Abstract

Indocyanine green-based fluorescence imaging techniques are very powerful in clinical applications, but the imaging is restricted to the signal from the near-surface region of tissue. Here, we focus on the method to discriminate the fluorescence signal from the background using a time-domain gating technique. The contrast of the fluorescence image from a fluorescence object at more than 1 cm depth in a meat phantom could be enhanced about 4–5 times relative to the continuous wave method if the time-gate range was properly selected. Further, a Monte Carlo simulation with a simple background model indicates that a shorter source and detector distance is more effective to improve the contrast. The simple time-gating method will enable a highly sensitive fluorescence detection in thick tissue.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates

Jin Chen, Vivek Venugopal, and Xavier Intes
Biomed. Opt. Express 2(4) 871-886 (2011)

Improved localization of hidden fluorescent objects in highly scattering slab media based on a two-way transmittance determination

Jean-Pierre L’Huillier and Fabrice Vaudelle
Opt. Express 14(26) 12915-12929 (2006)

Depth resolution and multiexponential lifetime analyses of reflectance-based time-domain fluorescence data

Kenneth M. Tichauer, Mark Migueis, Frederic Leblond, Jonathan T. Elliott, Mamadou Diop, Keith St. Lawrence, and Ting-Yim Lee
Appl. Opt. 50(21) 3962-3972 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Somasundaram, D. W. Chicken, and M. R. Keshtgar, “Detection of the sentinel lymph node in breast cancer,” British Medical Bulletin 84, 117–131 (2007).
    [Crossref]
  2. G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
    [Crossref] [PubMed]
  3. H.-C. Zeng, J.-L. Hu, J.-W. Bai, and G.-J. Zhang, “Detection of sentinel lymph nodes with near-infrared imaging in malignancies,” Molecular Imaging and Biology pp. 1–9 (2018).
  4. T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lympho nodes in breast cancer,” Breast Cancer 12, 211–215 (2005).
    [Crossref]
  5. K. Polom, D. Murawa, Y. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology,” Cancer 117, 4812–4822 (2011).
    [Crossref] [PubMed]
  6. T. Kitai and M. Kawashima, “Transcutaneous detection and direct approach to the sentinel node using auxiliary compression technique in ICG fluorescence-navigated sentinel node biopsy for breast cancer,” Breast Cancer 19, 343–348 (2012).
    [Crossref]
  7. S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and sound out: Emerging translational strategies for photoacoustic imaging,” Cancer Research 74, 1–26 (2014).
    [Crossref]
  8. A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
    [Crossref] [PubMed]
  9. B. Wang, Q. Zhao, N. M. Barkey, D. L. Morse, and H. Jiang, “Photoacoustic tomography and fluorescence molecular tomography: A comparative study based on indocyanine green,” Medical Physics 39, 2512–2517 (2012).
    [Crossref] [PubMed]
  10. J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, “Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction,” Scientific Reports 7, 45008 (2017).
    [Crossref] [PubMed]
  11. R. Cubeddu, G. Canti, P. Taroni, and G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochemistry and Photobiology 57, 480–485 (1993).
    [Crossref] [PubMed]
  12. J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis method for in-vivo fluorescence imaging,” Journal of Biomedical Optics 10, 041207 (2005).
    [Crossref]
  13. L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
    [Crossref] [PubMed]
  14. G. Hong, J. Z. Wu, J. T. Robinson, H. Wang, B. Zhang, and H. Dai, “Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates,” Nature Communications 3, 700 (2012).
    [Crossref] [PubMed]
  15. G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
    [Crossref] [PubMed]
  16. Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
    [Crossref]
  17. A. T. N. Kumar, S. A. Carp, J. Yang, A. Ross, Z. Medarova, and C. Ran, “Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumores,” Journal of Biomedical Optics 22, 040501 (2017).
    [Crossref]
  18. S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: in vitro and in vivo fluorescence studies,” Translational Oncology 3, 16–22 (2010).
    [Crossref] [PubMed]
  19. J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
    [Crossref] [PubMed]
  20. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE Press, Washington DC, 2009).
  21. J. Mobley and T. Vo-Dinh, “Optical properties of tissue,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC PressLLC, New York, 2003), chap. I-2, pp. 2–2–2–75.
  22. G. Nishimura, K. Awasthi, and D. Furukawa, “Fluorescence lifetime measurements in heterogeneous scattering medium,” Journal of Biomedical Optics 21, 075013 (2016).
    [Crossref]
  23. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” Journal of Biomedical Optics 13, 060504 (2008).
    [Crossref]
  24. G. Nishimura and M. Tamura, “Artefacts in the analyis of temporal response functions measured by photon counting,” Physics in Medicine and Biology 50, 1327–1342 (2005).
    [Crossref]
  25. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. D. Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Physical Review Letters 95, 078101 (2005).
    [Crossref] [PubMed]
  26. F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Scientific Reports 6, 27057 (2016).
    [Crossref]
  27. E. M. Sevick, B. Chance, J. S. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Analitical Biochemistry 195, 330–351 (1991).
    [Crossref]

