Abstract

The choroid is a highly vascularized tissue supplying the retinal pigment epithelium and photoreceptors. Its implication in retinal diseases is gaining increasing interest. However, investigating the anatomy and flow of the choroid remains challenging. Here we show that laser Doppler holography provides high-contrast imaging of choroidal vessels in humans, with a spatial resolution comparable to state-of-the-art indocyanine green angiography and optical coherence tomography. Additionally, laser Doppler holography contributes to sort out choroidal arteries and veins by using a power Doppler spectral analysis. We thus demonstrate the potential of laser Doppler holography to improve our understanding of the anatomy and flow of the choroidal vascular network.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Visualizing the vasculature of the entire human eye posterior hemisphere without a contrast agent

Mircea Mujat, Yang Lu, Gopi Maguluri, Youbo Zhao, Nicusor Iftimia, and R. Daniel Ferguson
Biomed. Opt. Express 10(1) 167-180 (2019)

Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice

Zhongwei Zhi, Xin Yin, Suzan Dziennis, Tomasz Wietecha, Kelly L. Hudkins, Charles E. Alpers, and Ruikang K Wang
Biomed. Opt. Express 3(11) 2976-2986 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Alm and A. Bill, “Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues,” Exp. Eye Res. 15, 15–29 (1973).
    [Crossref] [PubMed]
  2. P. M. Bischoff and R. W. Flower, “Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?” Documenta Ophthalmol. 60, 235–291 (1985).
    [Crossref]
  3. H. Laviers and H. Zambarakji, “Enhanced depth imaging-OCT of the choroid: a review of the current literature,” Graefe’s Archive for Clin. Exp. Ophthalmol. 252, 1871–1883 (2014).
    [Crossref]
  4. D. Ferrara, N. K. Waheed, and J. S. Duker, “Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies,” Prog. Retin. Eye Res. 52, 130–155 (2016).
    [Crossref]
  5. S. Mrejen and R. F. Spaide, “Optical coherence tomography: imaging of the choroid and beyond,” Surv. Ophthalmol. 58, 387–429 (2013).
    [Crossref] [PubMed]
  6. D. S. McLeod, R. Grebe, I. Bhutto, C. Merges, T. Baba, and G. A. Lutty, “Relationship between RPE and choriocapillaris in age-related macular degeneration,” Investig. Ophthalmol. & Vis. Sci. 50, 4982–4991 (2009).
    [Crossref]
  7. S. S. Hayreh, “Blood Supply of the Optic Nerve,” in Ischemic Optic Neuropathies, (Springer, 2011), pp. 35–78.
    [Crossref]
  8. L. A. Yannuzzi, “Indocyanine green angiography: a perspective on use in the clinical setting,” Am. J. Ophthalmol. 151, 745–751 (2011).
    [Crossref]
  9. R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
    [Crossref]
  10. R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retin. Eye Res. 64, 1–55 (2018).
    [Crossref]
  11. W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
    [Crossref] [PubMed]
  12. R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19, 126010 (2014).
    [Crossref]
  13. I. Gorczynska, J. V. Migacz, R. J. Zawadzki, A. G. Capps, and J. S. Werner, “Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid,” Biomed. Opt. Express 7, 911–942 (2016).
    [Crossref]
  14. K. Kurokawa, Z. Liu, and D. T. Miller, “Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris,” Biomed. Opt. Express 8, 1803–1822 (2017).
    [Crossref]
  15. J. V. Migacz, I. Gorczynska, M. Azimipour, R. Jonnal, R. J. Zawadzki, and J. S. Werner, “Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging,” Biomed. Opt. Express 10, 50–65 (2019).
    [Crossref]
  16. T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88, 723–729 (2010).
    [Crossref]
  17. G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).
  18. M. Mujat, Y. Lu, G. Maguluri, Y. Zhao, N. Iftimia, and R. D. Ferguson, “Visualizing the vasculature of the entire human eye posterior hemisphere without a contrast agent,” Biomed. Opt. Express 10, 167–180 (2019).
    [Crossref]
  19. C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J.-A. Sahel, M. Paques, and M. Atlan, “Holographic laser Doppler imaging of microvascular blood flow,” JOSA A 31, 2723–2735 (2014).
    [Crossref]
  20. M. Pellizzari, M. Simonutti, J. Degardin, J.-A. Sahel, M. Fink, M. Paques, and M. Atlan, “High speed optical holography of retinal blood flow,” Opt. Lett. 41, 3503–3506 (2016).
    [Crossref] [PubMed]
  21. D. Donnarumma, A. Brodoline, D. Alexandre, and M. Gross, “4D holographic microscopy of zebrafish larvae microcirculation,” Opt. Express 24, 26887–26900 (2016).
    [Crossref]
  22. L. Puyo, M. Paques, M. Fink, J.-A. Sahel, and M. Atlan, “In vivo laser Doppler holography of the human retina,” Biomed. Opt. Express 9, 4113–4129 (2018).
    [Crossref]
  23. S. S. Hayreh, “Posterior ciliary artery circulation in health and disease the Weisenfeld lecture,” Investig. Ophthalmol. & Vis. Sci. 45, 749–757 (2004).
    [Crossref]
  24. C. V. Network, “Developmental anatomy of the retinal and choroidal vasculature,” The Retin. Its Disord.179 (2011).
  25. S. S. Hayreh, “Segmental nature of the choroidal vasculature,” Br. J. Ophthalmol. 59, 631–648 (1975).
    [Crossref]
  26. K. Hayashi and J. De Laey, “Indocyanine green angiography of submacular choroidal vessels in the human eye,” Ophthalmologica 190, 20–29 (1985).
    [Crossref]
  27. F. G. Bottoni, A. L. Aandekerk, and A. F. Deutman, “Clinical application of digital indocyanine green videoangiography in senile macular degeneration,” Graefe’s Archive for Clin. Exp. Ophthalmol. 232, 458–468 (1994).
    [Crossref]
  28. P. Amalric, “The choriocapillaris in the macular area,” Int. Ophthalmol. 6, 149–153 (1983).
    [Crossref]

