Abstract

We propose a setup for multiplexed distributed optical fiber sensors capable of resolving temperature distribution in thermo-therapies, with a spatial resolution of 2.5 mm over multiple fibers interrogated simultaneously. The setup is based on optical backscatter reflectometry (OBR) applied to optical fibers having backscattered power significantly larger than standard fibers (36.5 dB), obtained through MgO doping. The setup is based on a scattering-level multiplexing, which allows interrogating all the sensing fibers simultaneously, thanks to the fact that the backscattered power can be unambiguously associated to each fiber. The setup has been validated for the planar measurement of temperature profiles in ex vivo radiofrequency ablation, obtaining the measurement of temperature over a surface of 96 total points (4 fibers, 8 sensing points per cm2). The spatial resolution obtained for the planar measurement allows extending distributed sensing to surface, or even three-dimensional, geometries performing temperature sensing in the tissue with millimeter resolution in multiple dimensions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multidimensional thermal mapping during radiofrequency ablation treatments with minimally invasive fiber optic sensors

Giovanna Palumbo, Elena De Vita, Emiliano Schena, Carlo Massaroni, Paolo Verze, Nicola Carlomagno, Vincenzo Tammaro, Roberto La Rocca, Juliet Ippolito, Daniele Tosi, Paola Saccomandi, Michele Arturo Caponero, Agostino Iadicicco, and Stefania Campopiano
Biomed. Opt. Express 9(12) 5891-5902 (2018)

Distributed fiber optics 3D shape sensing by means of high scattering NP-doped fibers simultaneous spatial multiplexing

Aidana Beisenova, Aizhan Issatayeva, Iulian Iordachita, Wilfried Blanc, Carlo Molardi, and Daniele Tosi
Opt. Express 27(16) 22074-22087 (2019)

Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver

Daniele Tosi, Edoardo Gino Macchi, Mario Gallati, Giovanni Braschi, Alfredo Cigada, Sandro Rossi, Gabriel Leen, and Elfed Lewis
Biomed. Opt. Express 5(6) 1799-1811 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. N. Goldberg, G. S. Gazelle, C. C. Compton, P. R. Mueller, and K. K. Tanabe, “Treatment of intrahepatic malignancy with radiofrequency ablation,” Cancer 88(11), 2452–2463 (2000).
    [Crossref] [PubMed]
  2. M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258(2), 351–369 (2011).
    [Crossref] [PubMed]
  3. S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100(8), 619–634 (2009).
    [Crossref] [PubMed]
  4. S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984).
    [Crossref] [PubMed]
  5. A. Shaw, G. ter Haar, J. Haller, and V. Wilkens, “Towards a dosimetric framework for therapeutic ultrasound,” Int. J. Hyperthermia 31(2), 182–192 (2015).
    [Crossref] [PubMed]
  6. T. S. Corwin, G. Lindberg, O. Traxer, M. T. Gettman, T. G. Smith, M. S. Pearle, and J. A. Cadeddu, “Laparoscopic radiofrequency thermal ablation of renal tissue with and without hilar occlusion,” J. Urol. 166(1), 281–284 (2001).
    [Crossref] [PubMed]
  7. R. Valcavi, F. Riganti, A. Bertani, D. Formisano, and C. M. Pacella, “Percutaneous Laser Ablation of Cold Benign Thyroid Nodules: A 3-Year Follow-Up Study in 122 Patients,” Thyroid 20(11), 1253–1261 (2010).
    [Crossref] [PubMed]
  8. R. Medvid, A. Ruiz, R. J. Komotar, J. R. Jagid, M. E. Ivan, R. M. Quencer, and M. B. Desai, “Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview,” Am. J. Neurorad. (2015).
  9. M. G. Lubner, C. L. Brace, J. L. Hinshaw, and F. T. Lee, “Microwave tumor ablation: mechanism of action, clinical results, and devices,” J. Vasc. Interv. Radiol. 21(8Suppl), S192–S203 (2010).
    [Crossref] [PubMed]
  10. J. E. Kennedy, “High-intensity focused ultrasound in the treatment of solid tumours,” Nat. Rev. Cancer 5(4), 321–327 (2005).
    [Crossref] [PubMed]
  11. X. Yang, “Science to practice: enhancing photothermal ablation of colorectal liver metastases with targeted hybrid nanoparticles,” Radiology 285(3), 699–701 (2017).
    [Crossref] [PubMed]
  12. E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
    [Crossref] [PubMed]
  13. D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
    [Crossref] [PubMed]
  14. D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
    [Crossref]
  15. F. Manns, P. J. Milne, X. Gonzalez-Cirre, D. B. Denham, J. M. Parel, and D. S. Robinson, “In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact,” Lasers Surg. Med. 23(2), 94–103 (1998).
    [Crossref] [PubMed]
  16. P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia 29(7), 609–619 (2013).
    [Crossref] [PubMed]
  17. Starburst Talon® RFA Device, Angiodynamics, http://www.angiodynamics.com/products/starburst-talon .
  18. V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
    [Crossref] [PubMed]
  19. F. Fani, E. Schena, P. Saccomandi, and S. Silvestri, “CT-based thermometry: An overview,” Int. J. Hyperthermia 30(4), 219–227 (2014).
    [Crossref] [PubMed]
  20. T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
    [Crossref] [PubMed]
  21. ISO 10993, Biological Evaluation of Medical Devices; International Organization for Standardization, Geneva, Switzerland, 1995.
  22. M. Jelbuldina, A. Korobeinyk, S. Korganbayev, V. J. Inglezakis, and D. Tosi, “Fiber Bragg Grating Based Temperature Profiling in Ferromagnetic Nanoparticles-Enhanced Radiofrequency Ablation,” Opt. Fiber Technol. 43, 145–152 (2018).
    [Crossref]
  23. S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
    [Crossref]
  24. S. Wang, X. Fan, Q. Liu, and Z. He, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Opt. Express 23(26), 33301–33309 (2015).
    [Crossref] [PubMed]
  25. A. B. Am, D. Arbel, and A. Eyal, “OFDR with double interrogation for dynamic quasi-distributed sensing,” Opt. Express 22(3), 2299–2308 (2014).
    [Crossref] [PubMed]
  26. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
    [Crossref] [PubMed]
  27. M. Froggatt, “Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber,” Appl. Opt. 35(25), 5162–5164 (1996).
    [Crossref] [PubMed]
  28. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]
  29. E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
    [Crossref] [PubMed]
  30. G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
    [Crossref] [PubMed]
  31. F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
    [Crossref] [PubMed]
  32. J. B. Mac Chesney, P. B. Oapos Connor, and H. M. Presby, “A new Technique for the Preparation of low-Loss and Graded-Index Optical Fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
    [Crossref]
  33. W. Blanc, V. Mauroy, L. Nguyen, B. N. Shivakiran Bhaktha, P. Sebbah, B. P. Pal, and B. Dussardier, “Fabrication of Rare Earth‐Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition,” J. Am. Ceram. Soc. 94(8), 2315–2318 (2011).
    [Crossref]
  34. W. Blanc, C. Guillermier, and B. Dussardier, “Composition of nanoparticles in optical fibers by Secondary Ion Mass Spectrometry,” Opt. Mater. Express 2(11), 1504–1510 (2012).
    [Crossref]
  35. E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, and L. Comolli, “Temperature distribution during RF ablation on ex vivo liver tissue: IR measurements and simulations,” Heat Mass Transf. 51(5), 611–620 (2015).
    [Crossref]
  36. S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
    [Crossref] [PubMed]
  37. I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
    [Crossref] [PubMed]
  38. N. Todd, M. Diakite, A. Payne, and D. L. Parker, “In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments,” Magn. Reson. Med. 72(3), 793–799 (2014).
    [Crossref] [PubMed]