2018 (1)

H.-C. Zeng, J.-L. Hu, J.-W. Bai, and G.-J. Zhang, “Detection of sentinel lymph nodes with near-infrared imaging in malignancies,” Molecular Imaging and Biology pp. 1–9 (2018).

2017 (2)

J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, “Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction,” Scientific Reports 7, 45008 (2017).
[Crossref] [PubMed]

A. T. N. Kumar, S. A. Carp, J. Yang, A. Ross, Z. Medarova, and C. Ran, “Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumores,” Journal of Biomedical Optics 22, 040501 (2017).
[Crossref]

2016 (2)

G. Nishimura, K. Awasthi, and D. Furukawa, “Fluorescence lifetime measurements in heterogeneous scattering medium,” Journal of Biomedical Optics 21, 075013 (2016).
[Crossref]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Scientific Reports 6, 27057 (2016).
[Crossref]

2015 (1)

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
[Crossref] [PubMed]

2014 (2)

S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and sound out: Emerging translational strategies for photoacoustic imaging,” Cancer Research 74, 1–26 (2014).
[Crossref]

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
[Crossref]

2013 (1)

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
[Crossref] [PubMed]

2012 (5)

G. Hong, J. Z. Wu, J. T. Robinson, H. Wang, B. Zhang, and H. Dai, “Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates,” Nature Communications 3, 700 (2012).
[Crossref] [PubMed]

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
[Crossref] [PubMed]

B. Wang, Q. Zhao, N. M. Barkey, D. L. Morse, and H. Jiang, “Photoacoustic tomography and fluorescence molecular tomography: A comparative study based on indocyanine green,” Medical Physics 39, 2512–2517 (2012).
[Crossref] [PubMed]

T. Kitai and M. Kawashima, “Transcutaneous detection and direct approach to the sentinel node using auxiliary compression technique in ICG fluorescence-navigated sentinel node biopsy for breast cancer,” Breast Cancer 19, 343–348 (2012).
[Crossref]

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

2011 (1)

K. Polom, D. Murawa, Y. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology,” Cancer 117, 4812–4822 (2011).
[Crossref] [PubMed]

2010 (1)

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: in vitro and in vivo fluorescence studies,” Translational Oncology 3, 16–22 (2010).
[Crossref] [PubMed]

2008 (1)

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” Journal of Biomedical Optics 13, 060504 (2008).
[Crossref]

2007 (1)

S. K. Somasundaram, D. W. Chicken, and M. R. Keshtgar, “Detection of the sentinel lymph node in breast cancer,” British Medical Bulletin 84, 117–131 (2007).
[Crossref]

2005 (4)

T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lympho nodes in breast cancer,” Breast Cancer 12, 211–215 (2005).
[Crossref]

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis method for in-vivo fluorescence imaging,” Journal of Biomedical Optics 10, 041207 (2005).
[Crossref]

G. Nishimura and M. Tamura, “Artefacts in the analyis of temporal response functions measured by photon counting,” Physics in Medicine and Biology 50, 1327–1342 (2005).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. D. Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Physical Review Letters 95, 078101 (2005).
[Crossref] [PubMed]

2004 (1)

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

1993 (1)

R. Cubeddu, G. Canti, P. Taroni, and G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochemistry and Photobiology 57, 480–485 (1993).
[Crossref] [PubMed]

1991 (1)

E. M. Sevick, B. Chance, J. S. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Analitical Biochemistry 195, 330–351 (1991).
[Crossref]

Aguirre, W.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Alerstam, E.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” Journal of Biomedical Optics 13, 060504 (2008).
[Crossref]

Andersson-Engels, S.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” Journal of Biomedical Optics 13, 060504 (2008).
[Crossref]

Anglin, E.

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
[Crossref] [PubMed]

Appleton, C.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
[Crossref] [PubMed]

Awasthi, K.

G. Nishimura, K. Awasthi, and D. Furukawa, “Fluorescence lifetime measurements in heterogeneous scattering medium,” Journal of Biomedical Optics 21, 075013 (2016).
[Crossref]

Bai, J.-W.