2019 (2)

2018 (3)

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retin. Eye Res. 64, 1–55 (2018).
[Crossref]

L. Puyo, M. Paques, M. Fink, J.-A. Sahel, and M. Atlan, “In vivo laser Doppler holography of the human retina,” Biomed. Opt. Express 9, 4113–4129 (2018).
[Crossref]

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

2017 (1)

2016 (4)

2014 (3)

H. Laviers and H. Zambarakji, “Enhanced depth imaging-OCT of the choroid: a review of the current literature,” Graefe’s Archive for Clin. Exp. Ophthalmol. 252, 1871–1883 (2014).
[Crossref]

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19, 126010 (2014).
[Crossref]

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J.-A. Sahel, M. Paques, and M. Atlan, “Holographic laser Doppler imaging of microvascular blood flow,” JOSA A 31, 2723–2735 (2014).
[Crossref]

2013 (2)

S. Mrejen and R. F. Spaide, “Optical coherence tomography: imaging of the choroid and beyond,” Surv. Ophthalmol. 58, 387–429 (2013).
[Crossref] [PubMed]

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

2011 (1)

L. A. Yannuzzi, “Indocyanine green angiography: a perspective on use in the clinical setting,” Am. J. Ophthalmol. 151, 745–751 (2011).
[Crossref]

2010 (1)

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88, 723–729 (2010).
[Crossref]

2009 (1)

D. S. McLeod, R. Grebe, I. Bhutto, C. Merges, T. Baba, and G. A. Lutty, “Relationship between RPE and choriocapillaris in age-related macular degeneration,” Investig. Ophthalmol. & Vis. Sci. 50, 4982–4991 (2009).
[Crossref]

2008 (1)

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[Crossref]

2004 (1)

S. S. Hayreh, “Posterior ciliary artery circulation in health and disease the Weisenfeld lecture,” Investig. Ophthalmol. & Vis. Sci. 45, 749–757 (2004).
[Crossref]

1994 (1)