2018 (3)

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

M. Jelbuldina, A. Korobeinyk, S. Korganbayev, V. J. Inglezakis, and D. Tosi, “Fiber Bragg Grating Based Temperature Profiling in Ferromagnetic Nanoparticles-Enhanced Radiofrequency Ablation,” Opt. Fiber Technol. 43, 145–152 (2018).
[Crossref]

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

2017 (3)

X. Yang, “Science to practice: enhancing photothermal ablation of colorectal liver metastases with targeted hybrid nanoparticles,” Radiology 285(3), 699–701 (2017).
[Crossref] [PubMed]

F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref] [PubMed]

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

2016 (2)

G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
[Crossref] [PubMed]

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

2015 (3)

A. Shaw, G. ter Haar, J. Haller, and V. Wilkens, “Towards a dosimetric framework for therapeutic ultrasound,” Int. J. Hyperthermia 31(2), 182–192 (2015).
[Crossref] [PubMed]

S. Wang, X. Fan, Q. Liu, and Z. He, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Opt. Express 23(26), 33301–33309 (2015).
[Crossref] [PubMed]

E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, and L. Comolli, “Temperature distribution during RF ablation on ex vivo liver tissue: IR measurements and simulations,” Heat Mass Transf. 51(5), 611–620 (2015).
[Crossref]

2014 (5)

N. Todd, M. Diakite, A. Payne, and D. L. Parker, “In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments,” Magn. Reson. Med. 72(3), 793–799 (2014).
[Crossref] [PubMed]

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

F. Fani, E. Schena, P. Saccomandi, and S. Silvestri, “CT-based thermometry: An overview,” Int. J. Hyperthermia 30(4), 219–227 (2014).
[Crossref] [PubMed]

A. B. Am, D. Arbel, and A. Eyal, “OFDR with double interrogation for dynamic quasi-distributed sensing,” Opt. Express 22(3), 2299–2308 (2014).
[Crossref] [PubMed]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

2013 (1)

P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia 29(7), 609–619 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

W. Blanc, V. Mauroy, L. Nguyen, B. N. Shivakiran Bhaktha, P. Sebbah, B. P. Pal, and B. Dussardier, “Fabrication of Rare Earth‐Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition,” J. Am. Ceram. Soc. 94(8), 2315–2318 (2011).
[Crossref]

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258(2), 351–369 (2011).
[Crossref] [PubMed]

2010 (2)

R. Valcavi, F. Riganti, A. Bertani, D. Formisano, and C. M. Pacella, “Percutaneous Laser Ablation of Cold Benign Thyroid Nodules: A 3-Year Follow-Up Study in 122 Patients,” Thyroid 20(11), 1253–1261 (2010).
[Crossref] [PubMed]