H.-C. Zeng, J.-L. Hu, J.-W. Bai, and G.-J. Zhang, “Detection of sentinel lymph nodes with near-infrared imaging in malignancies,” Molecular Imaging and Biology pp. 1–9 (2018).

Barkey, N. M.

B. Wang, Q. Zhao, N. M. Barkey, D. L. Morse, and H. Jiang, “Photoacoustic tomography and fluorescence molecular tomography: A comparative study based on indocyanine green,” Medical Physics 39, 2512–2517 (2012).
[Crossref] [PubMed]

Bianco, S. D.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. D. Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Physical Review Letters 95, 078101 (2005).
[Crossref] [PubMed]

Binzoni, T.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Scientific Reports 6, 27057 (2016).
[Crossref]

Boni, G.

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Buffoni, F.

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Canti, G.

R. Cubeddu, G. Canti, P. Taroni, and G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochemistry and Photobiology 57, 480–485 (1993).
[Crossref] [PubMed]

Carp, S. A.

A. T. N. Kumar, S. A. Carp, J. Yang, A. Ross, Z. Medarova, and C. Ran, “Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumores,” Journal of Biomedical Optics 22, 040501 (2017).
[Crossref]

Castagnola, F.

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Chance, B.

E. M. Sevick, B. Chance, J. S. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Analitical Biochemistry 195, 330–351 (1991).
[Crossref]

Chang, J. H.

J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, “Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction,” Scientific Reports 7, 45008 (2017).
[Crossref] [PubMed]

Chicken, D. W.

S. K. Somasundaram, D. W. Chicken, and M. R. Keshtgar, “Detection of the sentinel lymph node in breast cancer,” British Medical Bulletin 84, 117–131 (2007).
[Crossref]

Cooke, J. P.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
[Crossref] [PubMed]

Cubeddu, R.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. D. Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Physical Review Letters 95, 078101 (2005).
[Crossref] [PubMed]

R. Cubeddu, G. Canti, P. Taroni, and G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochemistry and Photobiology 57, 480–485 (1993).
[Crossref] [PubMed]

Dai, H.

G. Hong, J. Z. Wu, J. T. Robinson, H. Wang, B. Zhang, and H. Dai, “Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates,” Nature Communications 3, 700 (2012).
[Crossref] [PubMed]

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
[Crossref] [PubMed]

DeCerce, J.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Del Bianco, S.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE Press, Washington DC, 2009).

Erba, P.

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Erickson, S. J.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: in vitro and in vivo fluorescence studies,” Translational Oncology 3, 16–22 (2010).
[Crossref] [PubMed]

Erpelding, T. N.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
[Crossref] [PubMed]

Farina, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Scientific Reports 6, 27057 (2016).
[Crossref]

Flores, C. A.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Furukawa, D.

G. Nishimura, K. Awasthi, and D. Furukawa, “Fluorescence lifetime measurements in heterogeneous scattering medium,” Journal of Biomedical Optics 21, 075013 (2016).
[Crossref]

Gambhir, S. S.

S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and sound out: Emerging translational strategies for photoacoustic imaging,” Cancer Research 74, 1–26 (2014).
[Crossref]

Garcia-Uribe, A.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
[Crossref] [PubMed]

Ge, J.

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: in vitro and in vivo fluorescence studies,” Translational Oncology 3, 16–22 (2010).
[Crossref] [PubMed]

Gipponi, M.

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Godavarty, A.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: in vitro and in vivo fluorescence studies,” Translational Oncology 3, 16–22 (2010).
[Crossref] [PubMed]

Gonzalez, J.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Gossage, K. W.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis method for in-vivo fluorescence imaging,” Journal of Biomedical Optics 10, 041207 (2005).
[Crossref]

Gu, L.

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
[Crossref] [PubMed]

Hall, D. J.

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
[Crossref] [PubMed]

Hernandez, E.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Hong, G.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
[Crossref] [PubMed]

G. Hong, J. Z. Wu, J. T. Robinson, H. Wang, B. Zhang, and H. Dai, “Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates,” Nature Communications 3, 700 (2012).
[Crossref] [PubMed]

Howell, S. B.

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
[Crossref] [PubMed]

Hoyt, C. C.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis method for in-vivo fluorescence imaging,” Journal of Biomedical Optics 10, 041207 (2005).
[Crossref]

Hu, J.-L.

H.-C. Zeng, J.-L. Hu, J.-W. Bai, and G.-J. Zhang, “Detection of sentinel lymph nodes with near-infrared imaging in malignancies,” Molecular Imaging and Biology pp. 1–9 (2018).

