Abstract

In Brillouin microscopy, absorption-induced photodamage of incident light is the primary limitation on signal-to-noise ratio in many practical scenarios. Here we show that 660 nm may represent an optimal wavelength for Brillouin microscopy as it offers minimal absorption-mediated photodamage at high Brillouin scattering efficiency and the possibility to use a pure and narrow laser line from solid-state lasing medium. We demonstrate that live cells are ~80 times less susceptible to the 660 nm incident light compared to 532 nm light, which overall allows Brillouin imaging of up to more than 30 times higher SNR. We show that this improvement enables Brillouin imaging of live biological samples with improved accuracy, higher speed and/or larger fields of views with denser sampling.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy

Carlo Bevilacqua, Héctor Sánchez-Iranzo, Dmitry Richter, Alba Diz-Muñoz, and Robert Prevedel
Biomed. Opt. Express 10(3) 1420-1431 (2019)

Brillouin Light Scattering Microspectroscopy for Biomedical Research and Applications: introduction to feature issue

Kareem Elsayad, Francesca Palombo, Thomas Dehoux, and Daniele Fioretto
Biomed. Opt. Express 10(5) 2670-2673 (2019)

Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy

Yan Fu, Haifeng Wang, Riyi Shi, and Ji-Xin Cheng
Opt. Express 14(9) 3942-3951 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).
    [Crossref] [PubMed]
  2. S. Cusack and S. Lees, “Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers,” Biopolymers 23(2), 337–351 (1984).
    [Crossref] [PubMed]
  3. J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
    [Crossref] [PubMed]
  4. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
    [Crossref] [PubMed]
  5. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
    [Crossref] [PubMed]
  6. K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
    [Crossref] [PubMed]
  7. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref] [PubMed]
  8. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
    [Crossref] [PubMed]
  9. G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
    [Crossref] [PubMed]
  10. S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
    [Crossref] [PubMed]
  11. Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
    [Crossref] [PubMed]
  12. J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res. doi: 10.1002/bdr2.1389 (2018).
  13. R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
    [Crossref] [PubMed]
  14. L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l’agitation thermique,” Ann. Phys. (Paris) 9(17), 88–122 (1922).
    [Crossref]
  15. L. I. Mandelstam, “Light scattering by inhomogeneous media,” Zh. Russ. Fiz-Khim. Ova 58, 381 (1926).
  16. E. Gross, “Change of Wave-length of Light due to Elastic Heat Waves at Scattering in Liquids,” Nature 126(3171), 201–202 (1930).
    [Crossref]
  17. E. Gross, “Modification of Light Quanta by Elastic Heat Oscillations in Scattering Media,” Nature 129(3263), 722–723 (1932).
    [Crossref]
  18. J. R. Sandercock, “Brillouin-Scattering Measurements on Silicon and Germanium,” Phys. Rev. Lett. 28(4), 237–240 (1972).
    [Crossref]
  19. R. W. Boyd, Nonlinear optics (Elsevier, 2003).
  20. G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
    [Crossref] [PubMed]
  21. A. Khodjakov and C. L. Rieder, “Imaging the division process in living tissue culture cells,” Methods 38(1), 2–16 (2006).
    [Crossref] [PubMed]
  22. S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy OPEN,” Nature Publishing Group (2015).
  23. P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,”Nat. Mater. 14(7), 657-661 (2017).
  24. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  25. V. Magidson and A. Khodjakov, “Chapter 23 - Circumventing Photodamage in Live-Cell Microscopy,” in Methods in Cell Biology, G. Sluder, and D. E. Wolf, eds. (Academic Press, 2013), pp. 545–560.
  26. W. Bäumler, J. Regensburger, A. Knak, A. Felgenträger, and T. Maisch, “UVA and endogenous photosensitizers--the detection of singlet oxygen by its luminescence,” Photochem. Photobiol. Sci. 11(1), 107–117 (2012).
    [Crossref] [PubMed]
  27. G. Antonacci, “Dark-field Brillouin microscopy,” Opt. Lett. 42(7), 1432–1435 (2017).
    [Crossref] [PubMed]
  28. G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
    [Crossref] [PubMed]
  29. G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
    [Crossref] [PubMed]
  30. G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
    [Crossref] [PubMed]
  31. S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In Vivo Brillouin Analysis of the Aging Crystalline Lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
    [Crossref] [PubMed]
  32. P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
    [Crossref] [PubMed]
  33. R. R. Torgerson and M. A. McNiven, “The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing,” J. Cell Sci. 111(Pt 19), 2911–2922 (1998).
    [PubMed]
  34. O. T. Fackler and R. Grosse, “Cell motility through plasma membrane blebbing,” J. Cell Biol. 181(6), 879–884 (2008).
    [Crossref] [PubMed]
  35. M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, and H. Schneckenburger, “Light Dose is a Limiting Factor to Maintain Cell Viability in Fluorescence Microscopy and Single Molecule Detection,” in Int J Mol Sci(2010), pp. 956–966.
  36. K. V. Berghaus, S. H. Yun, and G. Scarcelli, “High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis,” JoVE, e53468 (2015).
    [Crossref]
  37. E. Edrei, M. C. Gather, and G. Scarcelli, “Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging,” Opt. Express 25(6), 6895–6903 (2017).
    [Crossref] [PubMed]
  38. G. Antonacci, M. R. Foreman, C. Paterson, and P. T. € Or € Ok, “Spectral broadening in Brillouin imaging.”
  39. V. Magidson and A. Khodjakov, “Circumventing Photodamage in Live-Cell Microscopy,” in Methods in Cell Biology, G. Sluder, and D. E. Wolf, eds. (Academic Press, 2013), pp. 545–560.
  40. G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
    [Crossref] [PubMed]
  41. J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip17, 663–670 (2014).
    [Crossref] [PubMed]