M. G. Lubner, C. L. Brace, J. L. Hinshaw, and F. T. Lee, “Microwave tumor ablation: mechanism of action, clinical results, and devices,” J. Vasc. Interv. Radiol. 21(8Suppl), S192–S203 (2010).
[Crossref] [PubMed]

2009 (1)

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100(8), 619–634 (2009).
[Crossref] [PubMed]

2008 (1)

V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
[Crossref] [PubMed]

2005 (2)

2002 (1)

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

2001 (1)

T. S. Corwin, G. Lindberg, O. Traxer, M. T. Gettman, T. G. Smith, M. S. Pearle, and J. A. Cadeddu, “Laparoscopic radiofrequency thermal ablation of renal tissue with and without hilar occlusion,” J. Urol. 166(1), 281–284 (2001).
[Crossref] [PubMed]

2000 (1)

S. N. Goldberg, G. S. Gazelle, C. C. Compton, P. R. Mueller, and K. K. Tanabe, “Treatment of intrahepatic malignancy with radiofrequency ablation,” Cancer 88(11), 2452–2463 (2000).
[Crossref] [PubMed]

1998 (2)

F. Manns, P. J. Milne, X. Gonzalez-Cirre, D. B. Denham, J. M. Parel, and D. S. Robinson, “In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact,” Lasers Surg. Med. 23(2), 94–103 (1998).
[Crossref] [PubMed]

M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
[Crossref] [PubMed]

1996 (1)

1995 (1)

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

1984 (1)

S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984).
[Crossref] [PubMed]

1974 (1)

J. B. Mac Chesney, P. B. Oapos Connor, and H. M. Presby, “A new Technique for the Preparation of low-Loss and Graded-Index Optical Fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
[Crossref]

Ahmed, M.

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258(2), 351–369 (2011).
[Crossref] [PubMed]

Am, A. B.

Arbel, D.

Baiad, M. D.

Barrera, D.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

Bazyl, A.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Bertani, A.

R. Valcavi, F. Riganti, A. Bertani, D. Formisano, and C. M. Pacella, “Percutaneous Laser Ablation of Cold Benign Thyroid Nodules: A 3-Year Follow-Up Study in 122 Patients,” Thyroid 20(11), 1253–1261 (2010).
[Crossref] [PubMed]

Beuthan, J.

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

Blanc, W.

W. Blanc, C. Guillermier, and B. Dussardier, “Composition of nanoparticles in optical fibers by Secondary Ion Mass Spectrometry,” Opt. Mater. Express 2(11), 1504–1510 (2012).
[Crossref]

W. Blanc, V. Mauroy, L. Nguyen, B. N. Shivakiran Bhaktha, P. Sebbah, B. P. Pal, and B. Dussardier, “Fabrication of Rare Earth‐Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition,” J. Am. Ceram. Soc. 94(8), 2315–2318 (2011).
[Crossref]

Boisvert, J. S.

Brace, C. L.

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258(2), 351–369 (2011).
[Crossref] [PubMed]

M. G. Lubner, C. L. Brace, J. L. Hinshaw, and F. T. Lee, “Microwave tumor ablation: mechanism of action, clinical results, and devices,” J. Vasc. Interv. Radiol. 21(8Suppl), S192–S203 (2010).
[Crossref] [PubMed]

Braschi, G.

E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, and L. Comolli, “Temperature distribution during RF ablation on ex vivo liver tissue: IR measurements and simulations,” Heat Mass Transf. 51(5), 611–620 (2015).
[Crossref]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

Busca, G.

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

Butts Pauly, K.

V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
[Crossref] [PubMed]

Cadeddu, J. A.

T. S. Corwin, G. Lindberg, O. Traxer, M. T. Gettman, T. G. Smith, M. S. Pearle, and J. A. Cadeddu, “Laparoscopic radiofrequency thermal ablation of renal tissue with and without hilar occlusion,” J. Urol. 166(1), 281–284 (2001).
[Crossref] [PubMed]

Campopiano, S.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
[Crossref] [PubMed]

Caponero, M. A.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Carlomagno, N.

G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
[Crossref] [PubMed]

Cigada, A.

E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, and L. Comolli, “Temperature distribution during RF ablation on ex vivo liver tissue: IR measurements and simulations,” Heat Mass Transf. 51(5), 611–620 (2015).
[Crossref]

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

Comolli, L.

E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, and L. Comolli, “Temperature distribution during RF ablation on ex vivo liver tissue: IR measurements and simulations,” Heat Mass Transf. 51(5), 611–620 (2015).
[Crossref]

Compton, C. C.

S. N. Goldberg, G. S. Gazelle, C. C. Compton, P. R. Mueller, and K. K. Tanabe, “Treatment of intrahepatic malignancy with radiofrequency ablation,” Cancer 88(11), 2452–2463 (2000).
[Crossref] [PubMed]

Corwin, T. S.

T. S. Corwin, G. Lindberg, O. Traxer, M. T. Gettman, T. G. Smith, M. S. Pearle, and J. A. Cadeddu, “Laparoscopic radiofrequency thermal ablation of renal tissue with and without hilar occlusion,” J. Urol. 166(1), 281–284 (2001).
[Crossref] [PubMed]

Deimling, M.

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

Denham, D. B.