Huang, N. F.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
[Crossref] [PubMed]

Hünerbein, M.

K. Polom, D. Murawa, Y. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology,” Cancer 117, 4812–4822 (2011).
[Crossref] [PubMed]

Inomoto, T.

T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lympho nodes in breast cancer,” Breast Cancer 12, 211–215 (2005).
[Crossref]

Ismaelli, A.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE Press, Washington DC, 2009).

Jiang, H.

B. Wang, Q. Zhao, N. M. Barkey, D. L. Morse, and H. Jiang, “Photoacoustic tomography and fluorescence molecular tomography: A comparative study based on indocyanine green,” Medical Physics 39, 2512–2517 (2012).
[Crossref] [PubMed]

Jin, T.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
[Crossref]

Joo, J.

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
[Crossref] [PubMed]

Kang, J.

J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, “Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction,” Scientific Reports 7, 45008 (2017).
[Crossref] [PubMed]

Kawashima, M.

T. Kitai and M. Kawashima, “Transcutaneous detection and direct approach to the sentinel node using auxiliary compression technique in ICG fluorescence-navigated sentinel node biopsy for breast cancer,” Breast Cancer 19, 343–348 (2012).
[Crossref]

Ke, H.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
[Crossref] [PubMed]

Keshtgar, M. R.

S. K. Somasundaram, D. W. Chicken, and M. R. Keshtgar, “Detection of the sentinel lymph node in breast cancer,” British Medical Bulletin 84, 117–131 (2007).
[Crossref]

Kim, H.

J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, “Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction,” Scientific Reports 7, 45008 (2017).
[Crossref] [PubMed]

Kim, S. M.

J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, “Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction,” Scientific Reports 7, 45008 (2017).
[Crossref] [PubMed]

Kiszonas, R.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Kitai, T.

T. Kitai and M. Kawashima, “Transcutaneous detection and direct approach to the sentinel node using auxiliary compression technique in ICG fluorescence-navigated sentinel node biopsy for breast cancer,” Breast Cancer 19, 343–348 (2012).
[Crossref]

T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lympho nodes in breast cancer,” Breast Cancer 12, 211–215 (2005).
[Crossref]

Komatsuzaki, A.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
[Crossref]

Krumholz, A.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
[Crossref] [PubMed]

Kumar, A. T. N.

A. T. N. Kumar, S. A. Carp, J. Yang, A. Ross, Z. Medarova, and C. Ran, “Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumores,” Journal of Biomedical Optics 22, 040501 (2017).
[Crossref]

Lee, H. J.

J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, “Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction,” Scientific Reports 7, 45008 (2017).
[Crossref] [PubMed]

Lee, J. C.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
[Crossref] [PubMed]

Leigh, J. S.

E. M. Sevick, B. Chance, J. S. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Analitical Biochemistry 195, 330–351 (1991).
[Crossref]

Levenson, R. M.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis method for in-vivo fluorescence imaging,” Journal of Biomedical Optics 10, 041207 (2005).
[Crossref]

Manca, G.

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Mansfield, J. R.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis method for in-vivo fluorescence imaging,” Journal of Biomedical Optics 10, 041207 (2005).
[Crossref]

Margenthaler, J. A.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
[Crossref] [PubMed]

Mariani, G.

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Maris, M.

E. M. Sevick, B. Chance, J. S. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Analitical Biochemistry 195, 330–351 (1991).
[Crossref]

Martelli, F.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Scientific Reports 6, 27057 (2016).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. D. Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Physical Review Letters 95, 078101 (2005).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE Press, Washington DC, 2009).

Martinez, S. L.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Maslov, K.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
[Crossref] [PubMed]

Medarova, Z.

A. T. N. Kumar, S. A. Carp, J. Yang, A. Ross, Z. Medarova, and C. Ran, “Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumores,” Journal of Biomedical Optics 22, 040501 (2017).
[Crossref]

Miwa, M.

T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lympho nodes in breast cancer,” Breast Cancer 12, 211–215 (2005).
[Crossref]

Mobley, J.

J. Mobley and T. Vo-Dinh, “Optical properties of tissue,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC PressLLC, New York, 2003), chap. I-2, pp. 2–2–2–75.

Mooney, D. J.

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
[Crossref] [PubMed]

Morimatsu, M.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
[Crossref]

Morse, D. L.

B. Wang, Q. Zhao, N. M. Barkey, D. L. Morse, and H. Jiang, “Photoacoustic tomography and fluorescence molecular tomography: A comparative study based on indocyanine green,” Medical Physics 39, 2512–2517 (2012).
[Crossref] [PubMed]

Murawa, D.