2018 (3)

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

2017 (4)

E. Edrei, M. C. Gather, and G. Scarcelli, “Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging,” Opt. Express 25(6), 6895–6903 (2017).
[Crossref] [PubMed]

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,”Nat. Mater. 14(7), 657-661 (2017).

G. Antonacci, “Dark-field Brillouin microscopy,” Opt. Lett. 42(7), 1432–1435 (2017).
[Crossref] [PubMed]

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

2016 (4)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In Vivo Brillouin Analysis of the Aging Crystalline Lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

2015 (3)

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

2013 (2)

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (2)

W. Bäumler, J. Regensburger, A. Knak, A. Felgenträger, and T. Maisch, “UVA and endogenous photosensitizers--the detection of singlet oxygen by its luminescence,” Photochem. Photobiol. Sci. 11(1), 107–117 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

2011 (2)

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

2008 (1)

O. T. Fackler and R. Grosse, “Cell motility through plasma membrane blebbing,” J. Cell Biol. 181(6), 879–884 (2008).
[Crossref] [PubMed]

2007 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

2006 (1)

A. Khodjakov and C. L. Rieder, “Imaging the division process in living tissue culture cells,” Methods 38(1), 2–16 (2006).
[Crossref] [PubMed]

1998 (1)

R. R. Torgerson and M. A. McNiven, “The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing,” J. Cell Sci. 111(Pt 19), 2911–2922 (1998).
[PubMed]

1984 (1)

S. Cusack and S. Lees, “Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers,” Biopolymers 23(2), 337–351 (1984).
[Crossref] [PubMed]

1982 (1)

J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).
[Crossref] [PubMed]

1980 (1)

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[Crossref] [PubMed]

1972 (1)

J. R. Sandercock, “Brillouin-Scattering Measurements on Silicon and Germanium,” Phys. Rev. Lett. 28(4), 237–240 (1972).
[Crossref]

1932 (1)

E. Gross, “Modification of Light Quanta by Elastic Heat Oscillations in Scattering Media,” Nature 129(3263), 722–723 (1932).
[Crossref]

1930 (1)

E. Gross, “Change of Wave-length of Light due to Elastic Heat Waves at Scattering in Liquids,” Nature 126(3171), 201–202 (1930).
[Crossref]

1926 (1)

L. I. Mandelstam, “Light scattering by inhomogeneous media,” Zh. Russ. Fiz-Khim. Ova 58, 381 (1926).

1922 (1)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l’agitation thermique,” Ann. Phys. (Paris) 9(17), 88–122 (1922).
[Crossref]

Abuhattum, S.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Akhenblit, P.

