Abstract

Intramedullary nailing is a routine orthopedic procedure used for treating fractures of femoral or tibial shafts. A critical part of this procedure involves the drilling of pilot holes in both ends of the bone for the placement of the screws that will secure the IM rod to sections of the fractured bone. This step introduces a risk of soft tissue damage because the drill bit, if not stopped in time, can transverse the bone-tissue boundary into the overlying muscle, causing unnecessary injury and prolonging healing time due to periosteum damage. In this respect, detecting the bone-tissue boundary before break-through can reduce the risks and complications associated with intramedullary nailing. Hence, in the present study, a two-wavelength diffuse reflectance spectroscopy technique was integrated into a surgical drill to optically detect bone-tissue boundary and automatically trigger the drill to stop. Furthermore, Monte-Carlo simulations were used to estimate the maximum distance from within the bone at which the bone-tissue boundary could be detected using DRS. The simulation results estimated that the detection distance, termed the “look-ahead-distance” was ∼1.5 mm for 1.3 mm source-detector fiber separation. Experimental measurements with 1.3 mm source-detector fiber separation showed that the look-ahead-distance was in the order of 250 µm in experiments with set drill rate and in the range of 1 mm in experiments where the holes were drilled by hand. Despite this difference, the automated DRS enhanced drill successfully detected the approaching bone tissue boundary when tested on samples of bovine femur and muscle tissue.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Validation of diffuse reflectance spectroscopy with magnetic resonance imaging for accurate vertebral bone fat fraction quantification

Akash Swamy, Gustav Burström, Jarich W. Spliethoff, Drazenko Babic, Stefan Ruschke, John M. Racadio, Erik Edström, Adrian Elmi-Terander, Jenny Dankelman, and Benno H. W. Hendriks
Biomed. Opt. Express 10(8) 4316-4328 (2019)

Surface structural damage study in cortical bone due to medical drilling

Cesar G. Tavera R., Manuel H. De la Torre-I, Jorge M. Flores-M., Ma Del Socorro Hernandez M., Fernando Mendoza-Santoyo, Manuel de J. Briones-R., and Jorge Sanchez-P.
Appl. Opt. 56(13) F179-F188 (2017)

Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe

Bing Yu, Amy Shah, Vivek K. Nagarajan, and Daron G. Ferris
Biomed. Opt. Express 5(3) 675-689 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Medicine Biol. 45, 2873 (2000).
    [Crossref]
  2. U. S. Dinish, C. L. Wong, S. Sriram, W. K. Ong, G. Balasundaram, S. Sugii, and M. Olivo, “Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning,” Sci. Rep. 7, 41357 (2017).
    [Crossref] [PubMed]
  3. D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
    [Crossref] [PubMed]
  4. F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Medicine 9, 20 (2011).
    [Crossref]
  5. N. Reistad, J. Nilsson, O. V. Timmermand, C. Sturesson, and S. Andersson-Engels, “Diffuse reflectance spectroscopy of liver tissue,” in SPIE Biophotonics South America, (International Society for Optics and Photonics, 2015), p. 95314E.
  6. C. Brown, C. Jayadev, S. Glyn-Jones, A. Carr, D. Murray, A. Price, and H. Gill, “Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy,” Phys. Medicine Biol. 56, 2299 (2011).
    [Crossref]
  7. J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
    [Crossref]
  8. P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15, 3301–3311 (2007).
    [Crossref] [PubMed]
  9. N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Medicine Biol. 49, 469 (2004).
    [Crossref]
  10. P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).
    [Crossref] [PubMed]
  11. M. Johns, C. A. Giller, D. C. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13, 4828–4842 (2005).
    [Crossref] [PubMed]
  12. A. Korff, A. Follmann, T. Fürtjes, T. Jalowy, and K. Radermacher, “Optical sensors for a synergistically controlled osteotomy system,” in Sensors, (IEEE, 2010), pp. 2069–2072.
  13. J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
    [Crossref]
  14. V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
    [Crossref]
  15. I. Hacihaliloglu, R. Abugharbieh, A. J. Hodgson, and R. N. Rohling, “Bone surface localization in ultrasound using image phase-based features,” Ultrasound Medicine & Biol. 35, 1475–1487 (2009).
    [Crossref]
  16. J. R. Weber, F. Baribeau, P. Grenier, F. Émond, S. Dubois, F. Duchesne, M. Girard, T. Pope, P. Gallant, O. Mermut, and et al., “Towards a bimodal proximity sensor for in situ neurovascular bundle detection during dental implant surgery,” Biomed. Opt. Express 5, 16–30 (2014).
    [Crossref] [PubMed]
  17. D. H. Wicaksono, G. Pandraud, E. Margallo-Balbas, P. French, P. Breedveld, and J. Dankelman, “Micro-optics assembly in dental drill as a platform for imaging and sensing during surgical drilling,” in Sensors, (IEEE, 2010), pp. 265–268.
  18. G. Zheng, X. Zhang, D. Haschtmann, P. Gédet, X. Dong, and L.-P. Nolte, “A robust and accurate two-stage approach for automatic recovery of distal locking holes in computer-assisted intramedullary nailing of femoral shaft fractures,” IEEE Transactions on Med. Imaging 27, 171–187 (2008).
    [Crossref]
  19. W. Chu, J. Wang, S.-T. Young, and W. C. Chu, “Reducing radiation exposure in intra-medullary nailing procedures: Intra-medullary endo-transilluminating (imet),” Injury 40, 1084–1087 (2009).
    [Crossref] [PubMed]
  20. H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, “Precision-guided surgical navigation system using laser guidance and 3d autostereoscopic image overlay,” Comput. Med. Imaging Graph. 34, 46 (2010). Image-Guided Surgical Planning and Therapy.
    [Crossref]
  21. S. Nakdhamabhorn and J. Suthakorn, “A novel surgical navigation concept for closed intramedullary nailing of femur using 4-dof laser-guiding robot,” in Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, (IEEE, 2011), pp. 479–484.
  22. M.-S. Lee, S.-Y. Wu, T.-H. Wong, W. Hsu, and T.-K. Chung, “A novel guiding device for distal locking of intramedullary nails,” in Sensors, 2012 IEEE, (IEEE, 2012), pp. 1–4.
  23. J. Choi, J. Kim, J. Y. Hwang, M. Je, J.-Y. Kim, and S.-Y. Kim, “A novel smart navigation system for intramedullary nailing in orthopedic surgery,” PloS one 12, e0174407 (2017).
    [Crossref] [PubMed]
  24. R. Hofstetter, M. Slomczykowski, M. Sati, and L.-P. Nolte, “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Comput. Aided Surg. 4, 65–76 (1999).
    [Crossref] [PubMed]
  25. K. Gavaghan, T. Oliveira-Santos, M. Peterhans, M. Reyes, H. Kim, S. Anderegg, and S. Weber, “Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies,” Int. J. Comput. Assist. Eadiology surgery 7, 547–556 (2012).
    [Crossref]
  26. T. Doke, J. T. Liang, S. Onogi, and Y. Nakajima, “Fluoroscopy-based laser guidance system for linear surgical tool insertion depth control,” Int. J. Comput. Assist. Radiol. surgery 10, 275–283 (2015).
    [Crossref]
  27. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-vander Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
    [PubMed]
  28. P. H. C. Tom Lister and A. Philip, Wright, “Optical properties of human skin,” J. Biomed. Opt. 17, 09091 (2012).
  29. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
    [Crossref]
  30. L. Wang, S. L. Jacques, and L. Zheng, “Mcml–monte carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [Crossref] [PubMed]
  31. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
    [Crossref] [PubMed]
  32. V.-D. Tuan, Biomedical Photonics Handbook(CRC Press, 2003).
  33. C. G. Tr, M. H. D. la Torre-I, J. M. Flores-M, M. D. S. Hm, F. Mendoza-Santoyo, M.J. de Briones-R, and J. Sanchez-P, “Surface structural damage study in cortical bone due to medical drilling,” Appl. Opt. 56, F179–F188 (2017).
    [Crossref]
  34. V. M. Rossi, S. B. Gustafson, and S. L. Jacques, “Characterizing the optical properties of bone using a multi-fiber array and diffuse reflectance spectroscopy,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, (Optical Society of America, 2009), p. FME4.
  35. T. Beck, “Measuring the structural strength of bones with dual-energy x-ray absorptiometry: principles, technical limitations, and future possibilities,” Osteoporos. Int. 14, 81–88 (2003).
    [Crossref]
  36. Y. Long, W. D. Leslie, and Y. Luo, “Study of dxa-derived lateral–medial cortical bone thickness in assessing hip fracture risk,” Bone Reports 2, 44–51 (2015).
    [Crossref]