K. Polom, D. Murawa, Y. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology,” Cancer 117, 4812–4822 (2011).
[Crossref] [PubMed]

Murawa, P.

K. Polom, D. Murawa, Y. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology,” Cancer 117, 4812–4822 (2011).
[Crossref] [PubMed]

Nioka, S.

E. M. Sevick, B. Chance, J. S. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Analitical Biochemistry 195, 330–351 (1991).
[Crossref]

Nishimura, G.

G. Nishimura, K. Awasthi, and D. Furukawa, “Fluorescence lifetime measurements in heterogeneous scattering medium,” Journal of Biomedical Optics 21, 075013 (2016).
[Crossref]

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
[Crossref]

G. Nishimura and M. Tamura, “Artefacts in the analyis of temporal response functions measured by photon counting,” Physics in Medicine and Biology 50, 1327–1342 (2005).
[Crossref]

Nowaczyk, P.

K. Polom, D. Murawa, Y. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology,” Cancer 117, 4812–4822 (2011).
[Crossref] [PubMed]

Nunez, A.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Paganelli, G.

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Pifferi, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Scientific Reports 6, 27057 (2016).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. D. Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Physical Review Letters 95, 078101 (2005).
[Crossref] [PubMed]

Polom, K.

K. Polom, D. Murawa, Y. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology,” Cancer 117, 4812–4822 (2011).
[Crossref] [PubMed]

Qin, Z.

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
[Crossref] [PubMed]

Raaz, U.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
[Crossref] [PubMed]

Ran, C.

A. T. N. Kumar, S. A. Carp, J. Yang, A. Ross, Z. Medarova, and C. Ran, “Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumores,” Journal of Biomedical Optics 22, 040501 (2017).
[Crossref]

Rho, Y.

K. Polom, D. Murawa, Y. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology,” Cancer 117, 4812–4822 (2011).
[Crossref] [PubMed]

Roberts, S. M.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Robinson, J. T.

G. Hong, J. Z. Wu, J. T. Robinson, H. Wang, B. Zhang, and H. Dai, “Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates,” Nature Communications 3, 700 (2012).
[Crossref] [PubMed]

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
[Crossref] [PubMed]

Roman, M.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Ross, A.

A. T. N. Kumar, S. A. Carp, J. Yang, A. Ross, Z. Medarova, and C. Ran, “Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumores,” Journal of Biomedical Optics 22, 040501 (2017).
[Crossref]

Sailor, M. J.

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
[Crossref] [PubMed]

Sakata, T.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
[Crossref]

Sanchez, A.

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: in vitro and in vivo fluorescence studies,” Translational Oncology 3, 16–22 (2010).
[Crossref] [PubMed]

Sevick, E. M.

E. M. Sevick, B. Chance, J. S. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Analitical Biochemistry 195, 330–351 (1991).
[Crossref]

Shikayama, T.

T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lympho nodes in breast cancer,” Breast Cancer 12, 211–215 (2005).
[Crossref]

Somasundaram, S. K.

S. K. Somasundaram, D. W. Chicken, and M. R. Keshtgar, “Detection of the sentinel lymph node in breast cancer,” British Medical Bulletin 84, 117–131 (2007).
[Crossref]

Song, T.-K.

J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, “Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction,” Scientific Reports 7, 45008 (2017).
[Crossref] [PubMed]

Spinelli, L.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Scientific Reports 6, 27057 (2016).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. D. Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Physical Review Letters 95, 078101 (2005).
[Crossref] [PubMed]

Strauss, H. W.

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Svensson, T.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” Journal of Biomedical Optics 13, 060504 (2008).
[Crossref]

Tamura, M.

G. Nishimura and M. Tamura, “Artefacts in the analyis of temporal response functions measured by photon counting,” Physics in Medicine and Biology 50, 1327–1342 (2005).
[Crossref]

Taroni, P.

R. Cubeddu, G. Canti, P. Taroni, and G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochemistry and Photobiology 57, 480–485 (1993).
[Crossref] [PubMed]

Torricelli, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Scientific Reports 6, 27057 (2016).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. D. Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Physical Review Letters 95, 078101 (2005).
[Crossref] [PubMed]

Traub, B.

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

Tsukasaki, Y.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
[Crossref]

Valentini, G.

R. Cubeddu, G. Canti, P. Taroni, and G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochemistry and Photobiology 57, 480–485 (1993).
[Crossref] [PubMed]

van de Ven, S. M. W. Y.

S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and sound out: Emerging translational strategies for photoacoustic imaging,” Cancer Research 74, 1–26 (2014).
[Crossref]

Villa, G.