F. G. Bottoni, A. L. Aandekerk, and A. F. Deutman, “Clinical application of digital indocyanine green videoangiography in senile macular degeneration,” Graefe’s Archive for Clin. Exp. Ophthalmol. 232, 458–468 (1994).
[Crossref]

1985 (2)

K. Hayashi and J. De Laey, “Indocyanine green angiography of submacular choroidal vessels in the human eye,” Ophthalmologica 190, 20–29 (1985).
[Crossref]

P. M. Bischoff and R. W. Flower, “Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?” Documenta Ophthalmol. 60, 235–291 (1985).
[Crossref]

1983 (1)

P. Amalric, “The choriocapillaris in the macular area,” Int. Ophthalmol. 6, 149–153 (1983).
[Crossref]

1975 (1)

S. S. Hayreh, “Segmental nature of the choroidal vasculature,” Br. J. Ophthalmol. 59, 631–648 (1975).
[Crossref]

1973 (1)

A. Alm and A. Bill, “Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues,” Exp. Eye Res. 15, 15–29 (1973).
[Crossref] [PubMed]

Aandekerk, A. L.

F. G. Bottoni, A. L. Aandekerk, and A. F. Deutman, “Clinical application of digital indocyanine green videoangiography in senile macular degeneration,” Graefe’s Archive for Clin. Exp. Ophthalmol. 232, 458–468 (1994).
[Crossref]

Alexandre, D.

Alm, A.

A. Alm and A. Bill, “Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues,” Exp. Eye Res. 15, 15–29 (1973).
[Crossref] [PubMed]

Amalric, P.

P. Amalric, “The choriocapillaris in the macular area,” Int. Ophthalmol. 6, 149–153 (1983).
[Crossref]

Araie, M.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88, 723–729 (2010).
[Crossref]

Atlan, M.

Azimipour, M.

Baba, T.

D. S. McLeod, R. Grebe, I. Bhutto, C. Merges, T. Baba, and G. A. Lutty, “Relationship between RPE and choriocapillaris in age-related macular degeneration,” Investig. Ophthalmol. & Vis. Sci. 50, 4982–4991 (2009).
[Crossref]

Bata, A. M.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Bhutto, I.

D. S. McLeod, R. Grebe, I. Bhutto, C. Merges, T. Baba, and G. A. Lutty, “Relationship between RPE and choriocapillaris in age-related macular degeneration,” Investig. Ophthalmol. & Vis. Sci. 50, 4982–4991 (2009).
[Crossref]

Bill, A.

A. Alm and A. Bill, “Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues,” Exp. Eye Res. 15, 15–29 (1973).
[Crossref] [PubMed]

Bischoff, P. M.

P. M. Bischoff and R. W. Flower, “Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?” Documenta Ophthalmol. 60, 235–291 (1985).
[Crossref]

Bolz, M.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Bottoni, F. G.

F. G. Bottoni, A. L. Aandekerk, and A. F. Deutman, “Clinical application of digital indocyanine green videoangiography in senile macular degeneration,” Graefe’s Archive for Clin. Exp. Ophthalmol. 232, 458–468 (1994).
[Crossref]

Boucneau, T.

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J.-A. Sahel, M. Paques, and M. Atlan, “Holographic laser Doppler imaging of microvascular blood flow,” JOSA A 31, 2723–2735 (2014).
[Crossref]

Brodoline, A.

Cable, A. E.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

Calzetti, G.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Capps, A. G.

Castel, A.

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J.-A. Sahel, M. Paques, and M. Atlan, “Holographic laser Doppler imaging of microvascular blood flow,” JOSA A 31, 2723–2735 (2014).
[Crossref]

Choi, W.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

De Laey, J.

K. Hayashi and J. De Laey, “Indocyanine green angiography of submacular choroidal vessels in the human eye,” Ophthalmologica 190, 20–29 (1985).
[Crossref]

Degardin, J.

Deutman, A. F.