2017 (3)

U. S. Dinish, C. L. Wong, S. Sriram, W. K. Ong, G. Balasundaram, S. Sugii, and M. Olivo, “Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning,” Sci. Rep. 7, 41357 (2017).
[Crossref] [PubMed]

J. Choi, J. Kim, J. Y. Hwang, M. Je, J.-Y. Kim, and S.-Y. Kim, “A novel smart navigation system for intramedullary nailing in orthopedic surgery,” PloS one 12, e0174407 (2017).
[Crossref] [PubMed]

C. G. Tr, M. H. D. la Torre-I, J. M. Flores-M, M. D. S. Hm, F. Mendoza-Santoyo, M.J. de Briones-R, and J. Sanchez-P, “Surface structural damage study in cortical bone due to medical drilling,” Appl. Opt. 56, F179–F188 (2017).
[Crossref]

2016 (2)

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

2015 (2)

T. Doke, J. T. Liang, S. Onogi, and Y. Nakajima, “Fluoroscopy-based laser guidance system for linear surgical tool insertion depth control,” Int. J. Comput. Assist. Radiol. surgery 10, 275–283 (2015).
[Crossref]

Y. Long, W. D. Leslie, and Y. Luo, “Study of dxa-derived lateral–medial cortical bone thickness in assessing hip fracture risk,” Bone Reports 2, 44–51 (2015).
[Crossref]

2014 (1)

2013 (1)

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

2012 (3)

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

K. Gavaghan, T. Oliveira-Santos, M. Peterhans, M. Reyes, H. Kim, S. Anderegg, and S. Weber, “Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies,” Int. J. Comput. Assist. Eadiology surgery 7, 547–556 (2012).
[Crossref]

P. H. C. Tom Lister and A. Philip, Wright, “Optical properties of human skin,” J. Biomed. Opt. 17, 09091 (2012).

2011 (2)

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Medicine 9, 20 (2011).
[Crossref]

C. Brown, C. Jayadev, S. Glyn-Jones, A. Carr, D. Murray, A. Price, and H. Gill, “Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy,” Phys. Medicine Biol. 56, 2299 (2011).
[Crossref]

2010 (1)

H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, “Precision-guided surgical navigation system using laser guidance and 3d autostereoscopic image overlay,” Comput. Med. Imaging Graph. 34, 46 (2010). Image-Guided Surgical Planning and Therapy.
[Crossref]

2009 (2)

W. Chu, J. Wang, S.-T. Young, and W. C. Chu, “Reducing radiation exposure in intra-medullary nailing procedures: Intra-medullary endo-transilluminating (imet),” Injury 40, 1084–1087 (2009).
[Crossref] [PubMed]

I. Hacihaliloglu, R. Abugharbieh, A. J. Hodgson, and R. N. Rohling, “Bone surface localization in ultrasound using image phase-based features,” Ultrasound Medicine & Biol. 35, 1475–1487 (2009).
[Crossref]

2008 (2)

G. Zheng, X. Zhang, D. Haschtmann, P. Gédet, X. Dong, and L.-P. Nolte, “A robust and accurate two-stage approach for automatic recovery of distal locking holes in computer-assisted intramedullary nailing of femoral shaft fractures,” IEEE Transactions on Med. Imaging 27, 171–187 (2008).
[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
[Crossref]

2007 (1)

2005 (1)

2004 (2)

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[Crossref] [PubMed]

N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Medicine Biol. 49, 469 (2004).
[Crossref]

2003 (2)

T. Beck, “Measuring the structural strength of bones with dual-energy x-ray absorptiometry: principles, technical limitations, and future possibilities,” Osteoporos. Int. 14, 81–88 (2003).
[Crossref]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).
[Crossref] [PubMed]

2000 (1)

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Medicine Biol. 45, 2873 (2000).
[Crossref]

1999 (1)

R. Hofstetter, M. Slomczykowski, M. Sati, and L.-P. Nolte, “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Comput. Aided Surg. 4, 65–76 (1999).
[Crossref] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “Mcml–monte carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

1991 (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-vander Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Aalders, M. C. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[Crossref] [PubMed]

Abugharbieh, R.