F. Manns, P. J. Milne, X. Gonzalez-Cirre, D. B. Denham, J. M. Parel, and D. S. Robinson, “In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact,” Lasers Surg. Med. 23(2), 94–103 (1998).
[Crossref] [PubMed]

Dewey, W. C.

S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984).
[Crossref] [PubMed]

Diakite, M.

N. Todd, M. Diakite, A. Payne, and D. L. Parker, “In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments,” Magn. Reson. Med. 72(3), 793–799 (2014).
[Crossref] [PubMed]

Dussardier, B.

W. Blanc, C. Guillermier, and B. Dussardier, “Composition of nanoparticles in optical fibers by Secondary Ion Mass Spectrometry,” Opt. Mater. Express 2(11), 1504–1510 (2012).
[Crossref]

W. Blanc, V. Mauroy, L. Nguyen, B. N. Shivakiran Bhaktha, P. Sebbah, B. P. Pal, and B. Dussardier, “Fabrication of Rare Earth‐Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition,” J. Am. Ceram. Soc. 94(8), 2315–2318 (2011).
[Crossref]

Eyal, A.

Fan, X.

Fani, F.

F. Fani, E. Schena, P. Saccomandi, and S. Silvestri, “CT-based thermometry: An overview,” Int. J. Hyperthermia 30(4), 219–227 (2014).
[Crossref] [PubMed]

Formisano, D.

R. Valcavi, F. Riganti, A. Bertani, D. Formisano, and C. M. Pacella, “Percutaneous Laser Ablation of Cold Benign Thyroid Nodules: A 3-Year Follow-Up Study in 122 Patients,” Thyroid 20(11), 1253–1261 (2010).
[Crossref] [PubMed]

Froggatt, M.

Gallati, M.

E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, and L. Comolli, “Temperature distribution during RF ablation on ex vivo liver tissue: IR measurements and simulations,” Heat Mass Transf. 51(5), 611–620 (2015).
[Crossref]

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

Gassino, R.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Gasulla, I.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

Gazelle, G. S.

S. N. Goldberg, G. S. Gazelle, C. C. Compton, P. R. Mueller, and K. K. Tanabe, “Treatment of intrahepatic malignancy with radiofrequency ablation,” Cancer 88(11), 2452–2463 (2000).
[Crossref] [PubMed]

Gettman, M. T.

T. S. Corwin, G. Lindberg, O. Traxer, M. T. Gettman, T. G. Smith, M. S. Pearle, and J. A. Cadeddu, “Laparoscopic radiofrequency thermal ablation of renal tissue with and without hilar occlusion,” J. Urol. 166(1), 281–284 (2001).
[Crossref] [PubMed]

Gifford, D.

Goldberg, S. N.

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258(2), 351–369 (2011).
[Crossref] [PubMed]

S. N. Goldberg, G. S. Gazelle, C. C. Compton, P. R. Mueller, and K. K. Tanabe, “Treatment of intrahepatic malignancy with radiofrequency ablation,” Cancer 88(11), 2452–2463 (2000).
[Crossref] [PubMed]

Gonzalez-Cirre, X.

F. Manns, P. J. Milne, X. Gonzalez-Cirre, D. B. Denham, J. M. Parel, and D. S. Robinson, “In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact,” Lasers Surg. Med. 23(2), 94–103 (1998).
[Crossref] [PubMed]

Guillermier, C.

Haemmerich, D.

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

Haller, J.

A. Shaw, G. ter Haar, J. Haller, and V. Wilkens, “Towards a dosimetric framework for therapeutic ultrasound,” Int. J. Hyperthermia 31(2), 182–192 (2015).
[Crossref] [PubMed]

Hammerstingl, R.

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

He, Z.

Hervás, J.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

Hinshaw, J. L.

M. G. Lubner, C. L. Brace, J. L. Hinshaw, and F. T. Lee, “Microwave tumor ablation: mechanism of action, clinical results, and devices,” J. Vasc. Interv. Radiol. 21(8Suppl), S192–S203 (2010).
[Crossref] [PubMed]

Iadicicco, A.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
[Crossref] [PubMed]

Iannitti, D. A.

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100(8), 619–634 (2009).
[Crossref] [PubMed]

Iezzi, V. L.

Inglezakis, V. J.

M. Jelbuldina, A. Korobeinyk, S. Korganbayev, V. J. Inglezakis, and D. Tosi, “Fiber Bragg Grating Based Temperature Profiling in Ferromagnetic Nanoparticles-Enhanced Radiofrequency Ablation,” Opt. Fiber Technol. 43, 145–152 (2018).
[Crossref]

Ippolito, J.

G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
[Crossref] [PubMed]

Jelbuldina, M.

M. Jelbuldina, A. Korobeinyk, S. Korganbayev, V. J. Inglezakis, and D. Tosi, “Fiber Bragg Grating Based Temperature Profiling in Ferromagnetic Nanoparticles-Enhanced Radiofrequency Ablation,” Opt. Fiber Technol. 43, 145–152 (2018).
[Crossref]

Kadoury, S.

Kashyap, R.

Kennedy, J. E.

J. E. Kennedy, “High-intensity focused ultrasound in the treatment of solid tumours,” Nat. Rev. Cancer 5(4), 321–327 (2005).
[Crossref] [PubMed]

Kim, T.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

Korganbayev, S.

