Abstract

There is an increasing interest in industrial and security applications and the establishment of wireless communication operating at frequencies of up to 0.30 THz. Soft tissue has a high coefficient of absorption at 0.30 THz and this limits effective penetration of the energy to a depth of 0.2 to 0.4 mm. The capacity of 0.30 THz radiation to access the deeper parts of the ear by diffusing through the ear canal and exposing the tympanic membrane (ear drum) to the radiation has not been studied. Simulations show that, with excitation parallel to the ear canal, the average power flux density within the central tympanic membrane region is 97% of the incident excitation. The structures of the outer ear are highly protective; less than 0.4% of the power flux density is directed at 45° from the parallel reached the same region. Given the sensitivity of the tympanic membrane to mechanical change, in-vivo assessment of the penetration of 0.3 THz into the ear canal is warranted to assess the suitability of the present radiation safety limits and to inform 0.3 THz emitting device deign.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Remote optical sensing in otolaryngology: middle ear effusion detection

Nisan Ozana, Doron Sagiv, Noga Lipschitz-Tayar, Ariel Schwarz, Amir Shemer, Michael Wolf, and Zeev Zalevsky
Opt. Express 26(13) 16187-16199 (2018)

Terahertz otoscope and potential for diagnosing otitis media

Young Bin Ji, In-Seok Moon, Hyeon Sang Bark, Sang Hoon Kim, Dong Woo Park, Sam Kyu Noh, Yong-Min Huh, Jin-Seok Suh, Seung Jae Oh, and Tae-In Jeon
Biomed. Opt. Express 7(4) 1201-1209 (2016)

Endoscopic optical coherence tomography enables morphological and subnanometer vibratory imaging of the porcine cochlea through the round window

Wihan Kim, Sangmin Kim, John S. Oghalai, and Brian E. Applegate
Opt. Lett. 43(9) 1966-1969 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17(21), 19006–19014 (2009).
    [Crossref] [PubMed]
  3. J. B. Sleiman, B. Bousquet, N. Palka, and P. Mounaix, “Quantitative Analysis of Hexahydro-1,3,5-trinitro-1,3,5, Triazine/Pentaerythritol Tetranitrate (RDX-PETN) Mixtures by Terahertz Time Domain Spectroscopy,” Appl. Spectrosc. 69(12), 1464–1471 (2015).
    [Crossref] [PubMed]
  4. C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
    [Crossref]
  5. R. A. Lewis, “A review of terahertz sources,” J. Phys. D Appl. Phys. 47(37), 374001 (2014).
    [Crossref]
  6. International Commission on Non-Ionizing Radiation Protection, “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” Health Phys. 74(4), 494–522 (1998).
    [PubMed]
  7. International Commission on Non-Ionizing Radiation Protection, “ICNIRP statement on the “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”,” Health Phys. 97(3), 257–258 (2009).
    [Crossref] [PubMed]
  8. D. J. Lim, “Human tympanic membrane. An ultrastructural observation,” Acta Otolaryngol. 70(3), 176–186 (1970).
    [Crossref] [PubMed]
  9. K. E. Kelly and D. C. Mohs, “The external auditory canal. Anatomy and physiology,” Otolaryngol. Clin. North Am. 29(5), 725–739 (1996).
    [PubMed]
  10. C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane. a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
    [Crossref] [PubMed]
  11. Y. Yeh and L. Kruger, “Fine-structural characterization of the somatic innervation of the tympanic membrane in normal and neurotoxin-denervated rats,” Somatosens. Res. 1(4), 359–378 (1984).
    [Crossref] [PubMed]
  12. P. L. Santa Maria, M. D. Atlas, and R. Ghassemifar, “Chronic tympanic membrane perforation: a better animal model is needed,” Wound Repair Regen. 15(4), 450–458 (2007).
    [Crossref] [PubMed]
  13. A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
    [Crossref] [PubMed]
  14. S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol. 41(11), 2251–2269 (1996).
    [Crossref] [PubMed]
  15. K. Sasaki, K. Wake, and S. Watanabe, “Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz,” Phys. Med. Biol. 59(16), 4739–4747 (2014).
    [Crossref] [PubMed]
  16. Z. Vilagosh, A. Lajevardipour, and A. Wood, “Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages,” Proc. SPIE 10456, 104560M (2017).
  17. C. M. Collins, W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, “Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz,” J. Magn. Reson. Imaging 19(5), 650–656 (2004).
    [Crossref] [PubMed]

2017 (1)

Z. Vilagosh, A. Lajevardipour, and A. Wood, “Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages,” Proc. SPIE 10456, 104560M (2017).