I. Hacihaliloglu, R. Abugharbieh, A. J. Hodgson, and R. N. Rohling, “Bone surface localization in ultrasound using image phase-based features,” Ultrasound Medicine & Biol. 35, 1475–1487 (2009).
[Crossref]

Adler, W.

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Medicine 9, 20 (2011).
[Crossref]

Alerstam, E.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
[Crossref]

Anderegg, S.

K. Gavaghan, T. Oliveira-Santos, M. Peterhans, M. Reyes, H. Kim, S. Anderegg, and S. Weber, “Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies,” Int. J. Comput. Assist. Eadiology surgery 7, 547–556 (2012).
[Crossref]

Andersson-Engels, S.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
[Crossref]

N. Reistad, J. Nilsson, O. V. Timmermand, C. Sturesson, and S. Andersson-Engels, “Diffuse reflectance spectroscopy of liver tissue,” in SPIE Biophotonics South America, (International Society for Optics and Photonics, 2015), p. 95314E.

Anuraj, K.

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

Attenburrow, D. P.

N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Medicine Biol. 49, 469 (2004).
[Crossref]

Baiju, K. V.

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

Balasundaram, G.

U. S. Dinish, C. L. Wong, S. Sriram, W. K. Ong, G. Balasundaram, S. Sugii, and M. Olivo, “Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning,” Sci. Rep. 7, 41357 (2017).
[Crossref] [PubMed]

Bargo, P. R.

Baribeau, F.

Barman, I.

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

Beck, T.

T. Beck, “Measuring the structural strength of bones with dual-energy x-ray absorptiometry: principles, technical limitations, and future possibilities,” Osteoporos. Int. 14, 81–88 (2003).
[Crossref]

Breedveld, P.

D. H. Wicaksono, G. Pandraud, E. Margallo-Balbas, P. French, P. Breedveld, and J. Dankelman, “Micro-optics assembly in dental drill as a platform for imaging and sensing during surgical drilling,” in Sensors, (IEEE, 2010), pp. 265–268.

Brown, C.

C. Brown, C. Jayadev, S. Glyn-Jones, A. Carr, D. Murray, A. Price, and H. Gill, “Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy,” Phys. Medicine Biol. 56, 2299 (2011).
[Crossref]

Buursma, A.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-vander Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Carr, A.

C. Brown, C. Jayadev, S. Glyn-Jones, A. Carr, D. Murray, A. Price, and H. Gill, “Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy,” Phys. Medicine Biol. 56, 2299 (2011).
[Crossref]

Choi, J.

J. Choi, J. Kim, J. Y. Hwang, M. Je, J.-Y. Kim, and S.-Y. Kim, “A novel smart navigation system for intramedullary nailing in orthopedic surgery,” PloS one 12, e0174407 (2017).
[Crossref] [PubMed]

Chu, W.

W. Chu, J. Wang, S.-T. Young, and W. C. Chu, “Reducing radiation exposure in intra-medullary nailing procedures: Intra-medullary endo-transilluminating (imet),” Injury 40, 1084–1087 (2009).
[Crossref] [PubMed]

Chu, W. C.

W. Chu, J. Wang, S.-T. Young, and W. C. Chu, “Reducing radiation exposure in intra-medullary nailing procedures: Intra-medullary endo-transilluminating (imet),” Injury 40, 1084–1087 (2009).
[Crossref] [PubMed]

Chung, T.-K.

M.-S. Lee, S.-Y. Wu, T.-H. Wong, W. Hsu, and T.-K. Chung, “A novel guiding device for distal locking of intramedullary nails,” in Sensors, 2012 IEEE, (IEEE, 2012), pp. 1–4.

Comelli, D.

Dankelman, J.

D. H. Wicaksono, G. Pandraud, E. Margallo-Balbas, P. French, P. Breedveld, and J. Dankelman, “Micro-optics assembly in dental drill as a platform for imaging and sensing during surgical drilling,” in Sensors, (IEEE, 2010), pp. 265–268.

Dasari, R.

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

de Briones-R, M.J.

de Jong, J.

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

Dingari, N. C.

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

Dinish, U. S.

U. S. Dinish, C. L. Wong, S. Sriram, W. K. Ong, G. Balasundaram, S. Sugii, and M. Olivo, “Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning,” Sci. Rep. 7, 41357 (2017).
[Crossref] [PubMed]

Dohi, T.

H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, “Precision-guided surgical navigation system using laser guidance and 3d autostereoscopic image overlay,” Comput. Med. Imaging Graph. 34, 46 (2010). Image-Guided Surgical Planning and Therapy.
[Crossref]

Doke, T.

T. Doke, J. T. Liang, S. Onogi, and Y. Nakajima, “Fluoroscopy-based laser guidance system for linear surgical tool insertion depth control,” Int. J. Comput. Assist. Radiol. surgery 10, 275–283 (2015).
[Crossref]

Dong, X.

G. Zheng, X. Zhang, D. Haschtmann, P. Gédet, X. Dong, and L.-P. Nolte, “A robust and accurate two-stage approach for automatic recovery of distal locking holes in computer-assisted intramedullary nailing of femoral shaft fractures,” IEEE Transactions on Med. Imaging 27, 171–187 (2008).
[Crossref]

Douplik, A.

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Medicine 9, 20 (2011).
[Crossref]

Dubois, S.

Duchesne, F.

Émond, F.

Essenpreis, M.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Medicine Biol. 45, 2873 (2000).
[Crossref]

Evers, D. J.

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

Faber, D. J.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[Crossref] [PubMed]

Farina, A.

Farrell, T. J.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Medicine Biol. 45, 2873 (2000).
[Crossref]

Fitzmaurice, M.

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

Flores-M, J. M.

Follmann, A.

A. Korff, A. Follmann, T. Fürtjes, T. Jalowy, and K. Radermacher, “Optical sensors for a synergistically controlled osteotomy system,” in Sensors, (IEEE, 2010), pp. 2069–2072.

French, P.

D. H. Wicaksono, G. Pandraud, E. Margallo-Balbas, P. French, P. Breedveld, and J. Dankelman, “Micro-optics assembly in dental drill as a platform for imaging and sensing during surgical drilling,” in Sensors, (IEEE, 2010), pp. 265–268.