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

M. Jelbuldina, A. Korobeinyk, S. Korganbayev, V. J. Inglezakis, and D. Tosi, “Fiber Bragg Grating Based Temperature Profiling in Ferromagnetic Nanoparticles-Enhanced Radiofrequency Ablation,” Opt. Fiber Technol. 43, 145–152 (2018).
[Crossref]

Korobeinyk, A.

M. Jelbuldina, A. Korobeinyk, S. Korganbayev, V. J. Inglezakis, and D. Tosi, “Fiber Bragg Grating Based Temperature Profiling in Ferromagnetic Nanoparticles-Enhanced Radiofrequency Ablation,” Opt. Fiber Technol. 43, 145–152 (2018).
[Crossref]

Lapointe, J.

Lee, F. T.

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258(2), 351–369 (2011).
[Crossref] [PubMed]

M. G. Lubner, C. L. Brace, J. L. Hinshaw, and F. T. Lee, “Microwave tumor ablation: mechanism of action, clinical results, and devices,” J. Vasc. Interv. Radiol. 21(8Suppl), S192–S203 (2010).
[Crossref] [PubMed]

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

Leen, G.

Lewis, E.

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

Lindberg, G.

T. S. Corwin, G. Lindberg, O. Traxer, M. T. Gettman, T. G. Smith, M. S. Pearle, and J. A. Cadeddu, “Laparoscopic radiofrequency thermal ablation of renal tissue with and without hilar occlusion,” J. Urol. 166(1), 281–284 (2001).
[Crossref] [PubMed]

Liu, Q.

Loranger, S.

Lubner, M. G.

M. G. Lubner, C. L. Brace, J. L. Hinshaw, and F. T. Lee, “Microwave tumor ablation: mechanism of action, clinical results, and devices,” J. Vasc. Interv. Radiol. 21(8Suppl), S192–S203 (2010).
[Crossref] [PubMed]

Mac Chesney, J. B.

J. B. Mac Chesney, P. B. Oapos Connor, and H. M. Presby, “A new Technique for the Preparation of low-Loss and Graded-Index Optical Fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
[Crossref]

Macchi, E. G.

E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, and L. Comolli, “Temperature distribution during RF ablation on ex vivo liver tissue: IR measurements and simulations,” Heat Mass Transf. 51(5), 611–620 (2015).
[Crossref]

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

Mack, M. G.

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

Mahvi, D. M.

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

Mandal, K. K.

Manns, F.

F. Manns, P. J. Milne, X. Gonzalez-Cirre, D. B. Denham, J. M. Parel, and D. S. Robinson, “In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact,” Lasers Surg. Med. 23(2), 94–103 (1998).
[Crossref] [PubMed]

Martinie, J. B.

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100(8), 619–634 (2009).
[Crossref] [PubMed]

Massaroni, C.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Mauroy, V.

W. Blanc, V. Mauroy, L. Nguyen, B. N. Shivakiran Bhaktha, P. Sebbah, B. P. Pal, and B. Dussardier, “Fabrication of Rare Earth‐Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition,” J. Am. Ceram. Soc. 94(8), 2315–2318 (2011).
[Crossref]

Milne, P. J.

F. Manns, P. J. Milne, X. Gonzalez-Cirre, D. B. Denham, J. M. Parel, and D. S. Robinson, “In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact,” Lasers Surg. Med. 23(2), 94–103 (1998).
[Crossref] [PubMed]

Molardi, C.

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

Moore, J.

Mueller, P. R.

S. N. Goldberg, G. S. Gazelle, C. C. Compton, P. R. Mueller, and K. K. Tanabe, “Treatment of intrahepatic malignancy with radiofrequency ablation,” Cancer 88(11), 2452–2463 (2000).
[Crossref] [PubMed]

Müller, P. K.

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

Nguyen, L.

W. Blanc, V. Mauroy, L. Nguyen, B. N. Shivakiran Bhaktha, P. Sebbah, B. P. Pal, and B. Dussardier, “Fabrication of Rare Earth‐Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition,” J. Am. Ceram. Soc. 94(8), 2315–2318 (2011).
[Crossref]

Oapos Connor, P. B.

J. B. Mac Chesney, P. B. Oapos Connor, and H. M. Presby, “A new Technique for the Preparation of low-Loss and Graded-Index Optical Fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
[Crossref]

Orazayev, Y.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Pacella, C. M.

R. Valcavi, F. Riganti, A. Bertani, D. Formisano, and C. M. Pacella, “Percutaneous Laser Ablation of Cold Benign Thyroid Nodules: A 3-Year Follow-Up Study in 122 Patients,” Thyroid 20(11), 1253–1261 (2010).
[Crossref] [PubMed]

Padma, S.

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100(8), 619–634 (2009).
[Crossref] [PubMed]

Pal, B. P.

W. Blanc, V. Mauroy, L. Nguyen, B. N. Shivakiran Bhaktha, P. Sebbah, B. P. Pal, and B. Dussardier, “Fabrication of Rare Earth‐Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition,” J. Am. Ceram. Soc. 94(8), 2315–2318 (2011).
[Crossref]

Palumbo, G.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
[Crossref] [PubMed]

Parel, J. M.