2016 (1)

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

R. A. Lewis, “A review of terahertz sources,” J. Phys. D Appl. Phys. 47(37), 374001 (2014).
[Crossref]

K. Sasaki, K. Wake, and S. Watanabe, “Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz,” Phys. Med. Biol. 59(16), 4739–4747 (2014).
[Crossref] [PubMed]

2009 (2)

International Commission on Non-Ionizing Radiation Protection, “ICNIRP statement on the “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”,” Health Phys. 97(3), 257–258 (2009).
[Crossref] [PubMed]

S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17(21), 19006–19014 (2009).
[Crossref] [PubMed]

2008 (1)

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

2007 (1)

P. L. Santa Maria, M. D. Atlas, and R. Ghassemifar, “Chronic tympanic membrane perforation: a better animal model is needed,” Wound Repair Regen. 15(4), 450–458 (2007).
[Crossref] [PubMed]

2004 (1)

C. M. Collins, W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, “Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz,” J. Magn. Reson. Imaging 19(5), 650–656 (2004).
[Crossref] [PubMed]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

1998 (1)

International Commission on Non-Ionizing Radiation Protection, “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” Health Phys. 74(4), 494–522 (1998).
[PubMed]

1996 (2)

S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol. 41(11), 2251–2269 (1996).
[Crossref] [PubMed]

K. E. Kelly and D. C. Mohs, “The external auditory canal. Anatomy and physiology,” Otolaryngol. Clin. North Am. 29(5), 725–739 (1996).
[PubMed]

1991 (1)

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane. a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

1984 (1)

Y. Yeh and L. Kruger, “Fine-structural characterization of the somatic innervation of the tympanic membrane in normal and neurotoxin-denervated rats,” Somatosens. Res. 1(4), 359–378 (1984).
[Crossref] [PubMed]

1970 (1)

D. J. Lim, “Human tympanic membrane. An ultrastructural observation,” Acta Otolaryngol. 70(3), 176–186 (1970).
[Crossref] [PubMed]

Atlas, M. D.

P. L. Santa Maria, M. D. Atlas, and R. Ghassemifar, “Chronic tympanic membrane perforation: a better animal model is needed,” Wound Repair Regen. 15(4), 450–458 (2007).
[Crossref] [PubMed]

Bastian, M.

Baudrit, B.

Bousquet, B.

Chatterjee, S.

Collins, C. M.

C. M. Collins, W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, “Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz,” J. Magn. Reson. Imaging 19(5), 650–656 (2004).
[Crossref] [PubMed]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Gabriel, C.

S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol. 41(11), 2251–2269 (1996).
[Crossref] [PubMed]

Gabriel, S.

S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol. 41(11), 2251–2269 (1996).
[Crossref] [PubMed]

Ghassemifar, R.

P. L. Santa Maria, M. D. Atlas, and R. Ghassemifar, “Chronic tympanic membrane perforation: a better animal model is needed,” Wound Repair Regen. 15(4), 450–458 (2007).
[Crossref] [PubMed]

Gruetter, R.

C. M. Collins, W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, “Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz,” J. Magn. Reson. Imaging 19(5), 650–656 (2004).
[Crossref] [PubMed]

Iskra, S.

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref] [PubMed]

Jansen, C.

Jastrow, C.

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

Jung, T.

Kelly, K. E.

K. E. Kelly and D. C. Mohs, “The external auditory canal. Anatomy and physiology,” Otolaryngol. Clin. North Am. 29(5), 725–739 (1996).
[PubMed]

Kleine-Ostmann, T.

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

Koch, M.

Kruger, L.

Y. Yeh and L. Kruger, “Fine-structural characterization of the somatic innervation of the tympanic membrane in normal and neurotoxin-denervated rats,” Somatosens. Res. 1(4), 359–378 (1984).
[Crossref] [PubMed]

Ku, T.

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

Lajevardipour, A.

Z. Vilagosh, A. Lajevardipour, and A. Wood, “Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages,” Proc. SPIE 10456, 104560M (2017).