Fürtjes, T.

A. Korff, A. Follmann, T. Fürtjes, T. Jalowy, and K. Radermacher, “Optical sensors for a synergistically controlled osteotomy system,” in Sensors, (IEEE, 2010), pp. 2069–2072.

Gallant, P.

Gavaghan, K.

K. Gavaghan, T. Oliveira-Santos, M. Peterhans, M. Reyes, H. Kim, S. Anderegg, and S. Weber, “Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies,” Int. J. Comput. Assist. Eadiology surgery 7, 547–556 (2012).
[Crossref]

Gédet, P.

G. Zheng, X. Zhang, D. Haschtmann, P. Gédet, X. Dong, and L.-P. Nolte, “A robust and accurate two-stage approach for automatic recovery of distal locking holes in computer-assisted intramedullary nailing of femoral shaft fractures,” IEEE Transactions on Med. Imaging 27, 171–187 (2008).
[Crossref]

German, D. C.

Gill, H.

C. Brown, C. Jayadev, S. Glyn-Jones, A. Carr, D. Murray, A. Price, and H. Gill, “Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy,” Phys. Medicine Biol. 56, 2299 (2011).
[Crossref]

Giller, C. A.

Girard, M.

Glyn-Jones, S.

C. Brown, C. Jayadev, S. Glyn-Jones, A. Carr, D. Murray, A. Price, and H. Gill, “Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy,” Phys. Medicine Biol. 56, 2299 (2011).
[Crossref]

Grenier, P.

Gustafson, S. B.

V. M. Rossi, S. B. Gustafson, and S. L. Jacques, “Characterizing the optical properties of bone using a multi-fiber array and diffuse reflectance spectroscopy,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, (Optical Society of America, 2009), p. FME4.

Hacihaliloglu, I.

I. Hacihaliloglu, R. Abugharbieh, A. J. Hodgson, and R. N. Rohling, “Bone surface localization in ultrasound using image phase-based features,” Ultrasound Medicine & Biol. 35, 1475–1487 (2009).
[Crossref]

Haschtmann, D.

G. Zheng, X. Zhang, D. Haschtmann, P. Gédet, X. Dong, and L.-P. Nolte, “A robust and accurate two-stage approach for automatic recovery of distal locking holes in computer-assisted intramedullary nailing of femoral shaft fractures,” IEEE Transactions on Med. Imaging 27, 171–187 (2008).
[Crossref]

Hendriks, B. H.

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

Hermann, M.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Medicine Biol. 45, 2873 (2000).
[Crossref]

Hm, M. D. S.

Hodgson, A. J.

I. Hacihaliloglu, R. Abugharbieh, A. J. Hodgson, and R. N. Rohling, “Bone surface localization in ultrasound using image phase-based features,” Ultrasound Medicine & Biol. 35, 1475–1487 (2009).
[Crossref]

Hofstetter, R.

R. Hofstetter, M. Slomczykowski, M. Sati, and L.-P. Nolte, “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Comput. Aided Surg. 4, 65–76 (1999).
[Crossref] [PubMed]

Hooper, B. A.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[Crossref] [PubMed]

Hsu, W.

M.-S. Lee, S.-Y. Wu, T.-H. Wong, W. Hsu, and T.-K. Chung, “A novel guiding device for distal locking of intramedullary nails,” in Sensors, 2012 IEEE, (IEEE, 2012), pp. 1–4.

Hwang, J. Y.

J. Choi, J. Kim, J. Y. Hwang, M. Je, J.-Y. Kim, and S.-Y. Kim, “A novel smart navigation system for intramedullary nailing in orthopedic surgery,” PloS one 12, e0174407 (2017).
[Crossref] [PubMed]

Ishihara, H.

H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, “Precision-guided surgical navigation system using laser guidance and 3d autostereoscopic image overlay,” Comput. Med. Imaging Graph. 34, 46 (2010). Image-Guided Surgical Planning and Therapy.
[Crossref]

Jacques, S. L.

P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42, 3187–3197 (2003).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “Mcml–monte carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

V. M. Rossi, S. B. Gustafson, and S. L. Jacques, “Characterizing the optical properties of bone using a multi-fiber array and diffuse reflectance spectroscopy,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, (Optical Society of America, 2009), p. FME4.

Jalowy, T.

A. Korff, A. Follmann, T. Fürtjes, T. Jalowy, and K. Radermacher, “Optical sensors for a synergistically controlled osteotomy system,” in Sensors, (IEEE, 2010), pp. 2069–2072.

Jayadev, C.

C. Brown, C. Jayadev, S. Glyn-Jones, A. Carr, D. Murray, A. Price, and H. Gill, “Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy,” Phys. Medicine Biol. 56, 2299 (2011).
[Crossref]

Jayanthi, J. L.

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

Je, M.

J. Choi, J. Kim, J. Y. Hwang, M. Je, J.-Y. Kim, and S.-Y. Kim, “A novel smart navigation system for intramedullary nailing in orthopedic surgery,” PloS one 12, e0174407 (2017).
[Crossref] [PubMed]

Johns, M.

Kienle, A.

Kim, H.

K. Gavaghan, T. Oliveira-Santos, M. Peterhans, M. Reyes, H. Kim, S. Anderegg, and S. Weber, “Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies,” Int. J. Comput. Assist. Eadiology surgery 7, 547–556 (2012).
[Crossref]

Kim, J.

J. Choi, J. Kim, J. Y. Hwang, M. Je, J.-Y. Kim, and S.-Y. Kim, “A novel smart navigation system for intramedullary nailing in orthopedic surgery,” PloS one 12, e0174407 (2017).
[Crossref] [PubMed]

Kim, J.-Y.

J. Choi, J. Kim, J. Y. Hwang, M. Je, J.-Y. Kim, and S.-Y. Kim, “A novel smart navigation system for intramedullary nailing in orthopedic surgery,” PloS one 12, e0174407 (2017).
[Crossref] [PubMed]

Kim, S.-Y.

J. Choi, J. Kim, J. Y. Hwang, M. Je, J.-Y. Kim, and S.-Y. Kim, “A novel smart navigation system for intramedullary nailing in orthopedic surgery,” PloS one 12, e0174407 (2017).
[Crossref] [PubMed]

Klein, N.

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

Klomp, H. M.

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

Korff, A.