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Vo-Dinh, T.

J. Mobley and T. Vo-Dinh, “Optical properties of tissue,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC PressLLC, New York, 2003), chap. I-2, pp. 2–2–2–75.

Wang, B.

B. Wang, Q. Zhao, N. M. Barkey, D. L. Morse, and H. Jiang, “Photoacoustic tomography and fluorescence molecular tomography: A comparative study based on indocyanine green,” Medical Physics 39, 2512–2517 (2012).
[Crossref] [PubMed]

Wang, H.

G. Hong, J. Z. Wu, J. T. Robinson, H. Wang, B. Zhang, and H. Dai, “Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates,” Nature Communications 3, 700 (2012).
[Crossref] [PubMed]

Wang, L. V.

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
[Crossref] [PubMed]

Watanabeabe, T. M.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
[Crossref]

Wilson, B. C.

J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, “Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction,” Scientific Reports 7, 45008 (2017).
[Crossref] [PubMed]

Wu, J. Z.

G. Hong, J. Z. Wu, J. T. Robinson, H. Wang, B. Zhang, and H. Dai, “Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates,” Nature Communications 3, 700 (2012).
[Crossref] [PubMed]

Xie, L.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
[Crossref] [PubMed]

Yang, J.

A. T. N. Kumar, S. A. Carp, J. Yang, A. Ross, Z. Medarova, and C. Ran, “Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumores,” Journal of Biomedical Optics 22, 040501 (2017).
[Crossref]

Yasuda, H.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
[Crossref]

Zaccanti, G.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. D. Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Physical Review Letters 95, 078101 (2005).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE Press, Washington DC, 2009).

Zackrisson, S.

S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and sound out: Emerging translational strategies for photoacoustic imaging,” Cancer Research 74, 1–26 (2014).
[Crossref]

Zeng, H.-C.

H.-C. Zeng, J.-L. Hu, J.-W. Bai, and G.-J. Zhang, “Detection of sentinel lymph nodes with near-infrared imaging in malignancies,” Molecular Imaging and Biology pp. 1–9 (2018).

Zhang, B.

G. Hong, J. Z. Wu, J. T. Robinson, H. Wang, B. Zhang, and H. Dai, “Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates,” Nature Communications 3, 700 (2012).
[Crossref] [PubMed]

Zhang, G.-J.

H.-C. Zeng, J.-L. Hu, J.-W. Bai, and G.-J. Zhang, “Detection of sentinel lymph nodes with near-infrared imaging in malignancies,” Molecular Imaging and Biology pp. 1–9 (2018).

Zhao, Q.

B. Wang, Q. Zhao, N. M. Barkey, D. L. Morse, and H. Jiang, “Photoacoustic tomography and fluorescence molecular tomography: A comparative study based on indocyanine green,” Medical Physics 39, 2512–2517 (2012).
[Crossref] [PubMed]

Analitical Biochemistry (1)

E. M. Sevick, B. Chance, J. S. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Analitical Biochemistry 195, 330–351 (1991).
[Crossref]

Breast Cancer (2)

T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lympho nodes in breast cancer,” Breast Cancer 12, 211–215 (2005).
[Crossref]

T. Kitai and M. Kawashima, “Transcutaneous detection and direct approach to the sentinel node using auxiliary compression technique in ICG fluorescence-navigated sentinel node biopsy for breast cancer,” Breast Cancer 19, 343–348 (2012).
[Crossref]

British Medical Bulletin (1)

S. K. Somasundaram, D. W. Chicken, and M. R. Keshtgar, “Detection of the sentinel lymph node in breast cancer,” British Medical Bulletin 84, 117–131 (2007).
[Crossref]

Cancer (1)

K. Polom, D. Murawa, Y. Rho, P. Nowaczyk, M. Hünerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology,” Cancer 117, 4812–4822 (2011).
[Crossref] [PubMed]

Cancer Research (1)

S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and sound out: Emerging translational strategies for photoacoustic imaging,” Cancer Research 74, 1–26 (2014).
[Crossref]

Journal of Biomedical Optics (5)

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis method for in-vivo fluorescence imaging,” Journal of Biomedical Optics 10, 041207 (2005).
[Crossref]

A. T. N. Kumar, S. A. Carp, J. Yang, A. Ross, Z. Medarova, and C. Ran, “Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumores,” Journal of Biomedical Optics 22, 040501 (2017).
[Crossref]

