Abstract

Multi-directional measurement using multi-directional light sources and multi-directional photodetectors drastically increases the amount of observation data without increasing the number of optical probes. In this study, we developed a novel multi-directional functional near-infrared spectroscopy (fNIRS) system for human neuroimaging studies. We tested our system by measuring the cortical hemodynamic changes of a single subject during a motor task and compared them with the same subject’s functional magnetic resonance imaging (fMRI) data. We detected the direction-dependent fNIRS signals that originate from the cortical hemodynamic changes that are consistent with the fMRI data.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy

Ning Liu, Xu Cui, Daniel M. Bryant, Gary H. Glover, and Allan L. Reiss
Biomed. Opt. Express 6(3) 1074-1089 (2015)

Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging

Bilal Khan, Pankaj Chand, and George Alexandrakis
Biomed. Opt. Express 2(12) 3367-3386 (2011)

Approach to optimize 3-dimensional brain functional activation image with high resolution: a study on functional near-infrared spectroscopy

Zeshan Shoaib, M. Ahmad Kamran, M. M. N. Mannan, and Myung Yung Jeong
Biomed. Opt. Express 10(9) 4684-4710 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
    [Crossref] [PubMed]
  2. A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
    [Crossref] [PubMed]
  3. T. Shimokawa, T. Ishii, Y. Takahashi, S. Sugawara, M. A. Sato, and O. Yamashita, “Diffuse optical tomography using multi-directional sources and detectors,” Biomed. Opt. Express 7(7), 2623–2640 (2016).
    [Crossref] [PubMed]
  4. M. Hyodo, O. Matoba, S. Miyauchi, and S. Saito, “Characterization of angle-resolved measurement of diffuse reflected light,” Proc. SPIE 10815, 108150I (2018).
    [Crossref]
  5. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1(1), 165–175 (2010).
    [Crossref] [PubMed]
  6. O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
    [Crossref] [PubMed]
  7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [Crossref]
  8. T. Shimokawa, T. Kosaka, O. Yamashita, N. Hiroe, T. Amita, Y. Inoue, and M. A. Sato, “Extended hierarchical Bayesian diffuse optical tomography for removing scalp artifact,” Biomed. Opt. Express 4(11), 2411–2432 (2013).
    [Crossref] [PubMed]
  9. T. Shimokawa, T. Kosaka, O. Yamashita, N. Hiroe, T. Amita, Y. Inoue, and M. A. Sato, “Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography,” Opt. Express 20(18), 20427–20446 (2012).
    [Crossref] [PubMed]
  10. T. Yoshioka, “multi_color,” https://bicr.atr.jp/multi_color/ .

2018 (1)

M. Hyodo, O. Matoba, S. Miyauchi, and S. Saito, “Characterization of angle-resolved measurement of diffuse reflected light,” Proc. SPIE 10815, 108150I (2018).
[Crossref]

2016 (2)

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

T. Shimokawa, T. Ishii, Y. Takahashi, S. Sugawara, M. A. Sato, and O. Yamashita, “Diffuse optical tomography using multi-directional sources and detectors,” Biomed. Opt. Express 7(7), 2623–2640 (2016).
[Crossref] [PubMed]

2014 (1)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

T. Shimokawa, T. Kosaka, O. Yamashita, N. Hiroe, T. Amita, Y. Inoue, and M. A. Sato, “Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography,” Opt. Express 20(18), 20427–20446 (2012).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

2010 (1)

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

Aisu, R.

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

Amita, T.

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

Culver, J. P.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Dehghani, H.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Eggebrecht, A. T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Fang, Q.

Ferradal, S. L.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Hassanpour, M. S.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Hershey, T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Hiroe, N.

Hyodo, M.

M. Hyodo, O. Matoba, S. Miyauchi, and S. Saito, “Characterization of angle-resolved measurement of diffuse reflected light,” Proc. SPIE 10815, 108150I (2018).
[Crossref]

Inoue, Y.

Ishii, T.

Kosaka, T.

Matoba, O.

M. Hyodo, O. Matoba, S. Miyauchi, and S. Saito, “Characterization of angle-resolved measurement of diffuse reflected light,” Proc. SPIE 10815, 108150I (2018).
[Crossref]

Miyauchi, S.