F. G. Bottoni, A. L. Aandekerk, and A. F. Deutman, “Clinical application of digital indocyanine green videoangiography in senile macular degeneration,” Graefe’s Archive for Clin. Exp. Ophthalmol. 232, 458–468 (1994).
[Crossref]

Donnarumma, D.

Duker, J. S.

D. Ferrara, N. K. Waheed, and J. S. Duker, “Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies,” Prog. Retin. Eye Res. 52, 130–155 (2016).
[Crossref]

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

Ferezou, I.

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J.-A. Sahel, M. Paques, and M. Atlan, “Holographic laser Doppler imaging of microvascular blood flow,” JOSA A 31, 2723–2735 (2014).
[Crossref]

Ferguson, R. D.

Ferrara, D.

D. Ferrara, N. K. Waheed, and J. S. Duker, “Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies,” Prog. Retin. Eye Res. 52, 130–155 (2016).
[Crossref]

Fink, M.

Flower, R. W.

P. M. Bischoff and R. W. Flower, “Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?” Documenta Ophthalmol. 60, 235–291 (1985).
[Crossref]

Fondi, K.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Fujimoto, J. G.

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retin. Eye Res. 64, 1–55 (2018).
[Crossref]

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

Garhofer, G.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Gorczynska, I.

Grebe, R.

D. S. McLeod, R. Grebe, I. Bhutto, C. Merges, T. Baba, and G. A. Lutty, “Relationship between RPE and choriocapillaris in age-related macular degeneration,” Investig. Ophthalmol. & Vis. Sci. 50, 4982–4991 (2009).
[Crossref]

Gross, M.

Hayashi, K.

K. Hayashi and J. De Laey, “Indocyanine green angiography of submacular choroidal vessels in the human eye,” Ophthalmologica 190, 20–29 (1985).
[Crossref]

Hayreh, S. S.

S. S. Hayreh, “Posterior ciliary artery circulation in health and disease the Weisenfeld lecture,” Investig. Ophthalmol. & Vis. Sci. 45, 749–757 (2004).
[Crossref]

S. S. Hayreh, “Segmental nature of the choroidal vasculature,” Br. J. Ophthalmol. 59, 631–648 (1975).
[Crossref]

S. S. Hayreh, “Blood Supply of the Optic Nerve,” in Ischemic Optic Neuropathies, (Springer, 2011), pp. 35–78.
[Crossref]

Huber, R.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

Iftimia, N.

Jayaraman, V.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

Jonnal, R.

Kim, D. Y.

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19, 126010 (2014).
[Crossref]

Koizumi, H.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[Crossref]

Kurokawa, K.

Laviers, H.

H. Laviers and H. Zambarakji, “Enhanced depth imaging-OCT of the choroid: a review of the current literature,” Graefe’s Archive for Clin. Exp. Ophthalmol. 252, 1871–1883 (2014).
[Crossref]

Liu, J. J.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

Liu, Z.

Lu, C. D.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

Lu, Y.

Luft, N.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Lutty, G. A.

D. S. McLeod, R. Grebe, I. Bhutto, C. Merges, T. Baba, and G. A. Lutty, “Relationship between RPE and choriocapillaris in age-related macular degeneration,” Investig. Ophthalmol. & Vis. Sci. 50, 4982–4991 (2009).
[Crossref]

Magnain, C.

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J.-A. Sahel, M. Paques, and M. Atlan, “Holographic laser Doppler imaging of microvascular blood flow,” JOSA A 31, 2723–2735 (2014).
[Crossref]

Maguluri, G.

McLeod, D. S.

D. S. McLeod, R. Grebe, I. Bhutto, C. Merges, T. Baba, and G. A. Lutty, “Relationship between RPE and choriocapillaris in age-related macular degeneration,” Investig. Ophthalmol. & Vis. Sci. 50, 4982–4991 (2009).
[Crossref]

Merges, C.

D. S. McLeod, R. Grebe, I. Bhutto, C. Merges, T. Baba, and G. A. Lutty, “Relationship between RPE and choriocapillaris in age-related macular degeneration,” Investig. Ophthalmol. & Vis. Sci. 50, 4982–4991 (2009).
[Crossref]

Migacz, J. V.