J. Gonzalez, J. DeCerce, S. J. Erickson, S. L. Martinez, A. Nunez, M. Roman, B. Traub, C. A. Flores, S. M. Roberts, E. Hernandez, W. Aguirre, R. Kiszonas, and A. Godavarty, “Hand-held optical imager (Gen-2): improved instrumentation and target detectability,” Journal of Biomedical Optics 17, 081402 (2012).
[Crossref] [PubMed]

G. Nishimura, K. Awasthi, and D. Furukawa, “Fluorescence lifetime measurements in heterogeneous scattering medium,” Journal of Biomedical Optics 21, 075013 (2016).
[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration,” Journal of Biomedical Optics 13, 060504 (2008).
[Crossref]

Journal of Surgical Oncology (1)

G. Mariani, P. Erba, G. Villa, M. Gipponi, G. Manca, G. Boni, F. Buffoni, F. Castagnola, G. Paganelli, and H. W. Strauss, “Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: The nuclear medicine perspective,” Journal of Surgical Oncology 85, 112–122 (2004).
[Crossref] [PubMed]

Medical Physics (1)

B. Wang, Q. Zhao, N. M. Barkey, D. L. Morse, and H. Jiang, “Photoacoustic tomography and fluorescence molecular tomography: A comparative study based on indocyanine green,” Medical Physics 39, 2512–2517 (2012).
[Crossref] [PubMed]

Molecular Imaging and Biology (1)

H.-C. Zeng, J.-L. Hu, J.-W. Bai, and G.-J. Zhang, “Detection of sentinel lymph nodes with near-infrared imaging in malignancies,” Molecular Imaging and Biology pp. 1–9 (2018).

Nature Communications (2)

L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, “In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles,” Nature Communications 4, 2326 (2013).
[Crossref] [PubMed]

G. Hong, J. Z. Wu, J. T. Robinson, H. Wang, B. Zhang, and H. Dai, “Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates,” Nature Communications 3, 700 (2012).
[Crossref] [PubMed]

Nature Medicine (1)

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared ii fluorescence,” Nature Medicine 18, 1841–1846 (2012).
[Crossref] [PubMed]

Photochemistry and Photobiology (1)

R. Cubeddu, G. Canti, P. Taroni, and G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochemistry and Photobiology 57, 480–485 (1993).
[Crossref] [PubMed]

Physical Review Letters (1)

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. D. Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: Improving contrast and resolution in diffuse optical imaging,” Physical Review Letters 95, 078101 (2005).
[Crossref] [PubMed]

Physics in Medicine and Biology (1)

G. Nishimura and M. Tamura, “Artefacts in the analyis of temporal response functions measured by photon counting,” Physics in Medicine and Biology 50, 1327–1342 (2005).
[Crossref]

RSC Advances (1)

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabeabe, and T. Jin, “Synthesis and optical properties of emission tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second nearinfrared window,” RSC Advances 4, 41164 (2014).
[Crossref]

Scientific Reports (3)

J. Kang, J. H. Chang, S. M. Kim, H. J. Lee, H. Kim, B. C. Wilson, and T.-K. Song, “Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction,” Scientific Reports 7, 45008 (2017).
[Crossref] [PubMed]

A. Garcia-Uribe, T. N. Erpelding, A. Krumholz, H. Ke, K. Maslov, C. Appleton, J. A. Margenthaler, and L. V. Wang, “Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer,” Scientific Reports 5, 15748 (2015).
[Crossref] [PubMed]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Scientific Reports 6, 27057 (2016).
[Crossref]

Translational Oncology (1)

S. J. Erickson, J. Ge, A. Sanchez, and A. Godavarty, “Two-dimensional fast surface imaging using a handheld optical device: in vitro and in vivo fluorescence studies,” Translational Oncology 3, 16–22 (2010).
[Crossref] [PubMed]

Other (2)

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue(SPIE Press, Washington DC, 2009).