M. Hyodo, O. Matoba, S. Miyauchi, and S. Saito, “Characterization of angle-resolved measurement of diffuse reflected light,” Proc. SPIE 10815, 108150I (2018).
[Crossref]

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Robichaux-Viehoever, A.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Saito, S.

M. Hyodo, O. Matoba, S. Miyauchi, and S. Saito, “Characterization of angle-resolved measurement of diffuse reflected light,” Proc. SPIE 10815, 108150I (2018).
[Crossref]

Sato, M. A.

Shimokawa, T.

Snyder, A. Z.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Sugawara, S.

Takahashi, Y.

Yamashita, O.

Biomed. Opt. Express (3)

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

Nat. Photonics (1)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Neuroimage (2)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

O. Yamashita, T. Shimokawa, R. Aisu, T. Amita, Y. Inoue, and M. A. Sato, “Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm,” Neuroimage 135, 287–299 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Proc. SPIE (1)

M. Hyodo, O. Matoba, S. Miyauchi, and S. Saito, “Characterization of angle-resolved measurement of diffuse reflected light,” Proc. SPIE 10815, 108150I (2018).
[Crossref]

Other (1)

T. Yoshioka, “multi_color,” https://bicr.atr.jp/multi_color/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Conceptual diagram of multi-directional measurement. Two different optical paths exist due to different emitting and detection angles: inclined inward (yellow) and inclined outward (orange). (b) Multi-directional fNIRS system. Four source probes and four detectors were attached to head cap. (c) Enlarged view of probe tip (left: source, right: detector).
Fig. 2
Fig. 2 Schematics of multi-directional fNIRS system. (a) Overview diagram. (b) Source probe. (c) Optical system of light-source. (d) Detector probe. VCSEL: vertical-cavity surface-emitting laser, MUX: multiplexer, PD: photodiode, V/I: V/I converter, I/V: I/V converter, DAC: D/A converter, ADC: A/D converter, MCU: microcontroller unit, PC: personal computer.
Fig. 3
Fig. 3 Probe positions and light directions. (a) Arrangement of probes. Red circles represent sources and blue squares are detectors. Field of view is dark red. (b) Map of sensitivity magnitude. (c) Outgoing light directions from source and incoming light directions to detector. Perspective view and top view are shown. A = anterior, P = posterior, M = medial, L = lateral.
Fig. 4
Fig. 4 Qualitative comparison of fMRI and fNIRS data. (a) fMRI T-value map. fNIRS probe positions are superimposed. (b) Trial-averaged fNIRS data. HbO (red line) and HbR (blue line) time series are plotted in each panel located on center of source-detector pairs. Data of all three runs are shown. First and second session runs are shown in solid and dashed lines. Two vertical lines inside each panel indicate task onset and offset. Symbols inside each panel are for reference in Fig. 5 to indicate each source-detector pair.
Fig. 5
Fig. 5 Quantitative comparison of fMRI and fNIRS data. (a) Relationship between simulated and observed fNIRS data. Marker type indicates individual source-detector pair (see Fig. 4(b)). Unfilled and filled markers indicate 780- and 895-nm data. r-value indicates Pearson correlation value. (b) Relationship between simulated and observed fNIRS data after subtracting pair factor. Conventions are identical as in (a).
Fig. 6
Fig. 6 Pair 1 data for explanation of direction-dependent fNIRS data in detail. (a) Relationship between simulated and observed fNIRS data after subtracting pair factor. All three runs data are shown. Color indicates pair of light directions shown in (b). Other combinations of light directions are shown in black. (b) Probe positions of pair 1 and four representative light direction pairs are indicated by colored arrows. fMRI T-value map is identical to that in Fig. 4(a).
Fig. 7
Fig. 7 Reconstructed cortical HbO images from multi-directional fNIRS data. fNIRS probe positions are superimposed on run 1’s image.
Fig. 8
Fig. 8 Volumetric maps of fMRI T-value (red), multi-directional DOT’s HbO (blue), and conventional DOT’s HbO (green). Areas exceeding 20% of peak values are shown. Overlapping areas are displayed in a mosaic pattern [10]. They are overlaid on a translucent MRI anatomical image, including the scalp.

Tables (1)

Tables Icon

Table 1 Optical parameters of segmented head tissue

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y sim = A x fMRI ,

Metrics