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

Alghamdi, R. A.

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,”Nat. Mater. 14(7), 657-661 (2017).

Antonacci, G.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

G. Antonacci, “Dark-field Brillouin microscopy,” Opt. Lett. 42(7), 1432–1435 (2017).
[Crossref] [PubMed]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Bäumler, W.

W. Bäumler, J. Regensburger, A. Knak, A. Felgenträger, and T. Maisch, “UVA and endogenous photosensitizers--the detection of singlet oxygen by its luminescence,” Photochem. Photobiol. Sci. 11(1), 107–117 (2012).
[Crossref] [PubMed]

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Besner, S.

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In Vivo Brillouin Analysis of the Aging Crystalline Lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

Braakman, S.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

Brillouin, L.

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l’agitation thermique,” Ann. Phys. (Paris) 9(17), 88–122 (1922).
[Crossref]

Caponi, S.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

Cojoc, G.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Connon, C. J.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

Cusack, S.

S. Cusack and S. Lees, “Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers,” Biopolymers 23(2), 337–351 (1984).
[Crossref] [PubMed]

Czarske, J.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

de Silva, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

de Turris, V.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Edrei, E.

Elsayad, K.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Eltony, A. M.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Fackler, O. T.

O. T. Fackler and R. Grosse, “Cell motility through plasma membrane blebbing,” J. Cell Biol. 181(6), 879–884 (2008).
[Crossref] [PubMed]

Felgenträger, A.

W. Bäumler, J. Regensburger, A. Knak, A. Felgenträger, and T. Maisch, “UVA and endogenous photosensitizers--the detection of singlet oxygen by its luminescence,” Photochem. Photobiol. Sci. 11(1), 107–117 (2012).
[Crossref] [PubMed]

Fioretto, D.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Gather, M. C.

Gouveia, R. M.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Gross, E.

E. Gross, “Modification of Light Quanta by Elastic Heat Oscillations in Scattering Media,” Nature 129(3263), 722–723 (1932).
[Crossref]

E. Gross, “Change of Wave-length of Light due to Elastic Heat Waves at Scattering in Liquids,” Nature 126(3171), 201–202 (1930).
[Crossref]

Grosse, R.

O. T. Fackler and R. Grosse, “Cell motility through plasma membrane blebbing,” J. Cell Biol. 181(6), 879–884 (2008).
[Crossref] [PubMed]

Guck, J.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Ii, R. P.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Khodjakov, A.

A. Khodjakov and C. L. Rieder, “Imaging the division process in living tissue culture cells,” Methods 38(1), 2–16 (2006).
[Crossref] [PubMed]

Kim, H.

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip17, 663–670 (2014).
[Crossref] [PubMed]

Kim, K.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Kim, P.

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Knak, A.

W. Bäumler, J. Regensburger, A. Knak, A. Felgenträger, and T. Maisch, “UVA and endogenous photosensitizers--the detection of singlet oxygen by its luminescence,” Photochem. Photobiol. Sci. 11(1), 107–117 (2012).
[Crossref] [PubMed]

Kondiboyina, A.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Koski, K. J.

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

Krams, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Kwok, S. J. J.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Laissue, P. P.

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,”Nat. Mater. 14(7), 657-661 (2017).

Lees, S.

S. Cusack and S. Lees, “Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers,” Biopolymers 23(2), 337–351 (1984).
[Crossref] [PubMed]

Lepert, G.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

Maisch, T.

W. Bäumler, J. Regensburger, A. Knak, A. Felgenträger, and T. Maisch, “UVA and endogenous photosensitizers--the detection of singlet oxygen by its luminescence,” Photochem. Photobiol. Sci. 11(1), 107–117 (2012).
[Crossref] [PubMed]

Mandelstam, L. I.