A. Korff, A. Follmann, T. Fürtjes, T. Jalowy, and K. Radermacher, “Optical sensors for a synergistically controlled osteotomy system,” in Sensors, (IEEE, 2010), pp. 2069–2072.

Krämer, U.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Medicine Biol. 45, 2873 (2000).
[Crossref]

la Torre-I, M. H. D.

Lee, M.-S.

M.-S. Lee, S.-Y. Wu, T.-H. Wong, W. Hsu, and T.-K. Chung, “A novel guiding device for distal locking of intramedullary nails,” in Sensors, 2012 IEEE, (IEEE, 2012), pp. 1–4.

Leslie, W. D.

Y. Long, W. D. Leslie, and Y. Luo, “Study of dxa-derived lateral–medial cortical bone thickness in assessing hip fracture risk,” Bone Reports 2, 44–51 (2015).
[Crossref]

Liang, J. T.

T. Doke, J. T. Liang, S. Onogi, and Y. Nakajima, “Fluoroscopy-based laser guidance system for linear surgical tool insertion depth control,” Int. J. Comput. Assist. Radiol. surgery 10, 275–283 (2015).
[Crossref]

Liao, H.

H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, “Precision-guided surgical navigation system using laser guidance and 3d autostereoscopic image overlay,” Comput. Med. Imaging Graph. 34, 46 (2010). Image-Guided Surgical Planning and Therapy.
[Crossref]

Liu, H.

Liu, W.

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

Long, Y.

Y. Long, W. D. Leslie, and Y. Luo, “Study of dxa-derived lateral–medial cortical bone thickness in assessing hip fracture risk,” Bone Reports 2, 44–51 (2015).
[Crossref]

Lucassen, G. W.

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

Luo, Y.

Y. Long, W. D. Leslie, and Y. Luo, “Study of dxa-derived lateral–medial cortical bone thickness in assessing hip fracture risk,” Bone Reports 2, 44–51 (2015).
[Crossref]

Margallo-Balbas, E.

D. H. Wicaksono, G. Pandraud, E. Margallo-Balbas, P. French, P. Breedveld, and J. Dankelman, “Micro-optics assembly in dental drill as a platform for imaging and sensing during surgical drilling,” in Sensors, (IEEE, 2010), pp. 265–268.

Masamune, K.

H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, “Precision-guided surgical navigation system using laser guidance and 3d autostereoscopic image overlay,” Comput. Med. Imaging Graph. 34, 46 (2010). Image-Guided Surgical Planning and Therapy.
[Crossref]

Matcher, S. J.

N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Medicine Biol. 49, 469 (2004).
[Crossref]

Mathews, A.

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

Meeuwsen-vander Roest, W. P.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-vander Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Meier, M. A.

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

Mendoza-Santoyo, F.

Mermut, O.

Mik, E. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[Crossref] [PubMed]

Murray, D.

C. Brown, C. Jayadev, S. Glyn-Jones, A. Carr, D. Murray, A. Price, and H. Gill, “Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy,” Phys. Medicine Biol. 56, 2299 (2011).
[Crossref]

Nachabé, R.

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

Nakajima, Y.

T. Doke, J. T. Liang, S. Onogi, and Y. Nakajima, “Fluoroscopy-based laser guidance system for linear surgical tool insertion depth control,” Int. J. Comput. Assist. Radiol. surgery 10, 275–283 (2015).
[Crossref]

Nakdhamabhorn, S.

S. Nakdhamabhorn and J. Suthakorn, “A novel surgical navigation concept for closed intramedullary nailing of femur using 4-dof laser-guiding robot,” in Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, (IEEE, 2011), pp. 479–484.

Nickell, S.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Medicine Biol. 45, 2873 (2000).
[Crossref]

Nilsson, J.

N. Reistad, J. Nilsson, O. V. Timmermand, C. Sturesson, and S. Andersson-Engels, “Diffuse reflectance spectroscopy of liver tissue,” in SPIE Biophotonics South America, (International Society for Optics and Photonics, 2015), p. 95314E.

Nkenke, E.

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Medicine 9, 20 (2011).
[Crossref]

Nolte, L.-P.

G. Zheng, X. Zhang, D. Haschtmann, P. Gédet, X. Dong, and L.-P. Nolte, “A robust and accurate two-stage approach for automatic recovery of distal locking holes in computer-assisted intramedullary nailing of femoral shaft fractures,” IEEE Transactions on Med. Imaging 27, 171–187 (2008).
[Crossref]

R. Hofstetter, M. Slomczykowski, M. Sati, and L.-P. Nolte, “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Comput. Aided Surg. 4, 65–76 (1999).
[Crossref] [PubMed]

Oliveira-Santos, T.

K. Gavaghan, T. Oliveira-Santos, M. Peterhans, M. Reyes, H. Kim, S. Anderegg, and S. Weber, “Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies,” Int. J. Comput. Assist. Eadiology surgery 7, 547–556 (2012).
[Crossref]

Olivo, M.

U. S. Dinish, C. L. Wong, S. Sriram, W. K. Ong, G. Balasundaram, S. Sugii, and M. Olivo, “Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning,” Sci. Rep. 7, 41357 (2017).
[Crossref] [PubMed]

Ong, W. K.

U. S. Dinish, C. L. Wong, S. Sriram, W. K. Ong, G. Balasundaram, S. Sugii, and M. Olivo, “Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning,” Sci. Rep. 7, 41357 (2017).
[Crossref] [PubMed]

Onogi, S.

T. Doke, J. T. Liang, S. Onogi, and Y. Nakajima, “Fluoroscopy-based laser guidance system for linear surgical tool insertion depth control,” Int. J. Comput. Assist. Radiol. surgery 10, 275–283 (2015).
[Crossref]

Pandraud, G.

D. H. Wicaksono, G. Pandraud, E. Margallo-Balbas, P. French, P. Breedveld, and J. Dankelman, “Micro-optics assembly in dental drill as a platform for imaging and sensing during surgical drilling,” in Sensors, (IEEE, 2010), pp. 265–268.

Patterson, M. S.

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Medicine Biol. 45, 2873 (2000).
[Crossref]

Peterhans, M.

K. Gavaghan, T. Oliveira-Santos, M. Peterhans, M. Reyes, H. Kim, S. Anderegg, and S. Weber, “Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies,” Int. J. Comput. Assist. Eadiology surgery 7, 547–556 (2012).
[Crossref]

Philip, A.