F. Manns, P. J. Milne, X. Gonzalez-Cirre, D. B. Denham, J. M. Parel, and D. S. Robinson, “In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact,” Lasers Surg. Med. 23(2), 94–103 (1998).
[Crossref] [PubMed]

Parent, F.

Parker, D. L.

N. Todd, M. Diakite, A. Payne, and D. L. Parker, “In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments,” Magn. Reson. Med. 72(3), 793–799 (2014).
[Crossref] [PubMed]

Payne, A.

N. Todd, M. Diakite, A. Payne, and D. L. Parker, “In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments,” Magn. Reson. Med. 72(3), 793–799 (2014).
[Crossref] [PubMed]

Pearle, M. S.

T. S. Corwin, G. Lindberg, O. Traxer, M. T. Gettman, T. G. Smith, M. S. Pearle, and J. A. Cadeddu, “Laparoscopic radiofrequency thermal ablation of renal tissue with and without hilar occlusion,” J. Urol. 166(1), 281–284 (2001).
[Crossref] [PubMed]

Pegios, W.

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

Perrone, G.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Philipp, C.

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

Presby, H. M.

J. B. Mac Chesney, P. B. Oapos Connor, and H. M. Presby, “A new Technique for the Preparation of low-Loss and Graded-Index Optical Fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
[Crossref]

Rieke, V.

V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
[Crossref] [PubMed]

Riess, H.

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

Riganti, F.

R. Valcavi, F. Riganti, A. Bertani, D. Formisano, and C. M. Pacella, “Percutaneous Laser Ablation of Cold Benign Thyroid Nodules: A 3-Year Follow-Up Study in 122 Patients,” Thyroid 20(11), 1253–1261 (2010).
[Crossref] [PubMed]

Robinson, D. S.

F. Manns, P. J. Milne, X. Gonzalez-Cirre, D. B. Denham, J. M. Parel, and D. S. Robinson, “In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact,” Lasers Surg. Med. 23(2), 94–103 (1998).
[Crossref] [PubMed]

Rossi, S.

Saccomandi, P.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

F. Fani, E. Schena, P. Saccomandi, and S. Silvestri, “CT-based thermometry: An overview,” Int. J. Hyperthermia 30(4), 219–227 (2014).
[Crossref] [PubMed]

P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia 29(7), 609–619 (2013).
[Crossref] [PubMed]

Sales, S.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

Sapareto, S. A.

S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984).
[Crossref] [PubMed]

Schena, E.

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

F. Fani, E. Schena, P. Saccomandi, and S. Silvestri, “CT-based thermometry: An overview,” Int. J. Hyperthermia 30(4), 219–227 (2014).
[Crossref] [PubMed]

P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia 29(7), 609–619 (2013).
[Crossref] [PubMed]

Sebbah, P.

W. Blanc, V. Mauroy, L. Nguyen, B. N. Shivakiran Bhaktha, P. Sebbah, B. P. Pal, and B. Dussardier, “Fabrication of Rare Earth‐Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition,” J. Am. Ceram. Soc. 94(8), 2315–2318 (2011).
[Crossref]

Shaw, A.

A. Shaw, G. ter Haar, J. Haller, and V. Wilkens, “Towards a dosimetric framework for therapeutic ultrasound,” Int. J. Hyperthermia 31(2), 182–192 (2015).
[Crossref] [PubMed]

Shivakiran Bhaktha, B. N.

W. Blanc, V. Mauroy, L. Nguyen, B. N. Shivakiran Bhaktha, P. Sebbah, B. P. Pal, and B. Dussardier, “Fabrication of Rare Earth‐Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition,” J. Am. Ceram. Soc. 94(8), 2315–2318 (2011).
[Crossref]

Silvestri, S.

F. Fani, E. Schena, P. Saccomandi, and S. Silvestri, “CT-based thermometry: An overview,” Int. J. Hyperthermia 30(4), 219–227 (2014).
[Crossref] [PubMed]

P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia 29(7), 609–619 (2013).
[Crossref] [PubMed]

Smith, T. G.

T. S. Corwin, G. Lindberg, O. Traxer, M. T. Gettman, T. G. Smith, M. S. Pearle, and J. A. Cadeddu, “Laparoscopic radiofrequency thermal ablation of renal tissue with and without hilar occlusion,” J. Urol. 166(1), 281–284 (2001).
[Crossref] [PubMed]

Soller, B.

Sovetov, S.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Staelin, S. T.

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

Tammaro, V.

G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
[Crossref] [PubMed]

Tanabe, K. K.

S. N. Goldberg, G. S. Gazelle, C. C. Compton, P. R. Mueller, and K. K. Tanabe, “Treatment of intrahepatic malignancy with radiofrequency ablation,” Cancer 88(11), 2452–2463 (2000).
[Crossref] [PubMed]

ter Haar, G.

A. Shaw, G. ter Haar, J. Haller, and V. Wilkens, “Towards a dosimetric framework for therapeutic ultrasound,” Int. J. Hyperthermia 31(2), 182–192 (2015).
[Crossref] [PubMed]

Todd, N.

N. Todd, M. Diakite, A. Payne, and D. L. Parker, “In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments,” Magn. Reson. Med. 72(3), 793–799 (2014).
[Crossref] [PubMed]

Tosi, D.