Miller, D. T.

Mohler, K. J.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

Mrejen, S.

S. Mrejen and R. F. Spaide, “Optical coherence tomography: imaging of the choroid and beyond,” Surv. Ophthalmol. 58, 387–429 (2013).
[Crossref] [PubMed]

Mujat, M.

Orgul, S.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88, 723–729 (2010).
[Crossref]

Paques, M.

Pellizzari, M.

Poddar, R.

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19, 126010 (2014).
[Crossref]

Popa-Cherecheanu, A.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Potsaid, B.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

Pozonni, M. C.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[Crossref]

Puyo, L.

Rancillac, A.

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J.-A. Sahel, M. Paques, and M. Atlan, “Holographic laser Doppler imaging of microvascular blood flow,” JOSA A 31, 2723–2735 (2014).
[Crossref]

Riva, C. E.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88, 723–729 (2010).
[Crossref]

Sadda, S. R.

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retin. Eye Res. 64, 1–55 (2018).
[Crossref]

Sahel, J.-A.

Schmetterer, L.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88, 723–729 (2010).
[Crossref]

Schmidl, D.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Simonutti, M.

M. Pellizzari, M. Simonutti, J. Degardin, J.-A. Sahel, M. Fink, M. Paques, and M. Atlan, “High speed optical holography of retinal blood flow,” Opt. Lett. 41, 3503–3506 (2016).
[Crossref] [PubMed]

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J.-A. Sahel, M. Paques, and M. Atlan, “Holographic laser Doppler imaging of microvascular blood flow,” JOSA A 31, 2723–2735 (2014).
[Crossref]

Spaide, R. F.

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retin. Eye Res. 64, 1–55 (2018).
[Crossref]

S. Mrejen and R. F. Spaide, “Optical coherence tomography: imaging of the choroid and beyond,” Surv. Ophthalmol. 58, 387–429 (2013).
[Crossref] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[Crossref]

Staurenghi, G.

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retin. Eye Res. 64, 1–55 (2018).
[Crossref]

Sugiyama, T.

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88, 723–729 (2010).
[Crossref]

Vitalis, T.

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J.-A. Sahel, M. Paques, and M. Atlan, “Holographic laser Doppler imaging of microvascular blood flow,” JOSA A 31, 2723–2735 (2014).
[Crossref]

Waheed, N. K.

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retin. Eye Res. 64, 1–55 (2018).
[Crossref]

D. Ferrara, N. K. Waheed, and J. S. Duker, “Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies,” Prog. Retin. Eye Res. 52, 130–155 (2016).
[Crossref]

Werkmeister, R. M.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Werner, J. S.

Witkowska, K. J.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Wozniak, P. A.

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Yannuzzi, L. A.

L. A. Yannuzzi, “Indocyanine green angiography: a perspective on use in the clinical setting,” Am. J. Ophthalmol. 151, 745–751 (2011).
[Crossref]

Zambarakji, H.

H. Laviers and H. Zambarakji, “Enhanced depth imaging-OCT of the choroid: a review of the current literature,” Graefe’s Archive for Clin. Exp. Ophthalmol. 252, 1871–1883 (2014).
[Crossref]

Zawadzki, R. J.

Zhao, Y.

Acta Ophthalmol. (1)

T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, “Use of laser speckle flowgraphy in ocular blood flow research,” Acta Ophthalmol. 88, 723–729 (2010).
[Crossref]

Am. J. Ophthalmol. (2)

L. A. Yannuzzi, “Indocyanine green angiography: a perspective on use in the clinical setting,” Am. J. Ophthalmol. 151, 745–751 (2011).
[Crossref]

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496–500 (2008).
[Crossref]

Biomed. Opt. Express (5)

Br. J. Ophthalmol (1)

G. Calzetti, K. Fondi, A. M. Bata, N. Luft, P. A. Wozniak, K. J. Witkowska, M. Bolz, A. Popa-Cherecheanu, R. M. Werkmeister, D. Schmidl, G. Garhofer, and L. Schmetterer, “Assessment of choroidal blood flow using laser speckle flowgraphy,” Br. J. Ophthalmol.  2018, bjophthalmol2017 (2018).