P. H. C. Tom Lister and A. Philip, Wright, “Optical properties of human skin,” J. Biomed. Opt. 17, 09091 (2012).

Pifferi, A.

Plecha, D.

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

Pope, T.

Prabitha, V. G.

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

Prahl, S. A.

Prevoo, W.

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

Price, A.

C. Brown, C. Jayadev, S. Glyn-Jones, A. Carr, D. Murray, A. Price, and H. Gill, “Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy,” Phys. Medicine Biol. 56, 2299 (2011).
[Crossref]

Radermacher, K.

A. Korff, A. Follmann, T. Fürtjes, T. Jalowy, and K. Radermacher, “Optical sensors for a synergistically controlled osteotomy system,” in Sensors, (IEEE, 2010), pp. 2069–2072.

Reistad, N.

N. Reistad, J. Nilsson, O. V. Timmermand, C. Sturesson, and S. Andersson-Engels, “Diffuse reflectance spectroscopy of liver tissue,” in SPIE Biophotonics South America, (International Society for Optics and Photonics, 2015), p. 95314E.

Rema, P.

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

Reyes, M.

K. Gavaghan, T. Oliveira-Santos, M. Peterhans, M. Reyes, H. Kim, S. Anderegg, and S. Weber, “Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies,” Int. J. Comput. Assist. Eadiology surgery 7, 547–556 (2012).
[Crossref]

Rohling, R. N.

I. Hacihaliloglu, R. Abugharbieh, A. J. Hodgson, and R. N. Rohling, “Bone surface localization in ultrasound using image phase-based features,” Ultrasound Medicine & Biol. 35, 1475–1487 (2009).
[Crossref]

Rossi, V. M.

V. M. Rossi, S. B. Gustafson, and S. L. Jacques, “Characterizing the optical properties of bone using a multi-fiber array and diffuse reflectance spectroscopy,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, (Optical Society of America, 2009), p. FME4.

Ruers, T. J.

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

Sakuma, I.

H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, “Precision-guided surgical navigation system using laser guidance and 3d autostereoscopic image overlay,” Comput. Med. Imaging Graph. 34, 46 (2010). Image-Guided Surgical Planning and Therapy.
[Crossref]

Sanchez-P, J.

Sati, M.

R. Hofstetter, M. Slomczykowski, M. Sati, and L.-P. Nolte, “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Comput. Aided Surg. 4, 65–76 (1999).
[Crossref] [PubMed]

Schmidt, M.

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Medicine 9, 20 (2011).
[Crossref]

Sebastian, P.

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

Slomczykowski, M.

R. Hofstetter, M. Slomczykowski, M. Sati, and L.-P. Nolte, “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Comput. Aided Surg. 4, 65–76 (1999).
[Crossref] [PubMed]

Soares, J. S.

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

Spliethoff, J. W.

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

Sriram, S.

U. S. Dinish, C. L. Wong, S. Sriram, W. K. Ong, G. Balasundaram, S. Sugii, and M. Olivo, “Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning,” Sci. Rep. 7, 41357 (2017).
[Crossref] [PubMed]

Stelzle, F.

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Medicine 9, 20 (2011).
[Crossref]

Sterenborg, H. J.

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

Sturesson, C.

N. Reistad, J. Nilsson, O. V. Timmermand, C. Sturesson, and S. Andersson-Engels, “Diffuse reflectance spectroscopy of liver tissue,” in SPIE Biophotonics South America, (International Society for Optics and Photonics, 2015), p. 95314E.

Subhash, N.

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

Suchetha, S.

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

Sugii, S.

U. S. Dinish, C. L. Wong, S. Sriram, W. K. Ong, G. Balasundaram, S. Sugii, and M. Olivo, “Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning,” Sci. Rep. 7, 41357 (2017).
[Crossref] [PubMed]

Suthakorn, J.

S. Nakdhamabhorn and J. Suthakorn, “A novel surgical navigation concept for closed intramedullary nailing of femur using 4-dof laser-guiding robot,” in Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, (IEEE, 2011), pp. 479–484.

Svensson, T.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
[Crossref]

Tangermann-Gerk, K.

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Medicine 9, 20 (2011).
[Crossref]

Taroni, P.

Timmermand, O. V.

N. Reistad, J. Nilsson, O. V. Timmermand, C. Sturesson, and S. Andersson-Engels, “Diffuse reflectance spectroscopy of liver tissue,” in SPIE Biophotonics South America, (International Society for Optics and Photonics, 2015), p. 95314E.

Tom Lister, P. H. C.

P. H. C. Tom Lister and A. Philip, Wright, “Optical properties of human skin,” J. Biomed. Opt. 17, 09091 (2012).

Tr, C. G.

Tran, H. H.

H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, “Precision-guided surgical navigation system using laser guidance and 3d autostereoscopic image overlay,” Comput. Med. Imaging Graph. 34, 46 (2010). Image-Guided Surgical Planning and Therapy.
[Crossref]

Tuan, V.-D.

V.-D. Tuan, Biomedical Photonics Handbook(CRC Press, 2003).

Ugryumova, N.

N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Medicine Biol. 49, 469 (2004).
[Crossref]

van Gemert, M. J. C.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[Crossref] [PubMed]

van Leeuwen, T. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[Crossref] [PubMed]

van Sandick, J. W.

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

Volynskaya, Z.

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

Wang, J.

W. Chu, J. Wang, S.-T. Young, and W. C. Chu, “Reducing radiation exposure in intra-medullary nailing procedures: Intra-medullary endo-transilluminating (imet),” Injury 40, 1084–1087 (2009).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “Mcml–monte carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

Weber, J. R.

Weber, S.

K. Gavaghan, T. Oliveira-Santos, M. Peterhans, M. Reyes, H. Kim, S. Anderegg, and S. Weber, “Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies,” Int. J. Comput. Assist. Eadiology surgery 7, 547–556 (2012).
[Crossref]

Wesseling, J.

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

Wicaksono, D. H.

D. H. Wicaksono, G. Pandraud, E. Margallo-Balbas, P. French, P. Breedveld, and J. Dankelman, “Micro-optics assembly in dental drill as a platform for imaging and sensing during surgical drilling,” in Sensors, (IEEE, 2010), pp. 265–268.

Wong, C. L.