L. I. Mandelstam, “Light scattering by inhomogeneous media,” Zh. Russ. Fiz-Khim. Ova 58, 381 (1926).

Mattana, S.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

McKiernan, K.

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

McNiven, M. A.

R. R. Torgerson and M. A. McNiven, “The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing,” J. Cell Sci. 111(Pt 19), 2911–2922 (1998).
[PubMed]

Mehta, V. V.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Meng, Z.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Möckel, C.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Möllmert, S.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Müller, P.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Nou, X. A.

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip17, 663–670 (2014).
[Crossref] [PubMed]

Palombo, F.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Paterson, C.

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Pedrigi, R. M.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Pineda, R.

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In Vivo Brillouin Analysis of the Aging Crystalline Lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Ramier, A.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Randall, J.

J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).
[Crossref] [PubMed]

Randall, J. T.

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[Crossref] [PubMed]

Regensburger, J.

W. Bäumler, J. Regensburger, A. Knak, A. Felgenträger, and T. Maisch, “UVA and endogenous photosensitizers--the detection of singlet oxygen by its luminescence,” Photochem. Photobiol. Sci. 11(1), 107–117 (2012).
[Crossref] [PubMed]

Reynaud, E. G.

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,”Nat. Mater. 14(7), 657-661 (2017).

Rieder, C. L.

A. Khodjakov and C. L. Rieder, “Imaging the division process in living tissue culture cells,” Methods 38(1), 2–16 (2006).
[Crossref] [PubMed]

Rosa, A.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Ruocco, G.

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Sánchez Guajardo, E. R.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Sandercock, J. R.

J. R. Sandercock, “Brillouin-Scattering Measurements on Silicon and Germanium,” Phys. Rev. Lett. 28(4), 237–240 (1972).
[Crossref]

Scarcelli, G.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

E. Edrei, M. C. Gather, and G. Scarcelli, “Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging,” Opt. Express 25(6), 6895–6903 (2017).
[Crossref] [PubMed]

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In Vivo Brillouin Analysis of the Aging Crystalline Lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip17, 663–670 (2014).
[Crossref] [PubMed]

Schlüßler, R.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Seiler, T. G.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Shao, P.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

Shroff, H.

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,”Nat. Mater. 14(7), 657-661 (2017).

Steelman, Z.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Tamagnini, F.

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

Tomancak, P.

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,”Nat. Mater. 14(7), 657-661 (2017).

Torgerson, R. R.

R. R. Torgerson and M. A. McNiven, “The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing,” J. Cell Sci. 111(Pt 19), 2911–2922 (1998).
[PubMed]

Török, P.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Traverso, A. J.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Vaughan, J. M.

J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).
[Crossref] [PubMed]

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[Crossref] [PubMed]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Yakovlev, V. V.

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

Yarger, J. L.

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

Yun, S. H.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Yun, S.-H.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In Vivo Brillouin Analysis of the Aging Crystalline Lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip17, 663–670 (2014).
[Crossref] [PubMed]

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Zimmermann, C.

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Ann. Phys. (Paris) (1)

L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l’agitation thermique,” Ann. Phys. (Paris) 9(17), 88–122 (1922).
[Crossref]

Biophys. J. (2)

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

R. Schlüßler, S. Möllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Möckel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref] [PubMed]

Biopolymers (1)

S. Cusack and S. Lees, “Variation of longitudinal acoustic velocity at gigahertz frequencies with water content in rat-tail tendon fibers,” Biopolymers 23(2), 337–351 (1984).
[Crossref] [PubMed]

Commun Biol (1)

G. Antonacci, V. de Turris, A. Rosa, and G. Ruocco, “Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS,” Commun Biol 1(1), 139 (2018).
[Crossref] [PubMed]

Faraday Discuss. (1)

G. Lepert, R. M. Gouveia, C. J. Connon, and C. Paterson, “Assessing corneal biomechanics with Brillouin spectro-microscopy,” Faraday Discuss. 187, 415–428 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

