svaasand, L. Norvang, E. Fiskerstrand, E. Stopps, M. Berns, and J. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Lasers Surg. Med. (2)

M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med. 45(1), 8–14 (2013).
[Crossref] [PubMed]

N. Verdel, A. Marin, M. Lukač, and B. Majaron, “Noninvasive assessment of changes in human skin upon fractional laser remodeling,” Lasers Surg. Med. 50, S5 (2018).

Microvasc. Res. (1)

T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
[Crossref] [PubMed]

Opt. Spectrosc. (1)

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

Phys. Med. Biol. (3)

M. Milanič, I. Serša, and B. Majaron, “A spectrally composite reconstruction approach for improved resolution of pulsed photothermal temperature profiling in water-based samples,” Phys. Med. Biol. 54(9), 2829–2844 (2009).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Pigment Cell Res. (1)

J. K. Wagner, E. J. Parra, H. L Norton, C. Jovel, and M. D. Shriver, “Skin responses to ultraviolet radiation: effects of constitutive pigmentation, sex, and ancestry,” Pigment Cell Res. 15(5), 385–390 (2002).
[Crossref] [PubMed]

Proc. SPIE (9)

A. Marin, M. Milanič, N. Verdel, L. Vidovič, and B. Majaron, “Dynamics of controllably induced bruises assessed by diffuse reflectance spectroscopy and pulsed photothermal radiometry,” Proc. SPIE 10467, 104670N (2018).
[Crossref]

M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hofer, R. Bückle, and K. Konig, “A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking,” Proc. SPIE 7589, 758908 (2010).
[Crossref]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “Analysis of hemodynamics in human skin using photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10413, 104130O (2017).
[Crossref]

L. Vidovič, M. Milanič, and B. Majaron, “Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy,” Proc. SPIE 9540, 95400E (2015).
[Crossref]

L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Quantitative characterization of traumatic bruises by combined pulsed photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 9303, 930307 (2015).
[Crossref]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

N. Verdel, A. Marin, L. Vidovič, M. Milanič, and B. Majaron, “In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy,” Proc. SPIE 10037, 100370H (2017).

L. F. Douven and G. W. Lucassen, “Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance,” Proc. SPIE 3914, 312–323 (2000).
[Crossref]

L. O. Svaasand, M. J. van Gemert, W. Verkruysse, E. J. Fiskerstrand, and L. Norvang, “Dosimetry for laser treatment of port-wine stains,” Proc. SPIE 3601, 463–472 (1999).
[Crossref]

Skin Res. Technol. (1)

B. Nedelec, N. J. Forget, T. Hurtubise, S. Cimino, F. de Muszka, A. Legault, W. L. Liu, A. de Oliveira, V. Calva, and J. A. Correa, “Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations,” Skin Res. Technol. 22(3), 263–275 (2016).
[Crossref] [PubMed]

Other (3)

N. Verdel and B. Majaron, “Monitoring of Hemodynamics in Human Skin Using Pulsed Photothermal Radiometry and Optical Spectroscopy,” Proceedings DGZfP BB, We.3.A.4 (2018).
[Crossref]

W.-F. Cheong, “Summary of optical properties,” Optical-Thermal Response of Laser-Irradiated Tissue, pp. 275–303 (Plenum, 1995).

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Iterative assessment of skin properties from measured DRS spectra and PPTR signals.
Fig. 2
Fig. 2 PPTR signal (a) and DRS spectrum (b) as measured in a healthy volunteer (solid orange lines), compared with the best-fitting model predictions when using skin scattering properties from literature [18] (dashed). The arrows indicate the wavelengths considered in the optimization process.
Fig. 3
Fig. 3 Comparison of the PPTR signal (a) and DRS spectrum (b) from a healthy volunteer (solid orange lines), with predictions of our model with optimized scattering properties of skin (dashed).
Fig. 4
Fig. 4 Spectral dependence of the reduced scattering coefficient of epidermis and dermis as assessed by our analysis (solid blue lines; right column in Table 3) compared with the result corresponding to the effective behavior of entire skin (dashed) and our initial assumption (Eq. (4); dotted) (a). Our result for dermis (solid line) compared with data from refs [13,16,19,34–36]. (b).
Fig. 5
Fig. 5 Comparison of the PPTR signal (a) and DRS spectrum as measured in intact skin (orange solid lines) and during the blood-pressure cuff test (red solid lines) in subject NV, with the best-fitting model predictions (dashed).
Fig. 6
Fig. 6 Blood contents and oxygenation levels before and during temporary obstruction of blood circulation in volunteers NV (a), (b), JR (c), (d), and ML (e), (f).
Fig. 7
Fig. 7 Reduced scattering coefficient of the epidermis and dermis at λ = 500 nm before (orange) and during (blue) temporary obstruction of blood circulation in subject NV.
Fig. 8
Fig. 8 Photograph of the acutely tanned and comparatively untanned skin on the upper arm of subject NV (a). Comparison of the melanin contents (b) and reduced scattering coefficients at λ = 500 nm (c) as assessed from measurements in two nearby sites on either side of the tan line.
Fig. 9
Fig. 9 Blood contents (a) and oxygen saturation levels (b) of the model skin layers, representative of an untanned (orange) and tanned (brown) site on the upper arm of subject NV (see Fig. 9(a)).
Fig. 10
Fig. 10 Seasonal changes of the melanin content show a pronounced increase over the summer months (a), while the epidermal thickness stays practically constant (b).
Fig. 11
Fig. 11 Variations of the blood contents (a) and oxygen saturation values in the papillary (dark red) and reticular dermis (red) (b), as indicated by our analysis of DRS spectra and PPTR signals acquired from inner side of the forearm in a healthy volunteer (NV).

Tables (4)

Tables Icon

Table 1 Overview of our four-layer optical model and its parameters

Tables Icon

Table 2 The permitted ranges for fitted parameters of our four-layer model of skin with scattering properties adopted from literature, and the results from analysis of a healthy skin site in vivo (see Fig. 2). Τhe results are presented as average values from five independent IMC runs and the respective standard deviations. The last line shows the achieved value of the residual norm (ε).

Tables Icon

Table 3 The assessed model parameter values when assuming the same scattering properties for epidermis and dermis (left column), and optimized separately for epidermis and dermis (right column).

Tables Icon

Table 4 Skin model parameters assessed from the blood-pressure cuff test performed in subject NV (Fig. 5).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

μ a,epi =m μ a,mel + b epi μ a,bl +(1m b epi ) μ a,base
μ a,mel (λ)=6.6× 10 10 mm 1 ( λ nm ) 3.33
μ a,base (λ)= 0.0244 mm 1 + 8.53 mm 1 exp( λ154nm 66.2nm )
μ s ( λ )=a[ f Ray ( λ 500 nm ) 4 +( 1 f Ray ) ( λ 500 nm ) p Mie ].
μ s (λ)=a ( λ 500nm ) p .
μ s,sub (λ)=A[ 16.43 cm 1 + 303.8 cm 1 exp( λ 180.3nm ) ],
ΔS(t)= z=0 K(z,t)ΔT(z,t=0)dz
K(z,t)= C λ 1 λ 2 R(λ) B λ ( T b ) μ IR (λ) z=0 G( z ,z,t) e μ IR (λ) z d z dλ .
S=KT; K i,j =K( z j , t i )Δz.
ε= ε DRS +M ε PPTR .

Metrics