U. S. Dinish, C. L. Wong, S. Sriram, W. K. Ong, G. Balasundaram, S. Sugii, and M. Olivo, “Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning,” Sci. Rep. 7, 41357 (2017).
[Crossref] [PubMed]

Wong, T.-H.

M.-S. Lee, S.-Y. Wu, T.-H. Wong, W. Hsu, and T.-K. Chung, “A novel guiding device for distal locking of intramedullary nails,” in Sensors, 2012 IEEE, (IEEE, 2012), pp. 1–4.

Wouters, M. W.

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

Wu, S.-Y.

M.-S. Lee, S.-Y. Wu, T.-H. Wong, W. Hsu, and T.-K. Chung, “A novel guiding device for distal locking of intramedullary nails,” in Sensors, 2012 IEEE, (IEEE, 2012), pp. 1–4.

Young, S.-T.

W. Chu, J. Wang, S.-T. Young, and W. C. Chu, “Reducing radiation exposure in intra-medullary nailing procedures: Intra-medullary endo-transilluminating (imet),” Injury 40, 1084–1087 (2009).
[Crossref] [PubMed]

Zam, A.

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Medicine 9, 20 (2011).
[Crossref]

Zhang, X.

G. Zheng, X. Zhang, D. Haschtmann, P. Gédet, X. Dong, and L.-P. Nolte, “A robust and accurate two-stage approach for automatic recovery of distal locking holes in computer-assisted intramedullary nailing of femoral shaft fractures,” IEEE Transactions on Med. Imaging 27, 171–187 (2008).
[Crossref]

Zheng, G.

G. Zheng, X. Zhang, D. Haschtmann, P. Gédet, X. Dong, and L.-P. Nolte, “A robust and accurate two-stage approach for automatic recovery of distal locking holes in computer-assisted intramedullary nailing of femoral shaft fractures,” IEEE Transactions on Med. Imaging 27, 171–187 (2008).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “Mcml–monte carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-vander Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Bone Reports (1)

Y. Long, W. D. Leslie, and Y. Luo, “Study of dxa-derived lateral–medial cortical bone thickness in assessing hip fracture risk,” Bone Reports 2, 44–51 (2015).
[Crossref]

Clin. Cancer Res. (1)

J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. Sterenborg, G. W. Lucassen, B. H. Hendriks, and T. J. Ruers, “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study,” Clin. Cancer Res. 22, 357–365 (2016).
[Crossref]

Clin. Chem. (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-vander Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Clin. Lung Cancer (1)

D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, B. H. Hendriks, J. Wesseling, and T. J. Ruers, “Diffuse reflectance spectroscopy: A new guidance tool for improvement of biopsy procedures in lung malignancies,” Clin. Lung Cancer 13, 424 – 431 (2012).
[Crossref] [PubMed]

Comput. Aided Surg. (1)

R. Hofstetter, M. Slomczykowski, M. Sati, and L.-P. Nolte, “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Comput. Aided Surg. 4, 65–76 (1999).
[Crossref] [PubMed]

Comput. Med. Imaging Graph. (1)

H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, “Precision-guided surgical navigation system using laser guidance and 3d autostereoscopic image overlay,” Comput. Med. Imaging Graph. 34, 46 (2010). Image-Guided Surgical Planning and Therapy.
[Crossref]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “Mcml–monte carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

IEEE Transactions on Med. Imaging (1)

G. Zheng, X. Zhang, D. Haschtmann, P. Gédet, X. Dong, and L.-P. Nolte, “A robust and accurate two-stage approach for automatic recovery of distal locking holes in computer-assisted intramedullary nailing of femoral shaft fractures,” IEEE Transactions on Med. Imaging 27, 171–187 (2008).
[Crossref]

Injury (1)

W. Chu, J. Wang, S.-T. Young, and W. C. Chu, “Reducing radiation exposure in intra-medullary nailing procedures: Intra-medullary endo-transilluminating (imet),” Injury 40, 1084–1087 (2009).
[Crossref] [PubMed]

Int. J. Comput. Assist. Eadiology surgery (1)

K. Gavaghan, T. Oliveira-Santos, M. Peterhans, M. Reyes, H. Kim, S. Anderegg, and S. Weber, “Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies,” Int. J. Comput. Assist. Eadiology surgery 7, 547–556 (2012).
[Crossref]

Int. J. Comput. Assist. Radiol. surgery (1)

T. Doke, J. T. Liang, S. Onogi, and Y. Nakajima, “Fluoroscopy-based laser guidance system for linear surgical tool insertion depth control,” Int. J. Comput. Assist. Radiol. surgery 10, 275–283 (2015).
[Crossref]

J. Biomed. Opt. (2)

P. H. C. Tom Lister and A. Philip, Wright, “Optical properties of human skin,” J. Biomed. Opt. 17, 09091 (2012).

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
[Crossref]

J. Transl. Medicine (1)

F. Stelzle, A. Zam, W. Adler, K. Tangermann-Gerk, A. Douplik, E. Nkenke, and M. Schmidt, “Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery,” J. Transl. Medicine 9, 20 (2011).
[Crossref]

Lasers Med. Sci. (1)

V. G. Prabitha, S. Suchetha, J. L. Jayanthi, K. V. Baiju, P. Rema, K. Anuraj, A. Mathews, P. Sebastian, and N. Subhash, “Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study,” Lasers Med. Sci. 31, 67–75 (2016).
[Crossref]

Opt. Express (2)

Osteoporos. Int. (1)

T. Beck, “Measuring the structural strength of bones with dual-energy x-ray absorptiometry: principles, technical limitations, and future possibilities,” Osteoporos. Int. 14, 81–88 (2003).
[Crossref]

Phys. Medicine Biol. (3)

N. Ugryumova, S. J. Matcher, and D. P. Attenburrow, “Measurement of bone mineral density via light scattering,” Phys. Medicine Biol. 49, 469 (2004).
[Crossref]

C. Brown, C. Jayadev, S. Glyn-Jones, A. Carr, D. Murray, A. Price, and H. Gill, “Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy,” Phys. Medicine Biol. 56, 2299 (2011).
[Crossref]

S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Medicine Biol. 45, 2873 (2000).
[Crossref]

Phys. Rev. Lett. (1)

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93, 028102 (2004).
[Crossref] [PubMed]

PloS one (1)