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

M. Jelbuldina, A. Korobeinyk, S. Korganbayev, V. J. Inglezakis, and D. Tosi, “Fiber Bragg Grating Based Temperature Profiling in Ferromagnetic Nanoparticles-Enhanced Radiofrequency Ablation,” Opt. Fiber Technol. 43, 145–152 (2018).
[Crossref]

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
[Crossref] [PubMed]

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

Traxer, O.

T. S. Corwin, G. Lindberg, O. Traxer, M. T. Gettman, T. G. Smith, M. S. Pearle, and J. A. Cadeddu, “Laparoscopic radiofrequency thermal ablation of renal tissue with and without hilar occlusion,” J. Urol. 166(1), 281–284 (2001).
[Crossref] [PubMed]

Tsai, J. Z.

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

Tungjitkusolmun, S.

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

Valcavi, R.

R. Valcavi, F. Riganti, A. Bertani, D. Formisano, and C. M. Pacella, “Percutaneous Laser Ablation of Cold Benign Thyroid Nodules: A 3-Year Follow-Up Study in 122 Patients,” Thyroid 20(11), 1253–1261 (2010).
[Crossref] [PubMed]

Vallan, A.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Verze, P.

G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
[Crossref] [PubMed]

Vogl, T. J.

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

Vorperian, V. R.

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

Wang, S.

Webster, J. G.

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

Weinhold, N.

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

Wilkens, V.

A. Shaw, G. ter Haar, J. Haller, and V. Wilkens, “Towards a dosimetric framework for therapeutic ultrasound,” Int. J. Hyperthermia 31(2), 182–192 (2015).
[Crossref] [PubMed]

Wolfe, M.

Yang, X.

X. Yang, “Science to practice: enhancing photothermal ablation of colorectal liver metastases with targeted hybrid nanoparticles,” Radiology 285(3), 699–701 (2017).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (2)

Cancer (1)

S. N. Goldberg, G. S. Gazelle, C. C. Compton, P. R. Mueller, and K. K. Tanabe, “Treatment of intrahepatic malignancy with radiofrequency ablation,” Cancer 88(11), 2452–2463 (2000).
[Crossref] [PubMed]

Heat Mass Transf. (1)

E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, and L. Comolli, “Temperature distribution during RF ablation on ex vivo liver tissue: IR measurements and simulations,” Heat Mass Transf. 51(5), 611–620 (2015).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J. Z. Tsai, J. G. Webster, F. T. Lee, D. M. Mahvi, V. R. Vorperian, and V. R. Vorperian, “Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation,” IEEE Trans. Biomed. Eng. 49(1), 3–9 (2002).
[Crossref] [PubMed]

Int. J. Hyperthermia (3)

F. Fani, E. Schena, P. Saccomandi, and S. Silvestri, “CT-based thermometry: An overview,” Int. J. Hyperthermia 30(4), 219–227 (2014).
[Crossref] [PubMed]

A. Shaw, G. ter Haar, J. Haller, and V. Wilkens, “Towards a dosimetric framework for therapeutic ultrasound,” Int. J. Hyperthermia 31(2), 182–192 (2015).
[Crossref] [PubMed]

P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia 29(7), 609–619 (2013).
[Crossref] [PubMed]

Int. J. Radiat. Oncol. Biol. Phys. (1)

S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (1)

W. Blanc, V. Mauroy, L. Nguyen, B. N. Shivakiran Bhaktha, P. Sebbah, B. P. Pal, and B. Dussardier, “Fabrication of Rare Earth‐Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition,” J. Am. Ceram. Soc. 94(8), 2315–2318 (2011).
[Crossref]

J. Biomed. Opt. (2)

E. G. Macchi, D. Tosi, G. Braschi, M. Gallati, A. Cigada, G. Busca, and E. Lewis, “Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution,” J. Biomed. Opt. 19(11), 117004 (2014).
[Crossref] [PubMed]

G. Palumbo, A. Iadicicco, D. Tosi, P. Verze, N. Carlomagno, V. Tammaro, J. Ippolito, and S. Campopiano, “Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings,” J. Biomed. Opt. 21(11), 117003 (2016).
[Crossref] [PubMed]

J. Magn. Reson. Imaging (1)

V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
[Crossref] [PubMed]

J. Surg. Oncol. (1)

S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol. 100(8), 619–634 (2009).
[Crossref] [PubMed]

J. Urol. (1)

T. S. Corwin, G. Lindberg, O. Traxer, M. T. Gettman, T. G. Smith, M. S. Pearle, and J. A. Cadeddu, “Laparoscopic radiofrequency thermal ablation of renal tissue with and without hilar occlusion,” J. Urol. 166(1), 281–284 (2001).
[Crossref] [PubMed]

J. Vasc. Interv. Radiol. (1)

M. G. Lubner, C. L. Brace, J. L. Hinshaw, and F. T. Lee, “Microwave tumor ablation: mechanism of action, clinical results, and devices,” J. Vasc. Interv. Radiol. 21(8Suppl), S192–S203 (2010).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

F. Manns, P. J. Milne, X. Gonzalez-Cirre, D. B. Denham, J. M. Parel, and D. S. Robinson, “In situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): quantification and correction of a measurement artifact,” Lasers Surg. Med. 23(2), 94–103 (1998).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