S. Besner, G. Scarcelli, R. Pineda, and S.-H. Yun, “In Vivo Brillouin Analysis of the Aging Crystalline Lens,” Invest. Ophthalmol. Vis. Sci. 57(13), 5093–5100 (2016).
[Crossref] [PubMed]

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. P. Ii, and S.-H. Yun, “Effects of Corneal Hydration on Brillouin Microscopy In Vivo,” Invest. Ophthalmol. Vis. Sci. 59(7), 3020–3027 (2018).
[Crossref] [PubMed]

J. Biophotonics (1)

Z. Steelman, Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis,” J. Biophotonics 8(5), 408–414 (2015).
[Crossref] [PubMed]

J. Cell Biol. (1)

O. T. Fackler and R. Grosse, “Cell motility through plasma membrane blebbing,” J. Cell Biol. 181(6), 879–884 (2008).
[Crossref] [PubMed]

J. Cell Sci. (1)

R. R. Torgerson and M. A. McNiven, “The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing,” J. Cell Sci. 111(Pt 19), 2911–2922 (1998).
[PubMed]

J. Innov. Opt. Health Sci. (1)

S. Mattana, S. Caponi, F. Tamagnini, D. Fioretto, and F. Palombo, “Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis,” J. Innov. Opt. Health Sci. 10(6), 1742001 (2017).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12(112), 20150843 (2015).
[Crossref] [PubMed]

Methods (1)

A. Khodjakov and C. L. Rieder, “Imaging the division process in living tissue culture cells,” Methods 38(1), 2–16 (2006).
[Crossref] [PubMed]

Nat. Mater. (2)

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,”Nat. Mater. 14(7), 657-661 (2017).

K. J. Koski, P. Akhenblit, K. McKiernan, and J. L. Yarger, “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12(3), 262–267 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2007).
[Crossref] [PubMed]

Nature (3)

J. M. Vaughan and J. T. Randall, “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284(5755), 489–491 (1980).
[Crossref] [PubMed]

E. Gross, “Change of Wave-length of Light due to Elastic Heat Waves at Scattering in Liquids,” Nature 126(3171), 201–202 (1930).
[Crossref]

E. Gross, “Modification of Light Quanta by Elastic Heat Oscillations in Scattering Media,” Nature 129(3263), 722–723 (1932).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Photochem. Photobiol. Sci. (1)

W. Bäumler, J. Regensburger, A. Knak, A. Felgenträger, and T. Maisch, “UVA and endogenous photosensitizers--the detection of singlet oxygen by its luminescence,” Photochem. Photobiol. Sci. 11(1), 107–117 (2012).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. R. Sandercock, “Brillouin-Scattering Measurements on Silicon and Germanium,” Phys. Rev. Lett. 28(4), 237–240 (1972).
[Crossref]

Proc. R. Soc. Lond. B Biol. Sci. (1)

J. Randall and J. M. Vaughan, “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B Biol. Sci. 214(1197), 449–470 (1982).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref] [PubMed]

Sci. Signal. (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. Sánchez Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9(435), rs5 (2016).
[Crossref] [PubMed]

Zh. Russ. Fiz-Khim. Ova (1)

L. I. Mandelstam, “Light scattering by inhomogeneous media,” Zh. Russ. Fiz-Khim. Ova 58, 381 (1926).

Other (9)

S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy OPEN,” Nature Publishing Group (2015).

V. Magidson and A. Khodjakov, “Chapter 23 - Circumventing Photodamage in Live-Cell Microscopy,” in Methods in Cell Biology, G. Sluder, and D. E. Wolf, eds. (Academic Press, 2013), pp. 545–560.

M. Wagner, P. Weber, T. Bruns, W. S. L. Strauss, R. Wittig, and H. Schneckenburger, “Light Dose is a Limiting Factor to Maintain Cell Viability in Fluorescence Microscopy and Single Molecule Detection,” in Int J Mol Sci(2010), pp. 956–966.