Br. J. Ophthalmol. (1)

S. S. Hayreh, “Segmental nature of the choroidal vasculature,” Br. J. Ophthalmol. 59, 631–648 (1975).
[Crossref]

Documenta Ophthalmol. (1)

P. M. Bischoff and R. W. Flower, “Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?” Documenta Ophthalmol. 60, 235–291 (1985).
[Crossref]

Exp. Eye Res. (1)

A. Alm and A. Bill, “Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues,” Exp. Eye Res. 15, 15–29 (1973).
[Crossref] [PubMed]

Graefe’s Archive for Clin. Exp. Ophthalmol. (2)

H. Laviers and H. Zambarakji, “Enhanced depth imaging-OCT of the choroid: a review of the current literature,” Graefe’s Archive for Clin. Exp. Ophthalmol. 252, 1871–1883 (2014).
[Crossref]

F. G. Bottoni, A. L. Aandekerk, and A. F. Deutman, “Clinical application of digital indocyanine green videoangiography in senile macular degeneration,” Graefe’s Archive for Clin. Exp. Ophthalmol. 232, 458–468 (1994).
[Crossref]

Int. Ophthalmol. (1)

P. Amalric, “The choriocapillaris in the macular area,” Int. Ophthalmol. 6, 149–153 (1983).
[Crossref]

Investig. Ophthalmol. & Vis. Sci. (2)

S. S. Hayreh, “Posterior ciliary artery circulation in health and disease the Weisenfeld lecture,” Investig. Ophthalmol. & Vis. Sci. 45, 749–757 (2004).
[Crossref]

D. S. McLeod, R. Grebe, I. Bhutto, C. Merges, T. Baba, and G. A. Lutty, “Relationship between RPE and choriocapillaris in age-related macular degeneration,” Investig. Ophthalmol. & Vis. Sci. 50, 4982–4991 (2009).
[Crossref]

J. Biomed. Opt. (1)

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19, 126010 (2014).
[Crossref]

JOSA A (1)

C. Magnain, A. Castel, T. Boucneau, M. Simonutti, I. Ferezou, A. Rancillac, T. Vitalis, J.-A. Sahel, M. Paques, and M. Atlan, “Holographic laser Doppler imaging of microvascular blood flow,” JOSA A 31, 2723–2735 (2014).
[Crossref]

Ophthalmologica (1)

K. Hayashi and J. De Laey, “Indocyanine green angiography of submacular choroidal vessels in the human eye,” Ophthalmologica 190, 20–29 (1985).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

PloS One (1)

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaraman, A. E. Cable, J. S. Duker, R. Huber, and J. G. Fujimoto, “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” PloS One 8, e81499 (2013).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (2)

R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, and G. Staurenghi, “Optical coherence tomography angiography,” Prog. Retin. Eye Res. 64, 1–55 (2018).
[Crossref]

D. Ferrara, N. K. Waheed, and J. S. Duker, “Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies,” Prog. Retin. Eye Res. 52, 130–155 (2016).
[Crossref]

Surv. Ophthalmol. (1)

S. Mrejen and R. F. Spaide, “Optical coherence tomography: imaging of the choroid and beyond,” Surv. Ophthalmol. 58, 387–429 (2013).
[Crossref] [PubMed]

Other (2)

S. S. Hayreh, “Blood Supply of the Optic Nerve,” in Ischemic Optic Neuropathies, (Springer, 2011), pp. 35–78.
[Crossref]

C. V. Network, “Developmental anatomy of the retinal and choroidal vasculature,” The Retin. Its Disord.179 (2011).

Supplementary Material (3)

NameDescription
» Visualization 1       ICG video-angiography
» Visualization 2       Power Doppler spectral movie
» Visualization 3       Power Doppler spectral movie