N. Todd, M. Diakite, A. Payne, and D. L. Parker, “In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments,” Magn. Reson. Med. 72(3), 793–799 (2014).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

J. E. Kennedy, “High-intensity focused ultrasound in the treatment of solid tumours,” Nat. Rev. Cancer 5(4), 321–327 (2005).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Fiber Technol. (3)

M. Jelbuldina, A. Korobeinyk, S. Korganbayev, V. J. Inglezakis, and D. Tosi, “Fiber Bragg Grating Based Temperature Profiling in Ferromagnetic Nanoparticles-Enhanced Radiofrequency Ablation,” Opt. Fiber Technol. 43, 145–152 (2018).
[Crossref]

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. A. Caponero, G. Palumbo, A. Iadicicco, S. Campopiano, and D. Tosi, “Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

Opt. Mater. Express (1)

Proc. IEEE (1)

J. B. Mac Chesney, P. B. Oapos Connor, and H. M. Presby, “A new Technique for the Preparation of low-Loss and Graded-Index Optical Fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
[Crossref]

Radiology (3)

T. J. Vogl, P. K. Müller, R. Hammerstingl, N. Weinhold, M. G. Mack, C. Philipp, M. Deimling, J. Beuthan, W. Pegios, and H. Riess, “Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results,” Radiology 196(1), 257–265 (1995).
[Crossref] [PubMed]

X. Yang, “Science to practice: enhancing photothermal ablation of colorectal liver metastases with targeted hybrid nanoparticles,” Radiology 285(3), 699–701 (2017).
[Crossref] [PubMed]

M. Ahmed, C. L. Brace, F. T. Lee, and S. N. Goldberg, “Principles of and advances in percutaneous ablation,” Radiology 258(2), 351–369 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

Sensors (Basel) (1)

E. Schena, D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, “Fiber optic sensors for temperature monitoring during thermal treatments: an overview,” Sensors (Basel) 16(7), 1144 (2016).
[Crossref] [PubMed]

Thyroid (1)

R. Valcavi, F. Riganti, A. Bertani, D. Formisano, and C. M. Pacella, “Percutaneous Laser Ablation of Cold Benign Thyroid Nodules: A 3-Year Follow-Up Study in 122 Patients,” Thyroid 20(11), 1253–1261 (2010).
[Crossref] [PubMed]

Other (3)

R. Medvid, A. Ruiz, R. J. Komotar, J. R. Jagid, M. E. Ivan, R. M. Quencer, and M. B. Desai, “Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview,” Am. J. Neurorad. (2015).

Starburst Talon® RFA Device, Angiodynamics, http://www.angiodynamics.com/products/starburst-talon .

ISO 10993, Biological Evaluation of Medical Devices; International Organization for Standardization, Geneva, Switzerland, 1995.

Supplementary Material (1)

NameDescription
» Visualization 1       Two-dimensional thermal map obtained with the SLMux setup.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the RFA ablation and distributed sensing interrogation setup. (a) View of the whole setup, including OBR-based sensing with fibers and extenders, and the RF setup with applicator introduced into the phantom. (b) SEM (scanning electron microscope) view of a section of the core of the sensing fiber, highlighting the presence of MgO nanoparticles in the core. (c) Geometrical sketch of the position of the RF applicator and the fibers S1-S4, and their relative positions with respect to the xy coordinates; all sizes are in mm.
Fig. 2
Fig. 2 Photograph of the experimental setup. (a) View of the whole setup. (b) Inset on the scattering trace acquired on the OBR. (c) View of the ablated phantom and the sensor location after the RFA experiment; ruler scale in cm.
Fig. 3
Fig. 3 Thermal response of the MgO-doped sensing fiber.
Fig. 4
Fig. 4 Scattering characterization of the proposed setup. (a) Backscattered power as a function of length, as recorded on the OBR, for each fiber length. The chart identifies the 4 sensing regions S1 – S4, each having ~20 cm length of MgO-doped fiber. (b) Inset of the left chart, showing an individual sensing region, with estimation of scattering “gain” G, fiber attenuation 2α, and signal-to-noise ratio.
Fig. 5
Fig. 5 Thermal maps reporting the measured temperature as a function of distance along the fiber (direction x) and time for each of the four sensing elements, located at coordinates y = −7.5 mm (S1), y = −2.5 mm (S2), y = 2.5 mm (S3), y = 7.5 mm (S4).
Fig. 6
Fig. 6 Two-dimensional thermal maps, reporting temperature on the xy plane for different elapsed time (10 s, 20 s, 30 s). The plain considered is 15 × 40 mm, corresponding to a grid of 4 × 17 sensing point, spaced 5 mm on y axis and 2.5 mm on x axis. See Visualization 1.
Fig. 7
Fig. 7 Temporal and spatial temperature gradients reported after 25 s elapsed during RFA. (a) Time gradients reported in °C/s; (b) spatial gradients reported as field lines pointing from the colder to hotter points.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L Ei ÷( L Ei + L Si )  does not overlap with  L Ej ÷( L Ej + L Sj ),  ij
P S,i ( z )={ P SMF                                 0z L Ei P SMF +G2αz         L Ei z( L Ei + L Si )
SNR=G2αz10 log 10 ( N1 )

Metrics