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref] [PubMed]

Lau, R. W.

S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol. 41(11), 2251–2269 (1996).
[Crossref] [PubMed]

Lewis, R. A.

R. A. Lewis, “A review of terahertz sources,” J. Phys. D Appl. Phys. 47(37), 374001 (2014).
[Crossref]

Lim, D. J.

D. J. Lim, “Human tympanic membrane. An ultrastructural observation,” Acta Otolaryngol. 70(3), 176–186 (1970).
[Crossref] [PubMed]

Liu, W.

C. M. Collins, W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, “Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz,” J. Magn. Reson. Imaging 19(5), 650–656 (2004).
[Crossref] [PubMed]

McIntosh, R. L.

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref] [PubMed]

Mohs, D. C.

K. E. Kelly and D. C. Mohs, “The external auditory canal. Anatomy and physiology,” Otolaryngol. Clin. North Am. 29(5), 725–739 (1996).
[PubMed]

Mounaix, P.

Mu, K.

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

Palka, N.

Paparella, M. M.

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane. a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Piesiewicz, R.

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

Reuter, M.

Ruah, C. B.

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane. a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Santa Maria, P. L.

P. L. Santa Maria, M. D. Atlas, and R. Ghassemifar, “Chronic tympanic membrane perforation: a better animal model is needed,” Wound Repair Regen. 15(4), 450–458 (2007).
[Crossref] [PubMed]

Sasaki, K.

K. Sasaki, K. Wake, and S. Watanabe, “Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz,” Phys. Med. Biol. 59(16), 4739–4747 (2014).
[Crossref] [PubMed]

Schachern, P. A.

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane. a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Sleiman, J. B.

Smith, M. B.

C. M. Collins, W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, “Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz,” J. Magn. Reson. Imaging 19(5), 650–656 (2004).
[Crossref] [PubMed]

Ugurbil, K.

C. M. Collins, W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, “Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz,” J. Magn. Reson. Imaging 19(5), 650–656 (2004).
[Crossref] [PubMed]

Vaughan, J. T.

C. M. Collins, W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, “Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz,” J. Magn. Reson. Imaging 19(5), 650–656 (2004).
[Crossref] [PubMed]

Vilagosh, Z.

Z. Vilagosh, A. Lajevardipour, and A. Wood, “Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages,” Proc. SPIE 10456, 104560M (2017).

Wake, K.

K. Sasaki, K. Wake, and S. Watanabe, “Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz,” Phys. Med. Biol. 59(16), 4739–4747 (2014).
[Crossref] [PubMed]

Wang, J.

C. M. Collins, W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, “Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz,” J. Magn. Reson. Imaging 19(5), 650–656 (2004).
[Crossref] [PubMed]

Watanabe, S.

K. Sasaki, K. Wake, and S. Watanabe, “Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz,” Phys. Med. Biol. 59(16), 4739–4747 (2014).
[Crossref] [PubMed]

Wietzke, S.

Wood, A.

Z. Vilagosh, A. Lajevardipour, and A. Wood, “Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages,” Proc. SPIE 10456, 104560M (2017).

Wood, A. W.

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref] [PubMed]

Yeh, Y.

Y. Yeh and L. Kruger, “Fine-structural characterization of the somatic innervation of the tympanic membrane in normal and neurotoxin-denervated rats,” Somatosens. Res. 1(4), 359–378 (1984).
[Crossref] [PubMed]

Yoon, T. H.

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane. a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Zelterman, D.

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane. a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Acta Otolaryngol. (1)

D. J. Lim, “Human tympanic membrane. An ultrastructural observation,” Acta Otolaryngol. 70(3), 176–186 (1970).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Arch. Otolaryngol. Head Neck Surg. (1)

C. B. Ruah, P. A. Schachern, D. Zelterman, M. M. Paparella, and T. H. Yoon, “Age-related morphologic changes in the human tympanic membrane. a light and electron microscopic study,” Arch. Otolaryngol. Head Neck Surg. 117(6), 627–634 (1991).
[Crossref] [PubMed]

Bioelectromagnetics (1)

A. Lajevardipour, A. W. Wood, R. L. McIntosh, and S. Iskra, “Estimation of dielectric values for tissue water in the Terahertz range,” Bioelectromagnetics 37(8), 563–567 (2016).
[Crossref] [PubMed]