J. Mobley and T. Vo-Dinh, “Optical properties of tissue,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC PressLLC, New York, 2003), chap. I-2, pp. 2–2–2–75.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for the phantom measurements. The time resolved system consisted in the fiber laser source, fiber optics and hybrid photomultiplier detection system with a TCSPC board (a). The source and detector fibers were fixed to a small plastic holder (b). The holder was moving on the meat surface by a motorized stage (c). The small capillary fluorescence object was implanted in the meat sample (d).
Fig. 2
Fig. 2 Schematics of the MC simulation (a), positions of the illumination point (b) and the area of the planar illumination (c). The sphere object with 6 mm in diameter was placed at depth d under the origin. The excitation source points were moving from A (0,0) to B(-3,-3), C(-5,-5), D(-8,-8), E(-11,-11), F(-15,-15) and G(-18,-18) on the line x = y. The fluorescence photons were detected in each 1 mm2 square area on the 50 × 50 or 70 × 70 mm2 region. The TPSFs of the fluorescence at the detection points D + and D at fixed distances ρ from each source point S was analyzed. The horizontal arrow indicates the scan of these pairs on the line x = y in (b). The planar illumination of the excitation was also simulated. The illumination area was placed to cover the whole detection area shown by light orange color in (c).
Fig. 3
Fig. 3 TPSFs with 10 mm SD distance at different measurement points (a), approximate location of the fluorescence object (b), the total intensity and the gated intensity maps (c) and the cross section of the image at y = 10 mm and x = 0 mm (d). The TPSFs of the 1a-CH1 pair were measured at P1-P5, P8-P10, by red, green, blue, pink, cyan, yellow, black and orange solid lines, respectively. The inset shows the normalized ratio with respect to the TPSF at P10(20,0). The intensity map was depicted by the intensities using sum of the TPSF data with the total time range from -0.5 to 7.5 ns (“total”) or with a selected time range at 2.05 ns (“gated”) and by an interpolation of these intensities. The curves in (d) are the biased Gaussian functions fitted to the data points.
Fig. 4
Fig. 4 The simulated TPSFs at different excitation points with 100 ms accumulation (a) and the cross section profiles at y = 10 mm and x = 0 mm of the fluorescence intensities using different time gate ranges (b). The time-gated profiles were calculated by the sum of the intensity in time ranges Δ t = 0.5, 1.0 and 2.5 ns centered at 2 ns indicated by the thick solid lines in (a) and these are shown by blue, green and red symbols in (b). The total profile was calculated by the sum of the total intensity in the time range from -0.5 to 7.5 ns and is indicated by pink symbols and labeled by “total”. The curve indicated by each color is the biased Gaussian function fitted to the data points. The error of the intensity was assumed as the standard deviation of the intensity. The profile of the fluorescence-background ratios was calculated by the ratio between the intensity and the bias obtained by the fitting and the error of the ratio was obtained by the error propagation rule.
Fig. 5
Fig. 5 Fluorescence intensity images by the MC simulations. (a) and (b) are the time slice images with the object at 11 mm and 16 mm in depth, respectively. The background fluorophore concentration was 1/1000 smaller than that of the object. (c) shows the image with the object at 11 mm but the background level was 10-times higher than that of (a) and (b). The injection points of (a)–(c) was at (-11,-11) mm. (d) shows the images with the planar illumination. The first image was the gated image using a range from 1.0 to 1.33 ns. The second image was the total intensity image using a range from 0 to 3.33 ns. The background level was 1/1000 and the object depth was 11 mm.
Fig. 6
Fig. 6 Fluorescence TPSFs and intensity profiles with different depths of the object with 10 mm SD distance. (a) and (b) show some TPSFs at different SD pairs at B(-3,-3)- D +(4,4) and F(-15,-15)- D +(-8,-8), respectively. (c) and (d) show the profiles of the time-gated intensity in a time range from 1 to 1.33 ns and the total intensity in a time range from 0 to 3.33 ns against the different position of the SD pair scanning on the line x = y, respectively. The arrows in (c) and (d) indicate the middle point of each SD pair, B- D + and F- D + in (a) and (b). The profiles with dashed lines are the mirrored profiles with respect to the origin.
Fig. 7
Fig. 7 Fluorescence TPSFs and intensity profiles with different depths of the object with the planar illumination. (a) and (b) show some TPSFs at different detection points at (1,1) mm and (-12,-12) mm, respectively. (c) and (d) show the profiles of the time-gated intensity in a time range from 1 ns to 1.33 ns and the total intensity in a time range from 0 ns to 3.33 ns against the different positions of the scan of the source detection pair on the line y = 0 mm, respectively. The arrows in (c) and (d) indicate the points, whose distances from the origin same to those of the points shown in (a) and (b). The background response and intensity profile is shown by black solid lines.
Fig. 8
Fig. 8 The contrast and half width of the fluorescence images with different type of measurements; the SD pair scan with 10 and 20 mm distance between the SD points and the planar illumination, and each scheme using the time-gated intensity from 1 ns to 1.33 ns and the total intensity from 0 ns to 3.33 ns shown by solid and broken lines as well as filled and open symbols, respectively. The contrast and half width are defined by a / b and s in the biased Gaussian function.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B f ( t ) / B f 0 ( t ) = 1 / ( 1 γ ) { 1 exp  [ ( 1 γ ) t / τ f ] }

Metrics