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Laser Doppler holography optical setup. L1, L2 and L3 are converging lenses. PBS: Polarizing Beam-Splitter. BS: Beam-Splitter. The light source is a single wavelength laser diode (SWL-7513-H-P, Newport). The Doppler broadened light backscattered by the retina and choroid is combined with the reference field and interferograms are recorded on the CMOS camera (Ametek - Phantom V2511) running at 60 kHz.
Fig. 2
Fig. 2 Angiographic images of the optic nerve head (ONH) with different instruments. (a) LDH reveals the retinal vasculature and choroidal arteries (arrows) originating from paraoptic SPCAs. (b) A late ICG-A (Heidelberg - Spectralis) reveals the retinalvessels. (c) and (d): OCT-A image of the retinal layer and OCT image of the choroid without the choriocapillaris (Optovue, Avanti with AngioVue), respectively.
Fig. 3
Fig. 3 LDH, SLO and ICG-A in the same eye. (a) 5 × 5 power Doppler images calculated over 5 30 kHz are stitched to produce a panorama on which retinal and choroidal vessels can be observed. The white circle indicates the fovea; the white arrows mark temporal distal SPCAs; the yellow lines shows the location of the B-scans presented in Fig. 4 and the yellow arrows mark the position of the deep choroidal arteries identified in Fig. 4(c). Finally, the red square indicates the location of the images in Fig. 6. (b) SLO (Heidelberg - Spectralis) image of the retina. (c) Late ICG angiogram (Heidelberg - Spectralis) image showing retinal and choroidal vessels (mostly veins).
Fig. 4
Fig. 4 Structural OCT images of the same eye as in Fig. 3. (a) and (b): en-face SS-OCT images (Zeiss - Plex Elite 9000) showing the deep choroid and the sclera, respectively. The arrows indicate choroidal arteries in (a) and SPCAs in (b). (c-f): SD-OCT B-scans (Heidelberg - Spectralis). (c) Cross-section showing the position of four choroidal arteries in the choroid (arrows). (d) A choroidal artery makes a U-turn to approach Bruch’s membrane. (e-f) The entry points of SPCAs visible with LDH are also revealed with OCT.
Fig. 5
Fig. 5 Circulation of the ICG in the fundus vasculature. (a) Choroidal arteries and cilioretinal arteries are revealed by the contrast agent. (b) The contrast agent has reached the retinal arteries, the choroidal veins, and the retinal veins whereas choroidal arteries cannot be observed anymore. See Visualization 1 for the injection movie.
Fig. 6
Fig. 6 Power Doppler spectral images and ICG-A. (a) Power Doppler image where the DPSD is integrated over 2.5 6 kHz which reveals vessels with smaller flows. (b) Power Doppler image integrated over 10 30 kHz revealing vessels with larger flows. (c) Composite color image of (a) and (b) encoded in the cyan and red channels, respectively. (d) ICG-A in the same region. (e) Power spectral density spatially averaged over the regions indicated in (c). See Visualization 2 for the power Doppler spectral movie.
Fig. 7
Fig. 7 Power Doppler spectral panoramas calculated using the frequency ranges (a) 2.5 6 kHz, (b) 6 10 kHz, 10 30 kHz. (d) Composite color panorama of (a) and (c) encoded in the cyan and red channels, respectively.
Fig. 8
Fig. 8 Power Doppler spectral panoramas and ICG-A. (a) Low frequency ( 2.5 6 kHz) power Doppler panorama which reveals small flows. (b) High frequency ( 10 30 kHz) power Doppler panorama revealing vessels with larger flows. (c) Composite color panorama of (a) and (b), encoded in the cyan and red channels, respectively. (d) ICG angiogram of the same region. See Visualization 3 for a power Doppler spectral movie in one of the area.
Fig. 9
Fig. 9 Vortex vein imaged with ICG-A and LDH (a) ICG angiogram; the vortex vein is located at about 45 degrees of eccentricity; the fovea is indicated by the white circle and the rectangular box indicates the area covered by the power Doppler image (b) Power Doppler image integrated over the frequency range 10 30 kHz. The arrow marks a choroidal artery visible with a bright contrast with LDH, and a darker contrast with ICG.

Metrics