K. V. Berghaus, S. H. Yun, and G. Scarcelli, “High Speed Sub-GHz Spectrometer for Brillouin Scattering Analysis,” JoVE, e53468 (2015).
[Crossref]

R. W. Boyd, Nonlinear optics (Elsevier, 2003).

J. Zhang, R. Raghunathan, J. Rippy, C. Wu, R. H. Finnell, K. V. Larin, and G. Scarcelli, “Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography,” Birth Defects Res. doi: 10.1002/bdr2.1389 (2018).

G. Antonacci, M. R. Foreman, C. Paterson, and P. T. € Or € Ok, “Spectral broadening in Brillouin imaging.”

V. Magidson and A. Khodjakov, “Circumventing Photodamage in Live-Cell Microscopy,” in Methods in Cell Biology, G. Sluder, and D. E. Wolf, eds. (Academic Press, 2013), pp. 545–560.

J. Zhang, X. A. Nou, H. Kim, and G. Scarcelli, “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip17, 663–670 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a-b) Representative frames of time-lapse movies that shows cell blebbing process when cells are exposed to the focus of a) 34 mW of 532 nm laser and b) 40 mW of 660 nm laser. c) Measured time to bleb vs power delivered for green (532 nm) and red (660 nm) laser. Cell blebbing appears after a fixed amount of energy has been delivered to the cell in the 532 nm experiments. The points fall on the curve of 3.01 J delivered. The 660 nm experiments take a long time to show signs of damage. Because of cell variability and heat dissipation, blebbing times show a larger variation. Red cells need 2.49 × 102 J on average to bleb.
Fig. 2
Fig. 2 a) SNR and Brillouin shift precision vs the exposure time of methanol measured with 660 nm laser and 61 mW power. The setup is shot noise limited down to 0.3 ms, below which the camera noise becomes significant. b) SNR vs irradiated energy curves. Red dots denote SNR of 660 nm spectrometer. Green solid line is the previously published data from the 532 nm Brillouin spectrometer measuring methanol [7] illustrating the better scattering efficiency at 532 nm. Green dashed line is the same previously published data in which each energy is rescaled by the factor of (660nm/532nm)4 to account for the lower scattering efficiency at 660 nm illustrating that the 660 nm spectrometer performs equally well. c) Schematic of the optical setup that is based on [7] and [37].
Fig. 3
Fig. 3 a) Brightfield and nuclear fluorescence composite image of a 3T3 cell attached on glass. b) Zoomed in region of the nucleus with clearly visible nucleoli. c) Spinning disk fluorescence image of the same region of the cell. d) Horizontal Brillouin shift confocal slice of a cell imaged with 9.2 MHz shift precision and 20 ms exposure time per pixel. d) Same horizontal Brillouin shift confocal slice imaged with 3.9 MHz shift precision and 180 ms exposure time per pixel. Dashed blue line indicates the location of the nucleus edge. f) Example Brillouin spectra acquired (dots) and their respective Lorentzian best fit lines (solid lines) in two locations A and B denoted in e). g) Line profile of the Brillouin images at two different precision levels. Location of the line profile is indicated by the black dashed line in the Brillouin maps in d) and e).
Fig. 4
Fig. 4 a) Example of a large field of view Brillouin shift image. The image is 110µm by 93µm, sampled at 0.5µm steps amounting to a total number of 40,920 pixels at 50ms exposure time, and total acquisition time of 34 min. Some of the cells in the image are only partly inside the horizontal confocal slice. Several nucleoli that fall within the confocal slice are visible. The lowest value of the colormap that corresponds to the measurement of cell medium is rendered black to better separate the cells from the background. b) Composite brightfield and nuclear fluorescence image of the scanned region.
Fig. 5
Fig. 5 A 3D reconstruction of the Brillouin shift of a whole attached cell with the pixel size of 1µm × 1µm × 1µm. The whole acquisition took 7 min and 45 sec at 61 mW power. The lowest value of the colormap that corresponds to the measurement of cell medium is rendered black to better separate the cell from the background.

Metrics