Electron. Lett. (1)

C. Jastrow, K. Mu, R. Piesiewicz, T. Ku, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[Crossref]

Health Phys. (2)

International Commission on Non-Ionizing Radiation Protection, “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” Health Phys. 74(4), 494–522 (1998).
[PubMed]

International Commission on Non-Ionizing Radiation Protection, “ICNIRP statement on the “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”,” Health Phys. 97(3), 257–258 (2009).
[Crossref] [PubMed]

J. Magn. Reson. Imaging (1)

C. M. Collins, W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, “Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz,” J. Magn. Reson. Imaging 19(5), 650–656 (2004).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

R. A. Lewis, “A review of terahertz sources,” J. Phys. D Appl. Phys. 47(37), 374001 (2014).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Opt. Express (1)

Otolaryngol. Clin. North Am. (1)

K. E. Kelly and D. C. Mohs, “The external auditory canal. Anatomy and physiology,” Otolaryngol. Clin. North Am. 29(5), 725–739 (1996).
[PubMed]

Phys. Med. Biol. (2)

S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol. 41(11), 2251–2269 (1996).
[Crossref] [PubMed]

K. Sasaki, K. Wake, and S. Watanabe, “Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz,” Phys. Med. Biol. 59(16), 4739–4747 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

Z. Vilagosh, A. Lajevardipour, and A. Wood, “Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages,” Proc. SPIE 10456, 104560M (2017).

Somatosens. Res. (1)

Y. Yeh and L. Kruger, “Fine-structural characterization of the somatic innervation of the tympanic membrane in normal and neurotoxin-denervated rats,” Somatosens. Res. 1(4), 359–378 (1984).
[Crossref] [PubMed]

Wound Repair Regen. (1)

P. L. Santa Maria, M. D. Atlas, and R. Ghassemifar, “Chronic tympanic membrane perforation: a better animal model is needed,” Wound Repair Regen. 15(4), 450–458 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Excitation directions, (a) horizontal (parallel), (b) 30° forward from the ear canal direction (c) 45° above the horizontal. The depiction of the outer ear: (d) tragus (e) the antitragus and antihelix. (f) Cross section of the ear canal, (g) location of the planar sensor at 20mm, (h) tympanic membrane.
Fig. 2
Fig. 2 (a) The list of the values for the real (εʹ) and imaginary (εʺ) parts of the permittivity of the tissues for the model. (b) The characteristics of the excitation used in the simulations.
Fig. 3
Fig. 3 (a-d) False colour output from the longitudinal bisecting planar sensor showing the propagation of 1.0 Vm−1 0.3 THz, 50 ps pulse (a) parallel excitation at mid canal (at 126 ps after the start of the simulation) (b) at impact with the tympanic membrane (at 150 ps). (c) Propagation of 1.0 Vm−1 pulse generated at 30° anterior (at 140 ps) (d) generated at 45° superior to the ear canal (at 140 ps). (e-g) false colour E-field output of the parallel excitation, (e) vertical planar sensor at 20 mm, with outer ear features intact (f) planar sensor embedded in the tympanic membrane with outer ear features intact (g) vertical planar sensor at 20 mm, with outer ear features removed, (h) planar sensor embedded in the tympanic membrane with the features of the outer ear removed.

Tables (1)

Tables Icon

Table 1 Simulation results. (A) The maximum absolute values of the point sensor E-field, mean value and the standard deviation (SD) for the 6-point array 0.01 mm within the tympanic membrane is shown. The “0°” denotes parallel excitation, as per Fig. 1(a), “30° forward” the excitation as per Fig. 1(b), “45° up”, as per Fig. 1(c), the excitation for “no outer ear” is as per Fig. 1(a), but with the outer ear features removed. (B) The E-field values adjusted for the ICNIRP safety limit, the radiation in air, (Z≈377). (C) The maximum magnetic field, from the parallel simulation, (D) Calculated tissue impedance for power density calculations (E) The resultant PD adjusted for the ICNIRP safety limit of 10 Wm−2 incident PD excitation outside the ear. (F) Calculated “micro SAR” (G) The estimated initial temperature rise at the point sensors 0.01 mm within the tympanic membrane

Metrics