J. Choi, J. Kim, J. Y. Hwang, M. Je, J.-Y. Kim, and S.-Y. Kim, “A novel smart navigation system for intramedullary nailing in orthopedic surgery,” PloS one 12, e0174407 (2017).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. United States Am. (1)

J. S. Soares, I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. Dasari, and M. Fitzmaurice, “Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications,” Proc. Natl. Acad. Sci. United States Am. 110, 471–476 (2013).
[Crossref]

Sci. Rep. (1)

U. S. Dinish, C. L. Wong, S. Sriram, W. K. Ong, G. Balasundaram, S. Sugii, and M. Olivo, “Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning,” Sci. Rep. 7, 41357 (2017).
[Crossref] [PubMed]

Ultrasound Medicine & Biol. (1)

I. Hacihaliloglu, R. Abugharbieh, A. J. Hodgson, and R. N. Rohling, “Bone surface localization in ultrasound using image phase-based features,” Ultrasound Medicine & Biol. 35, 1475–1487 (2009).
[Crossref]

Other (7)

A. Korff, A. Follmann, T. Fürtjes, T. Jalowy, and K. Radermacher, “Optical sensors for a synergistically controlled osteotomy system,” in Sensors, (IEEE, 2010), pp. 2069–2072.

D. H. Wicaksono, G. Pandraud, E. Margallo-Balbas, P. French, P. Breedveld, and J. Dankelman, “Micro-optics assembly in dental drill as a platform for imaging and sensing during surgical drilling,” in Sensors, (IEEE, 2010), pp. 265–268.

N. Reistad, J. Nilsson, O. V. Timmermand, C. Sturesson, and S. Andersson-Engels, “Diffuse reflectance spectroscopy of liver tissue,” in SPIE Biophotonics South America, (International Society for Optics and Photonics, 2015), p. 95314E.

V. M. Rossi, S. B. Gustafson, and S. L. Jacques, “Characterizing the optical properties of bone using a multi-fiber array and diffuse reflectance spectroscopy,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, (Optical Society of America, 2009), p. FME4.

V.-D. Tuan, Biomedical Photonics Handbook(CRC Press, 2003).

S. Nakdhamabhorn and J. Suthakorn, “A novel surgical navigation concept for closed intramedullary nailing of femur using 4-dof laser-guiding robot,” in Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, (IEEE, 2011), pp. 479–484.

M.-S. Lee, S.-Y. Wu, T.-H. Wong, W. Hsu, and T.-K. Chung, “A novel guiding device for distal locking of intramedullary nails,” in Sensors, 2012 IEEE, (IEEE, 2012), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of scattering layer and fiber configuration used in Monte-Carlo simulation. The source-detector distance of 1.3 mm was matched to distance between the POF fibers, integrated into experimental drill bits. The simulation was performed for a range of bone thickness values, ranging from the maximum of 5 mm down to a minimum of 0 mm (thick blue arrow).
Fig. 2
Fig. 2 Schematics of fiber integrated drill bit and the optical patch cable. Inset (i) shows how the light is coupled between a stationary LED pair through the optical patch cable into a rotating drill bit using a pair of ball lenses at the ends of each component. Inset (ii) shows the light from the LEDs being guided to the drill tip (iii) via a POF (bottom). The diffuse light is then collected by a second POF (top) on the drill tip and patched to the 45° mirror. The mirror, in turn, reflects the collected diffuse light at an array of PDs which convert the light intensity into electrical current of corresponding magnitude.
Fig. 3
Fig. 3 Schematics of data acquisition components. the analog signal from the PD array (black and red trace) was first amplified using the PM100 power meter. The amplified signal from the power meter (blue solid trace) was then routed to an analog input channel of the DAQ for digital conversion. Additionally, the DAQ was also used to pulse the LEDs via two analog output channels (green traces).
Fig. 4
Fig. 4 MC simulation of photon density in bone and muscle layers with source-detector separation of 1.3 mm. Bone thickness shown are 5 mm (Top), 1 mm (Middle) and 0 mm (Bottom). 470 nm is represented on the left, 780 nm is on the right.
Fig. 5
Fig. 5 Simulated reflectance and optical power ratio of 470 nm and 780 nm wavelengths at a range of distances from the bone-muscle interface. Solid blue line, dashed blue line and red line represent 470 nm, 780 nm and ratio of 470/780, respectively.
Fig. 6
Fig. 6 A single DRS and load measurement versus time when drilling through body of bovine femur at 1 mm sec−1. The transitions between different structures of the sample are highlighted by green, dashed lines.
Fig. 7
Fig. 7 An example of DRS and load measurements (n = 1) drilled at 1 mm sec−1 on a) bone-marrow and b) bone-muscle interfaces of a single femur sample. In both cases, the load measurement drop (green dashed line) lags the drop of the optical power ratio (orange dashed line). This lag in response indicates that the DRS measurement is detecting the approaching bone-tissue interface before the mechanical breach occurs.
Fig. 8
Fig. 8 a) Eight superimposed DRS measurements of bone-tissue interface of single bovine femur sample showing the response of the optical power ratio to the approaching muscle layer. b) The average DRS measurement. Considering drill feed rate was 1 mm sec−1, and the average drop of the optical power ratio occurred over a period of 250 msec, the LAD was calculated to be 250 µm. The LAD is indicated by the distance between the orange and green dashed lines.
Fig. 9
Fig. 9 An example of DRS and load measurements performed on a) bone-marrow and b) bone-muscle interfaces of a single femur sample when drilling by hand. In both cases the load measurement drop (green dashed line) lags the drop of the optical power ratio (orange dashed line).
Fig. 10
Fig. 10 a) Nineteen superimposed DRS measurements of bone-tissue interface of n = 3 bovine femur samples showing the response of the optical power ratio to the approaching muscle layer. b) The average DRS measurement.
Fig. 11
Fig. 11 Graph of linear fit performed on the optical power ratio data when drilling to detect the bone-tissue interface and trigger the drill to stop. Linear fit was performed over a 200 msec period (purple dashed lines) and the slope threshold was set to −0.35 a.u.sec−1.
Fig. 12
Fig. 12 Image of a bone samples used for a) bone-marrow and b) bone-muscle interface detection. The muscle and marrow tissues have been removed and the cortical bone cut axially to expose the drill hole profiles.

Tables (1)

Tables Icon

Table 1 Table of optical properties for blood [31] and bone [9,32] used in MC simulation.

Metrics